On July 21, 2015, the Regional Government of of Castilla y León (CyL, Spain) officially declared the Group MathPhys-CyL (Mathematical Physics in CyL) to be one of the “Consolidated Research Units” of this Region (UIC 011).
This distinction was confirmed for the period 2018-2011.
The group MathPhys-CyL is formed by 15 researchers of the universities of Burgos, Salamanca and Valladolid:
MathPhys-UBu (University of Burgos)
- 
Ángel Ballesteros Castañeda (Head): Google Scholar
 - 
Alfonso Blasco Sanz: Google Scholar
 - 
Francisco José Herranz Zorrilla: Google Scholar
 
MathPhys-USal (University of Salamanca)
- 
Alberto Alonso Izquierdo: Google Scholar
 - 
Miguel A. González León: Google Scholar
 - 
Juan M. Mateos Guilarte: Google Scholar
 - 
Marina de la Torre Mayado: Google Scholar
 
MathPhys-UVa (University of Valladolid)
- 
Manuel Donaire del Yerro: Google Scholar
 - 
Manuel Gadella Urquiza: Google Scholar
 - 
José M. Izquierdo Rodríguez: Google Scholar
 - 
José M. Muñoz Castañeda: Google Scholar
 - 
Javier Negro Vadillo: Google Scholar
 - 
Luismi Nieto Calzada: Google Scholar
 - 
Mariano A. del Olmo Martínez: Google Scholar
 - 
Mariano Santander Navarro: Google Scholar
 
Present PhD Students:
- Eduardo Fernández Saiz, U. Burgos.
 - Iván Gutiérrez Sagredo, U. Burgos.
 - Tayebeh Mohamadian, U. Guilan (Rasht, Iran) & U. Valladolid.
 - César Romaniega Sancho, U. Valladolid.
 - Lucía Santamaría Sanz, U. Valladolid.
 - Marcos Tello Fraile, U. Valladolid.
 
Research Support:
- Miguel Rodríguez Rosa (JCyL-UVa).
 - Berta Minguela Domingo (JCyL-UVa).
 
Theses researchers work together in several complementary research lines, with the goal of make relevant advances. These are the main research topics under progress:
- Mathemathical methods in quantum technologies.
 - Geometric techniques in Physics.
 - Integrable, superintegrable and supersymmetric systems.
 - Resonances and quantum unstable states.
 - Topological defects in Quantum Field Theories.
 - Theoretical study of new materials of applied relevance: graphene, fullerene, nanowires and nanoribbons.
 - Singular potentials.
 - Sturm-Liouville problems.
 - Quantum groups and noncommutative geometry.