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The Casimir energy between a pair of two-dimensional plates represented by Dirac delta potentials
and embedded in the topological background of a sine-Gordon kink is studied in [L. Santamaŕıa-
Sanz, letter (2023)] through an extension of the TGTG-formula, firstly discovered by O. Kenneth
and I. Klich, to weak curved backgrounds. More details of the calculations are provided here, not
only regarding the spectrum of the corresponding associated non-relativistic quantum mechanical
problem but also concerning the Green’s function and the transfer operators of the corresponding
Quantum Field Theory. These details allow a better understanding of the issue. In fact, a more
general potential consisting of a Dirac delta as well as its first derivative would be used to represent
each plate. Moreover, the relation between the phase shift and the density of states (the well-known
Dashen-Hasslacher-Neveu formula) is also exploited to characterize the quantum vacuum energy.

I. INTRODUCTION

The vacuum state of an arbitrary either classical or
Quantum Field Theory (QFT) is the state of minimum
energy of the Hamiltonian. This state is not empty but
instead contains electromagnetic waves and infinite pairs
of virtual short-lived particles and antiparticles, or vac-
uum bubbles. These pairs annihilate each other very
quickly in accordance with the Heisenberg energy-time
uncertainty principle. Nevertheless, when some objects
are introduced into the space, sometimes nearby parti-
cles collide with them and get reflected in such a way
that they do not combine again with their antipaticles.
Quantum forces may thus appear in the system as a result
of the presence of these frontiers. The physical proper-
ties of the vacuum state and the vacuum energy show a
strong dependence on the type of boundaries. One of the
most important boundary phenomenon is the Casimir ef-
fect [1], in which the presence of two parallel, uncharged
and conducting plates restrics the modes of the fluctua-
tions of the electromagnetic field between them. Vacuum
polarization occurs and a finite force between both plates
appears. This effect, predicted in 1948 by H.B.G Casimir,
was experimentally measured for the first time in 1958 by
M.J. Sparnaay [2]. Since then, many studies have been
performed for bodies with different geometries and ma-
terials and important applications have emerged in the
fields of condensed-matter physics, nanoscience and cos-
mology [3].

A crucial point in the theory is that the vacuum en-
ergy is ultraviolet divergent. It needs to be regularized
and renormalized in order to obtain the finite contribu-
tion related to the interaction betwen objects. There
are several approaches to achieve this goal: comput-
ing the 00-component of the energy-momentum tensor
in terms of Green’s function and the scattering data
and then subtracting the first terms in its Born expan-
sion [4], calculating the transfer operator to apply the
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TGTG-formula1 [5], or using zeta functions, complex in-
tegrals and heat traces [6–8], to name just a few of meth-
ods. The TGTG-formula allows to compute the quan-
tum vacuum interaction energy between two disjoint ob-
jects represented by a smooth classical background in a
flat spacetime. For instance, it has been used to com-
pute the vacuum interaction energy between two sine-
Gordon kinks [9] and two plates mimicked by δδ′ poten-
tials [10]. Since in both cases the potentials representing
the two objects do not overlap (i.e. they are potentials
with disjoint compact supports), the TGTG-formula pro-
vides exact results. The major advantage of using the
TGTG-formalism is that only the scattering problem for
the background potential together with one single object
is necessary to compute the vacuum interaction energy
between the pair of bodies. This could be a crucial factor
whenever the scattering problem for the complete poten-
tial with two objects in a classical background is hard to
be solved. Furthermore, using the TGTG-formula sig-
nificantly reduces the complexity of the analytical and
numerical computation.

There are relevant differences between studying QFT
for flat metrics and doing it for those that characterize
curved manifolds. Varying the Hilbert-Einstein action of
a scalar quantum field φ in a curved background with
boundaries with respect to φ yields the field equations
[11–13]:

gµνDµDνφ+ (m2 + ξR)φ = 0, (1)

being gµν the metric tensor, Dµ the covariant derivative
obtained from the connection, R the Ricci scalar curva-
ture and ξ the coupling to the gravitational field. For
scalar fields, Dµ reduces to the usual partial derivative
∂µ. Concerning QFT, the main difference of the scalar
field equations in a generic curved spacetime with respect
to those present in the flat Minkowski one are the terms

1 The name of the formula is due to the fact that it involves the
use of Green’s functions and Lippmann-Schwinger T -operators
related to the objects in the order specified by the formula name.
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proportional to the scalar curvature R in (1). They are
indispensable when renormalising the theory with coun-
terterms. Moreover, the fundamental problems regard-
ing the abscence of the concept of particle, the abscence
of a reference vacuum state and the unitarily inequiv-
alent representations of the algebra of the observables
in curved spacetimes are arisen for instance in [14, 15].
From these references, it is clear that only for globally
hyperbolic curved spacetimes endowed with a global tem-
poral Killing vector, the solutions of the field equations
and the temporal coordinate are globally defined and one
could perform the usual canonical quantization. When
there exists a goblal Killing vector, the spacetime is a
fiber bundle with a set of spatial slices or Cauchy sur-
faces which evolve in time. For each fixed value of the
temporal coordinate, one could solve the spectra of the
Laplacian-Beltrami operator in the spatial slice as done
for the Minkowski metric. However, in another more gen-
eral case, if the curved spacetime is such that the fiber
bundle do not allow an interpretation in terms of particle
spectra independent of the observer, talking about scat-
tering is ambiguous. Consequently, computing the quan-
tum vacuum energy either from the 00-component of the
energy-momentum tensor and from the transfer opera-
tors defined in terms of the scattering data will not offer
a universal outcome independent of the observer. In fact,
there are not many results about the TGTG-formula in
curved backgrounds and sometimes it does not even exist
[16]. In these last cases, the correct way to compute the
Casimir energy is considering the wave function of the
fundamental state of the field configuration and using
spectral functions associated to the Laplacian operator.
In this way, the trace of the determinant of the Lapla-
cian operator is interpreted as the energy and by using
zeta regularization, it will be possible to find a universal
result.

There is a special case to be taken into account. When
the frequencies of the particles created by the gravita-
tional background are much smaller than the Planck fre-
quency, one could use the perturbation theory for this
curved spacetime as a semiclassical approach to quan-
tum gravity [17, 18]. In doing so, this weak gravitational
backgrounds are treated classically and the matter fields
are the ones which will be quantized. The key point is
that this gravity would be strong enough to produce some
effects to the quantum matter, but not so strong as to re-
quire an own quantization. This is exactly the case which
is going to be considered in this work. The main objec-
tive will be the study of the quantum vacuum interaction
energy between a pair of two-dimensional homogeneous
plates placed2 at z = a, b and embedded in a weak curved

2 The position four-vector will be expressed from now on as
xµ = (t, ~x‖, z) ∈ R1,3. Notice that ~x‖ ∈ R2. Likewise, the

four-momentum will be Kµ = (E,~k‖, k). Here, z and k are the
position and the momentum coordinates in the direction orthog-
onal to the surfaces of the plates.

background potential centered at the origin of the direc-
tion orthogonal to the plates. The general procedure for
calculating the transfer operators and Green’s functions
will be given. However, it will also be illustrated by one
concrete example where the plates are modeled by the
Dirac punctual potential

Vδδ′(z) = v0δ(z − a) + w0δ
′(z − a) + v1δ(z − b)

+ w1δ
′(z − b),

being v0, v1, w0, w1, a, b ∈ R and a < b. Above, δ′ de-
notes the first derivative of the delta function. Punctual
potentials or contact interactions have attracted much at-
tention so far. Dirac delta potentials are widely used as
toy models for realistic materials like quantum wires [19],
and to analyze physical phenomena such as Bose-Einstein
condensation in periodic backgrounds [20] or light propa-
gation in 1D relativistic dielectric superlattices [21]. De-
spite being a rather simple idealization of the real system,
the δ function has been proved to correctly represent sur-
face interactions in many models related to the Casimir
effect. For instance, Dirac δ functions have been set on
the plates acting as the electrostatic potential [22], to
represent two finite-width mirrors [23], or to describe the
permittivity and magnetic permeability in an electromag-
netic context, by associating them to the plasma frequen-
cies in Barton’s model on spherical shells [24, 25]. On
the other hand, the first derivative of the delta potential
has been used to study monoatomically thin polarizable
plates formed by lattices of dipoles [26] and resonances in
1D oscillators [27]. There is some controversy in the def-
inition of the δ′ potential since different regularizations
produce different scattering data (see [28] and references
therein). Here, I will use the one presented in [29], in
which the authors define it by introducing a Dirac delta
potential at the same point to regularize the whole po-
tential. As they explained, the major advantage of this
choice is that it enables defining this singular potential
in terms of matching conditions at the origin which do
not depend on the choice of a regularization method.

Once the plates have been described, it is interesting
to point out that the classical background of the specific
example will be the Pöschl-Teller (PT) potential

VPT (z) = −2 sech2 z.

It models the propagation of mesons moving in a sine-
Gordon kink background [30–32]. Kinks in 1 + 1 dimen-
sions can be embedded into a 3 + 1 dimensional theory
as solutions which are independent of all but one spa-
tial direction. These types of solutions with finite energy
per unit area are known as domain walls [31]. Previous
work concerning the 00-component of the energy momen-
tum tensor Tµν in a system with a kink in the real line,
and the scattering problem of two delta potentials si-
metrically placed around a kink can be found in [32, 33].
Nevertheless, here I tackle a more general situation, as al-
ready introduced. It is important to highlight that I deal
with a QFT in which the ultraviolet divergences present
in the vacuum energy are not eliminated just by taking
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the normal ordering of the operators. In fact, even if
there were no plates and only the PT kink theory was
considered, mass corrections of the order of ~ would ap-
pear (the well-known Dashen-Hasslacher-Neveu (DHN)
correction [34]). Another interesting property of the PT
background is that it is transparent in the sense that
the fields could be asymptotically interpreted as parti-
cles. Consequently, it is possible to define incoming and
outgoing waves and to derive a S-matrix in a similar way
to the usual for flat spacetimes [35–37].

It is important to note that the thermodynamics at
non-zero temperature are not going to be considered.
This is due to the fact that for weak gravitational back-
grounds, once the thermal fluctuations be the dominant
ones, the effects of the curved background will not be
noticeable. One will find the same results as in a flat
background and more specifically, the results presented
in [37]. Furthermore, it is worth mentioning that only ef-
fective theories [38, 39] are going to be considered. When
computing the Casimir force between plates or objects,
the microscopic details of the material that the object
is built of should also be taken into account. The QED
Lagrangian should also be introduced to add the contri-
bution of the atoms of the objects. However, this is not
what happens. In fact, if one were to do it, the theory
would become as complicated that it probably could not
be solved. Consequently, one traces over the microscopic
degrees of freedom concerning the fermions in the plates
to work with an effective theory which analytically de-
scribes the system properly enough. This approach has
also been implicitly followed in this work.

The discussion given in the following sections consti-
tutes a technical companion to Ref. [40], providing a
detailed derivation and several extensions of the results
mentioned there. The work is organised as follows: in
Sec. II, a brief discussion regarding the curved back-
ground to be considered is presented. Sections III and
IV involve the computation of the spectrum of scattering
and bound states of the associated Schrödinger operator
as well as the derivation of the Green’s functions, respec-
tively. In Sec. V and VI, the TGTG-formula and the
DHN one [41] will be used to analyze the quantum vac-
uum interaction energy and to study the Casimir pressure
between plates, giving a more general overview than the
one shown in [40]. Finally, Sec. VII summarizes the main
conclusions. The natural system of units ~ = c = 1 will
be used.

II. DOMAIN WALL BACKGROUND

The next question that arises is whether it is possible
to determine a metric for a curved spacetime, in such
a way that the equation describing the dynamics of the
quantum vacuum fluctuations around a kink solution in

a flat spacetime3, i.e.

∂2
t φ−∇2φ−

(
−m2 + 2 sech2 z

)
φ = 0,

be the equation of motion for a scalar field coupled to the
gravitational background of a domain wall4. It is possi-
ble to find a solution for the metric from the Einstein’s
equations

Rµν −
1

2
Rgµν + Λ gµν = 8πGTµν

(being Rµν the Ricci curvature tensor, G the universal
gravitational constant and Λ the cosmological one), but
it is undoubtedly complicated. One of the several diffi-
culties is that very little is known about the distribution
of momentum and energy in such a curved spacetime. Is
it sufficient for the domain wall to be the only gravita-
tional source of mass? If yes, and considering z as the
spatial coordinate in which the one-dimensional domain
wall extends along, can Tµν be written as

Tµν =

(
ρ(z) 0

0 fΠ

)
,

with ρ(z) the energy density? If so, what is the flux of
momentum fΠ? As it can be seen, being able to derive
the components of the metric from the Einstein’s equa-
tions without knowing in advance the exact form of the
Tµν tensor may not be guaranteed. However, taking into
account the symmetry of the system, perhaps it might
be possible to apply the same reasoning given in [43].
In this work, the authors derive the metric components
just by solving two differential equations that arise when
imposing the spherical symmetry characteristic of their
example on the Einstein’s equations, written in terms
of the sectional curvatures5 [44, 45], and the Bianchi’s
identities. Due to the spherical symmetry all sectional
curvatures, as well as the proper energy density and the
proper pressures across the transverse spatial planes, de-
pend only on the radial coordinate. The rest of the com-
ponents of Tµν are zero. All this significantly reduces the
problem of finding the sectional curvatures and then, the
metric components. Back to the case of the metric for
the domain wall, there is also a certain degree of sym-
metry in the configuration of the system. Notice that

3 The equation of motion incorporates a mass term m2 in order
for the Hamiltonian of the QFT to be a non-negative self-adjoint
operator and for the theory to be well-defined and unitary.

4 Domain walls can be thought as membrane-like two-dimensional
structures embedded in three-dimensional spaces. In the early
stages of the Universe, the spontaneous breaking of discrete sym-
metries produced this kind of topological defects [42].

5 Sectional curvatures allows to compute the second derivative of
the separation between any two nearby geodesic curves, with
tangent vectors at a given point contained in the corresponding
two-plane indicated by the subindeces. They are geometrical
quantities independent of the coordinate system.
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the domain wall extends along a spatial coordinate but
the other two are totally symmetric. Consequently, the
sectional curvatures {Ktx,Kty,Ktz,Kyz,Kzx,Kxy} to be
found only depend on the spatial coordinate z. Moreover,
the properties Ktx(z) = Kty(z) and Kyz(z) = Kzx(z) are
fulfilled. The Einstein’s equations

2Ktx(z) +Ktz(z) = 4πG (ρ(z) + tr fΠ),

Kxy(z) + 2Kyz(z) = 8πG ρ(z),

Kxy(z) +Ktz(z) = 4πG (ρ(z) + tr fΠ − 2σzz),

should be solved together with the Bianchi’s identities
but due to the symmetry, the problem can be tackled. In
the equations above, σzz is the flux of the z component
of the momentum transferred per unit time across the
unit area along the xy parallel two-dimensional plane.

Nevertheless, the aim of this paper is not to derive the
metric of the spacetime but to obtain a generalization of
the TGTG-formula. The advantage of dealing with weak
curved spacetimes is that it is not necessary to solve the
problem of the metric in order to understand what will
appear in the rest of paper. Since the weak gravitational
field is going to be treated classically without an own
quantization, and furthermore the PT potential is trans-
parent so that the notion of incoming and outgoing par-
ticle applies here, studying the propagation of mesons
moving in a domain wall background while interacting
with two Dirac delta plates reduces to analyzing a quan-
tum scalar field in the presence of an external classical
background potential, in a similar way to what is done
for flat spacetimes. In this way, the starting point would
be the Lagrangian density

L =
1

2

(
∂µφ∂

µφ+ 2 sech2(z)φ2 − Vδδ′(z)φ2
)
, (2)

being v0, v1, w0, w1, a < b ∈ R, and the problem of solv-
ing the metric can be left for future investigation.

III. SCATTERING DATA AND SPECTRUM

For computing the interaction energy between plates
due to the quantum vacuum fluctuations, it is necessary
to characterize the normal modes of a scalar field whose
dynamics is described by the action involving the La-
grangian density (2). Consider for simplicity a real mass-

less scalar field φ confined between two parallel (D− 1)-
dimensional plates separated by a distance b − a in the
axis orthogonal to the plates, i.e. the z axis. For isotropic
and homogeneous plates, there exists a translational sym-
metry along the surface of the plates and the theory of
free fields without boundaries is recovered for the paral-
lel direction coordinates ~x‖ ∈ RD−1. Splitting the spatial

coordinate as x = ( ~x‖, z) with ~x‖ ∈ RD−1 and taking into
account the Fourier decomposition of the field

φ(t, x) =

∫
dω e−iωtφω(x),

the equation for the modes of the fluctuations field is
given by the non-relativistic Schrödinger separable eigen-
value problem

(−∆ + VPT (z) + Vδδ′(z))φω(x) = ω2φω(x).

In the equation above, ∆ = ∆‖ + ∂2
z and the frequencies

follow the dispersion relation ω2 = ~k 2
‖ + k2. Therefore,

the problem is separable and only the direction orthog-
onal to the plates needs to be studied, as the spectrum
is trivial in the other directions. From now on, I will
consider D = 3, just for simplicity.

Notice that the non-relativistic Schrödinger operator
related to the background in the dimension orthogonal
to the plates,

K̂PT = −∂2
z + VPT (z),

is not essentially self-adjoint in the Sobolev space of func-
tions W 2

2 (R − {a, b},C). It is necessary to add some
matching conditions, concerning the continuity of the
wave function and the discontinuity of its derivative at
the boundary points {a, b}, in order to define the self-

adjoint extensions of K̂PT in the aforementioned domain.
These boundary conditions will be determined by the
specific potential that represents the plates. For instance,
if they are mimicked by the Dirac delta potential Vδδ′ ,
the domain of the self-adjoint extension of K̂PT is given
by the suitable matching conditions [29] collected in (3),
which come from the original work of Kurasov in one-
dimensional systems [46].

DK̂PT
=

φ ∈W 2
2 (R− {a, b},C)

∣∣∣∣∣
 φ(a+)
φ′(a+)
φ(b+)
φ′(b+)

 =


α0 0 0 0

β0 α−1
0 0 0

0 0 α1 0

0 0 β1 α−1
1


 φ(a−)
φ′(a−)
φ(b−)
φ′(b−)


 ,

being αi =
1 + wi/2

1− wi/2
, βi =

vi
1− (wi/2)2

, i = 0, 1. (3)

The system of two plates in the background chosen has an open geometry so the positive energy spectrum will
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be continuous. Scattering states correspond to solutions
of the Schrödinger equation

(K̂PT + Vδδ′(z))φω,~k‖(z) = k2φω,~k‖(z),

with k ∈ R (such that k2 > 0) and keeping in mind that
the delta potential must be understood as the boundary
conditions at z = a, b aforementioned. Given a linear mo-
mentum k there are two independent scattering solutions
to be found. However, these solutions are constructed
differently depending on the problem geometry. The-
oretically speaking, there are several ways to place two
objects embedded in a background potential. In order for
the Casimir energy between plates to be a non-negligible
magnitude, the two objects have to be very close to each
other. Consequently, two different cases could be exam-
ined. For the problem of two plates placed symmetrically
around the origin and a background potential centered
at z = 0 with compact support ε much smaller than the
distance between plates, the solutions for “diestro” and
“zurdo” scattering solutions (incoming particles from the
left or from the right, respectively) are of the form:

ψRk (z) =


eikz + rR e

−ikz, if z < − ε
2 ,

FR fk(z) + PR f−k(z), if − ε
2 < z < ε

2 ,

tR e
ikz, if z > ε

2 ,

ψLk (z) =


tL e
−ikz, if z < − ε

2 ,

FL fk(z) + PL f−k(z), if − ε
2 < z < ε

2 ,

rL e
ikz + e−ikz, if z > ε

2 .

Notice that f±k(z) would be the eigenfunctions of the
operator −∂2

z + Vbackground(z) and {t, r, F, P}L,R(k) the
scattering data for each object. To obtain them, some
boundary conditions have to be imposed at the position
where the plates are located, i.e. z = a � −ε/2 and
z = b� ε/2.

There is another possible configuration. If the distance
between plates is smaller than the support of the back-
ground potential in such a way that the plates are placed
within this support, the scattering solutions are of the
form:

ψRk (z) =


fk(z) + rR f−k(z), if z < a,

BR fk(z) + CR f−k(z), if a < z < b,

tR fk(z), if z > b,

(4)

ψLk (z) =


tL f−k(z), if z < a,

BL fk(z) + CL f−k(z), if a < z < b,

rL fk(z) + f−k(z), if z > b.

(5)

This second case is the one which will be considered
in the example of two Dirac delta plates in a Pöschl-
Teller kink background. Thus, fk(z) = eikz(tanh(z)−ik)
are the free waves of the Pöschl-Teller potential (i.e.
plane waves times first order Jacobi polynomials). It is
relevant to highlight that the transmission amplitudes

tR(k), tL(k) are identical to each other due to the time-
reversal invariance of the Schrödinger operator. Conse-
quently, they will be substituted by t(k) from now on.
Replacing (4) and (5) in the matching conditions (3)
and solving the resulting two systems of equations with
unknowns {rR, rL, t, BR, BL, CR, CL}(k), the scattering
data are obtained (they are collected in eq. (A1) in Ap-
pendix A).

The denominator of all the scattering parameters,
Υ(k), is the spectral function. The set of zeroes of Υ(k)
can be the poles of the scattering matrix S(k). Notice
that the S(k)-matrix admits an analytic continuation to
the entire complex momentum plane. The zeroes of the
spectral function on the positive imaginary axis in the
complex momentum k-plane gives the bound states of
the spectrum of the non-relativistic Schrödinger opera-
tor. Making k → iκ in Υ(k) = 0, one can study the
bound states as the intersections between an exponential
and a rational function via the transcendent equation
−Υ1(κ)/Υ2(κ) = e−2κ(b−a), where

Υ1(κ)=4 Σ(v0, w0, a, κ) Σ(v1, w1, b, κ),

Υ2(κ)=16(κ− tanh a)(κ+ tanh b) Λ(v0, w0, a, κ)

×Λ(−v1, w1,−b, κ),

Λ(vi, wi, x, κ)=−2wi sech2 x− (vi − 2wi κ)(κ− tanhx),

Σ(vi, wi, x, κ)=[2vi + κ(4 + w2
i )](κ

2 − 1)

+ 2 sech2 x (vi + 2wi tanhx). (6)

Once the momenta of the bound states are determined,
their energies are given by E = (iκ)2 < 0. The lowest en-
ergy state will be characterized by Emin. For some type
of potentials (such as the one described in [40]), it is pos-
sible to give an analytic formula to bound the energy of
the states with negative energy of the spectrum. In other
configurations, Emin has to be obtained numerically.

Finding the TGTG-formula implies focusing only in
the scattering problem for one single plate. If one of the
delta plates is removed (for instance v1 = w1 = 0), the
spectral function of the reduced system is:

(4 + w2
0)κ3 + 2v0κ

2 − (4 + w2
0)κ− 2v0 tanh2 a

+4w0 tanh a sech2 a = 0. (7)

By studying the asymptotic behavior of (7) as well as
its maxima and minima for different values of the pa-
rameters, it can be seen that there may be several cases:
only one bound state or two bound states. There is no
zero mode because the state with wave vector k = 0 does
not constitute a pole of the S(k)-matrix. The scatter-
ing data for the reduced system can be obtained from
equation (A1) and they are given by:

t` =
−α0W

α0f−k(a) (α0f ′k(a)− β0fk(a))− fk(a)f ′−k(a)
,

r`R =
−fk(a)

[(
α2

0 − 1
)
f ′k(a)− α0β0fk(a)

]
α0f−k(a) (α0f ′k(a)− β0fk(a))− fk(a)f ′−k(a)

, (8)

r`L =
−f−k(a)

[(
α2

0 − 1
)
f ′−k(a)− α0β0f−k(a)

]
α0f−k(a) (α0f ′k(a)− β0fk(a))− fk(a)f ′−k(a)

,
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where W is the Wronskian

W ≡W [fk(a), f−k(a)] = −2ik(k2 + 1).

Notice that B`R = t`, B`L = r`L, C
`
R = 0, C`L = 1. Simi-

larly, setting v0 = w0 = 0 one obtains the reduced scat-
tering data when the plate on the right is the only one
present in the system. In this case, {tr, rrR, rrL} are given
by (8) but replacing α0 → α1, β0 → β1, a → b. Further-
more, CrL = tr, BrL = 0, BrR = 1, CrR = rrR. The super-
script `, r in the scattering data indicates which plate is
being considered: ` for the plate placed on the left of the
system and r on the right. The subscript R,L refers to
“diestro” and “zurdo” scattering.

A rather important fact is that due to the Pöschl-Teller
background potential, the translational invariance of the
system is broken. VPT (z) breaks the isotropy of the space
and consequently if fk(z) is a eigenfunction of the non-

relativistic Schrödinger operator K̂PT , then fk(z + a)
with a ∈ R− {0} will no longer be another. This means
that the scattering data explicitly depend on the position
of the plates in a non-trivial way.

For computing the vacuum interaction energy in
the corresponding QFT for the general case in which
v0, v1, w0, w1 ∈ R − {0}, the value of the energy for the
lowest energy bound state of the quantum mechanical
problem explained in this section is essential. Since the
bound state with the lowest energy is characterized by
Emin, the mass of the fluctuations in the theory will be
balance with this value Emin for making fluctuation ab-
sorption impossible. The unitarity of the QFT sets this
lower bound for the mass of the quantum vacuum fluctu-
ations, so that the total energy of the lowest energy state
of the spectrum will be zero. Thus the spectrum of the
associated Quantum Field Theory will consist of a set
of discrete states with energies within the gap [0, |Emin|]
and a continuum of scattering states with energies above
the threshold E = |Emin| = m2. The number of discrete
states will be determined by the value of the coefficients
{v0, v1, w0, w1}, with a maximum of three being possi-
ble6. It is important to highlight that the value of Emin
must be computed for the whole system of two objects
plus the background potential. This is not contradic-
tory to the fact that if the Casimir energy is calculated
with the TGTG-formula, only the transmission and re-
flection coefficients of the reduced system of an object in
the background potential are needed. It will be discussed
in detail in Sec. V.

6 Although each δδ′ potential can hold at most two bound states,
since the two plates are very close together, the whole system
of two plates in the PT background acts as a well not deep and
wide enough to accommodate four bound states, but three.

IV. GREEN’S FUNCTION

Once the spectral problem has been solved, the usual
second quantization procedure could be applied to pro-
mote the non-relativistic quantum mechanical theory to a
QFT in which to study the quantum vacuum interaction
energy between objects. The TGTG-formula is based on
two main elements: the Green’s function and the trans-
fer operators. The characteristic Green’s function can be
obtained by solving the differential equation[
∂µ∂

µ− 2 sech2 z + Vδδ′(z) +m2
]
G(xµ, yµ) = δ(xµ − yµ)

for the complete Green’s function

G(x, x′) =

∫
d2k‖

(2π)2
ei
~k‖(~x‖−~x′‖)

∫
dω

2π
e−iω(t−t′)Gk(z, z′),

or, equivalently, by solving[
−∂2

z1− k
2− 2 sech2 z1+ Vδδ′(z1)

]
Gk(z1, z2) = δ(z1 − z2)

for the reduced one. Solving this differential equation
requires assuming the continuity of Gk(z1, z2) and the
discontinuity of its first derivative at the points {a, b},
as well as imposing an exponentially decaying behaviour
of the solutions at infinity. Another way to compute the
reduced Green’s function in the spatial dimension orthog-
onal to the surfaces of the plates is by using [10]

Gk(z, z′)=
u(z − z′)ψRk (z)ψLk (z′)+u(z′ − z)ψRk (z′)ψLk (z)

W [ψRk , ψ
L
k ]

for the two linear independent scattering solutions given
in (4)-(5) for the complete system of two plates in the PT
background. Note that u(z − z′) is the unit or Heaviside
step function. Both aforementioned methods yield the
same solution for the correlator.

Moreover, the Wronskian W [ψRk , ψ
L
k ] has to be the

same for the three zones in which the two delta plates
divide the space. This imposes the following relation be-
tween the scattering coefficients: t = BR CL − CRBL.
This relation is useful to simplify the solutions of the
Green’s function in the different zones which the plates
divide the space into, and to rewrite them as

Gk(z1, z2) = GPTk (z1, z2) + ∆Gk(z1, z2),

being ∆Gk(z1, z2) given by the equation (A2) in Ap-
pendix A.

Notice that the Green’s function for the kink potential
centered at the origin without any delta interactions (i.e.
v0 = w0 = v1 = w1 = 0) takes the form

GPTk (z1, z2) =
1

W
f−k(z<)fk(z>) =

eik|z1−z2|

W

(
k2 + ik| tanh z1 − tanh z2|+ tanh z1 tanh z2

)
,

where z< and z> are the lesser or the greater of z1 and z2.
It plays the same role as G0

k(z1, z2) = eik|z1−z2|/(−2ik)
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in free plain backgrounds. This is due to the fact that
the Pöschl-Teller potential is transparent (there is not
additional reflection with respect to the free case). Fur-
thermore, since the Pöschl-Teller potential breaks the
isotropy of the space, the Green’s function is such that
GPTk (z1, z2) 6= G(z1 − z2). In fact, GPT (z, z) is not a
constant as happens in the free flat case, but depends
on the spatial orthogonal coordinate in a non-trivial way
and thus, spatial translations are no longer symmetries
of the system.

V. CASIMIR ENERGY AND TGTG FORMULA

The quantum vacuum energy per unit area of the
plates,

Ẽ0

A
=

1

2

∫∑
k

∫
R2

d~k‖

(2π)2

√
m2 + k2 + ~k2

‖,

involves the summation of the frequencies of the fields

modes ω such that ω2 = ~k2
‖ + k2 +m2 is in the spectrum

σ of the operator −∂2
~x‖

+ K̂PT + Vδδ′(z). The result is

divergent due to the contribution of the energy density
of the free theory in the bulk and the self-energy of the
infinite area plates. As a consequence, it is necessary
to introduce a regulator. For instance, one could intro-
duce an exponentially decaying function and perform the
integration over the parallel modes to obtain:

lim
ε→0

∫
R2

d~k‖

(2π)2

√
~k2
‖ + k2 +m2 e−ε(

~k2‖+k2+m2) =

lim
ε→0

1

2π
χ(k, ε) e−ε(k

2+m2),

with

χ(k, ε) =

√
π

4 ε3/2
+

√
π(m2 + k2)

4
√
ε

− 1

3

(
k2 +m2

)3/2
+ o(ε).

Notice that the terms proportional to ε−3/2 and ε−1/2

must be removed before taking the limit ε→ 0 to elimi-
nate the contribution of the parallel modes to the domi-
nant and subdominant divergences7, respectively. In this
way

E0

A
= −1

2

∫∑
k

(m2 + k2)3/2

6π
. (9)

7 Dominant or subdominant divergence refers to the degree of ul-
traviolet divergence of the terms. In [47] it is shown that for
the system of a scalar field confined between two plates in a flat
spacetime, the dominant divergence is a term proportional to a
regularization parameter with units of energy raised to the power
(D + 1)/2 with D the spatial dimension of the theory, and the
subdominant as the parameter raised to D/2. Both terms are
divergent in the ultraviolet regime. Whilst the former is asso-
ciated to the density energy of the free theory in the bulk, the
latter is due to the self-energy of infinite area plates.

In the equation above, the sum over modes of the spec-
trum in the orthogonal direction splits into the summa-
tion over a finite number of states with positive energy
in the gap [0, |Emin|] (coming form the bound states of
the associated quantum mechanical problem) and the in-
tegral over the continuous states with energies greater
than |Emin|.

Now, it is necessary to remove in (9) the contribu-
tion to the divergences coming from the modes in the or-
thogonal direction, where the one-dimensional kink lives.
These contributions are different from the ones of the
modes in the parallel directions, because in the orthog-
onal direction the space is not longer a free one. The
method to be used now is to put the system into a very
large box of length L with periodic boundary conditions
(p.b.c.) at its edges

ψ

(
−L

2

)
= ψ

(
L

2

)
, ψ′

(
−L

2

)
= ψ′

(
L

2

)
.

By so doing, all the spectrum of the Schrödinger operator
K̂ = −∂2

z − 2 sech2(z) + Vδδ′(z) becomes discrete.
On the one hand, the contribution of the discrete set

of N sates in the gap to the vacuum interaction energy
is

−1

2

N∑
j=1

(√
(iκj)2 +m2

)3

6π
.

The frequencies of these bound states for each configura-
tion (v0, v1, w0, w1, a, b) will be determined numerically
by solving Υ(iκ) = 0, κ > 0 from the scattering prob-
lem. If there were half-bound states in the spectrum (i.e.
states with energies that lie in the threshold E = |Emin|),
they would have to be accounted for with a weight of 1/2.
But this will not be the case covered in the example of
the two Dirac plates in a PT background.

On the other hand, concerning the states with energy
E > m2, it is necessary to compute

− 1

2

∑
kn∈σ+(K̂)

(√
k2
n +m2

)3

6π
, (10)

being σ+(K̂) = {kn ∈ σ(K̂) | k2
n+m2 > |Emin|}. The dif-

ferential equation K̂ψ(z) = k2
nψ(z) with periodic bound-

ary conditions at ±L/2 must be solved. Notice that now
ψ(z) = AψRk (z) + BψLk (z) is a linear combination of the
scattering solutions (4) and (5). The resulting system of
equations admits a solution whenever the following spec-
tral equation holds:

hp.b.c.(k, L) ≡ 2tW − 2(t2 − rRrL)fk

(
L

2

)
f ′k

(
L

2

)
+(rR + rL)

[
f−k

(
L

2

)
f ′k

(
L

2

)
+ fk

(
L

2

)
f ′−k

(
L

2

)]
+2f−k

(
L

2

)
f ′−k

(
L

2

)
= 0.
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The scattering data are given in equation (A1) of Ap-
pendix A. The discrete set of zeroes {kn} of the secular
function hp.b.c.(k, L) on the real axis will be the frequen-
cies of the modes over which one has to perform the sum-
mation in (10). This sum can be computed through a
complex integral over a contour enclosing all the zeroes
of hp.b.c.(k, L). By using the residue theorem in complex
analysis and also by taking into account the sates in the
gap, the total quantum vacuum interaction energy reads:

E0

A
= −1

2

[∮
Γ

dk

2πi

(m2 + k2)3/2

6π
∂k log hp.b.c.(k, L)

]

− 1

2

N∑
j=1

(√
(iκj)2 +m2

)3

6π
,

being Γ the contour represented in FIG. 1. It can be
proved that the integration over the circumference arc of
the contour is zero in the limit R→∞. Hence, the inte-
gration over the whole contour Γ reduces to the integra-
tion over the straight lines ξ± = ±iξ+m with ξ ∈ [0, R].

γ

Γ+

Γ-

Γ3

m

Re k

Im k

FIG. 1. Complex contour that encloses all the zeroes of
the spectral function when R → ∞. In this contour, one the
one hand Γ± = {m + ξe±iγ | ξ ∈ [0, R]} and on the other
hand Γ3 = {m + Reiν | ν ∈ [−γ, γ]}. The angle γ = π/2 is
going to be chosen. When integrating, the contour will be run
counterclockwise.

Moreover, the dominant and subdominant divergent
terms associated to the orthogonal modes and caused by
the confinement of the system in a very large box must be
subtracted as explained in [36, 37, 48], i.e. by computing:∫ R

0

dξ

12π2i

{
(m2 + ξ2

+)
3
2

[
L− L0 − ∂ξ log

hp.b.c.(ξ+, L)

hp.b.c.(ξ+, L0)

]
−(m2 + ξ2

−)
3
2

[
L− L0 − ∂ξ log

hp.b.c.(ξ−, L)

hp.b.c.(ξ−, L0)

]}
in the limits L0, R → ∞. The result of the integration
does not depend on the box size and consequently, one
could study the limit L→∞.

At this point, reversing the change of variable ξ → −ik
due to the Wick rotation on the momentum yields the
DHN formula [41]

E0 = − A

12π2

∫ ∞
m

dk
(√

k2 +m2
)3 dδ(k)

dk

−A
2

N∑
j=1

(√
−(κj)2 +m2

)3

6π
, (11)

with m2 = |Emin| and being δ(k) the phase shift related
to the scattering problem in the direction orthogonal to
the plate:

δ(k) =
1

2i
log−π

[
t2(k)− rR(k)rL(k)

]
.

So far, I have considered the scattering problem for
waves interacting with a system inside a large box, with-
out specifying the type of system I was working with.
In addition, the divergences related to putting the sys-
tem in a box were eliminated. However, notice that the
system is composed by two infinitely large plates and a
background potential. Consequently, the subdominant
divergences associated to the plates are still present and
a renormalization mode-by-mode is necessary. This step
is achieved by subtracting from the phase shift of the
whole system with two plates, the corresponding phase
shifts associated to a reduced problem with only one delta
plate:

δ̃(k) = δv0w0,v1w1
(k)− δv0w0

(k)− δv1w1
(k). (12)

It is worth highlighting that this last equation constitutes
a subtraction mode by mode of the spectrum to complete
the renormalization. This method is different from the
frequently used one of setting a cutoff in the integral over
modes to remove the high energetic part of the spectrum
that does not feel the background. The phase shift (12)
has to be used in the DHN formula (11) to obtain a finite
result.

Nevertheless, instead of using the aforementioned ap-
proach with the derivative of the phase shifts acting as
the density of states, the TGTG-formula will be used.
The results will be the same using either of these two
procedures but with the TGTG representation we do not
have to work with the scattering of the complete problem
but with that of the reduced problem of a single object
in the background. Hence, the numerical computational
effort is much lower.

In the seminal paper [5], O. Kenneth and I. Klich give
the following formula for the quantum vacuum interac-
tion energy between two compact bodies 1, 2 in one spa-
tial dimensional flat spacetime:

E0 = −i
∫ ∞

0

dω

2π
tr log (1− T1G12T2G21). (13)

Notice that the case the authors considered does not
present bound states with negative energy in the spec-
trum of the corresponding Schrödinger operator in quan-
tum mechanics. On the contrary, these type of states
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must be included in the case I am considering. Further-
more, in the appendices B and C of [5] the authors prove
that for any pair of disjoint finite bodies separated by
a finite distance and any Green’s function that is finite
away from the diagonal, the TGTG-operator is trace-
class. The modulus of its eigenvalues is less than one
and log(1− TGTG) is well defined. A similar reasoning
can be followed here for the system of a pair of two-
dimensional plates, that are assumed not to touch, in
the curved background of a kink. Thus, the only step
left to be taken is to calculate the T -operators for each
one of the plates.

From the well-known Lippmann-Schwinger equation

∆Gk(z1, z2) = −
∫
dz3 dz4G

PT
k (z1, z3)Tk(z3, z4)GPTk (z4, z2),

and K̃z1G
PT
k (z1 − z2) = δ(z1 − z2), it is easy to see that

−K̃z2 K̃z1 ∆Gk(z1, z2)=

∫
dz3 dz4 δ(z1−z3)Tk(z3, z4)δ(z4−z2),

where K̃z = K̂PT (z) − k2. Notice that in the above
formula, ∆Gk(z1, z2) corresponds to the Green’s func-
tion of only one plate in the Pösch-Teller potential, i.e.
the one given in (A2) with the coefficients of one of the
plates equal to zero. Due to the absolute values con-
tained in GPTk , to obtain the transfer matrix Tk(z1, z2)
corresponding to one plate, the only non-trivial contri-
bution comes from the case in which one point is on
the left and the other one on the right of the plate.
Hence, since in that case the Green’s function is given
by ∆Gk(z1, z2) = (t− 1)GPTk (z1, z2), one needs to com-
pute:

Tk(z1, z2) = −(t− 1)K̃z2 K̃z1 G
PT
k (z1, z2).

In order to obtain the transfer matrix associated to the
plate on the right8, one assumes the plate sitting at the
origin (b = 0) for simplicity and hence, one of the coor-
dinates z1, z2 will be greater than zero and the other less
than zero. Taking into account that

eik|z1−z2| = eik(|z1|+|z2|),
| tanh z1 − tanh z2| = tanh |z1|+ tanh |z2|,
tanh z1 tanh z2 = − tanh |z1| tanh |z2|,

(both in the cases z1 < 0, z2 > 0 and z1 > 0, z2 < 0),
it is possible to rewrite the free Green’s function in the
background of the kink as

GPTk (z1, z2) = − 1

W
fk(|z1|)fk(|z2|).

Because the Green’s differential equation(
−∂2
|z| − k

2 − 2 sech2 z
)
fk(|z|) = 0

8 For computing the transfer matrix of the left-hand side plate, one
sets v1 = w1 = 0 in the transmission coefficient (A1) involved
in the Green’s function (A2) and considers the case in which the
left plate is centered at a = 0.

holds, and using the formulas for the derivatives of func-
tions depending on absolute values:

dfk(|z|)
dz

= f ′k(|z|) sign z,

d2fk(|z|)
dz2

= f
′′

k (|z|) + f ′k(|z|) 2 δ(z),

the transfer matrix for the right plate can be written as

Tk(z1, z2) =
t− 1

W
4 δ(z1) δ(z2) f ′k(|z1|)f ′k(|z2|)

= −4 δ(z1) δ(z2) ∆G(z1, z2)
f ′k(|z1|)
fk(|z1|)

f ′k(|z2|)
fk(|z2|)

=
|W |2

k4
δ(z1)δ(z2)∆Gk(z1, z2).

The Green’s function for one delta plate is defined as the
following piece-wise function:

∆Gk(z1, z2)=



rL
W
fk(z1)fk(z2), if z1, z2 > b,

rR
W
f−k(z1)f−k(z2), if z1, z2 < b,

t− 1

W
fk(z>)f−k(z<), otherwise,

(14)

being the scattering data given in (A1) but for the case
v0 = w0 = 0. Consequently,

Tk(z1, z2) = −W
∗

k2
δ(z1)δ(z2)

 rL(b = 0),
rR(b = 0),
1− t(b = 0).

Asterisk means complex conjugate. The Lippmann-
Schwinger operator is related to the scattering matrix
by S = 1 − iδ(ω − ω′)T . This implies normalizing T so
that the factor k−2 cancels out. When the delta poten-
tial which mimics the plate is evaluated at another point
different from the origin, the just-computed result for
Tk(z1, z2) is valid once after performing the translation
z1 7→ z1 − b and z2 7→ z2 − b. Notice that in the defini-
tion of T at a point different to z = 0, translation must
be understood as replacing the scattering coefficients at
z = 0 contained in its definition by the ones at z = b.
Due to the PT potential, the isotropy of the spacetime
is broken and rR,L(b) 6= rR,L(0)eikb, so the translation
z1 7→ z1− b and z2 7→ z2− b aforementioned must not be
interpreted in this usual sense. The T operator for the
right-hand side plate is thus given by

T (z1, z2)=−W ∗δ(z1− b)δ(z2− b)

rL(b), z1, z2 → b+,
rR(b), z1, z2 → b−,
1− t(b), otherwise,

(15)

and analogously for the plate located at z = a.
The Green’s function or correlator represents the prob-

ability transition amplitude for a particle to propagate
from one point to another while moving freely in the
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background spacetime (GPT (z1, z2) term), or while in-
teracting with different potentials (∆G(z1, z2) contribu-
tion). Besides that, the T -matrix is the probability am-
plitude for a particle to interact with the potential but
without propagation. Hence, in the system of two plates
mimicked by punctual delta potentials in the background
of a kink, the definition of the T -operator must depend
on ∆G evaluated at the point at which the delta poten-
tial is centered, as it is the case in (15). It could not
depend on an arbitrary point of the spacetime for the
causality not to be violated. Notice that in more general
cases, when the potential representing each object is not
supported at a point but a compact interval, then T is lo-
cal. Although in this case T would depend on the points
that constitute the support of the potential, it does not
violate causality because it does not depend on arbitrary
points. When the particle interacts with a potential of
compact support, ∆G(z1, z2) includes the probability of
interaction with the potential (T -contribution) as well as
the propagation of the particle within the support of the
potential.

By definition GPT (z1, z2) = 〈T φ(z1)φ(z2)〉, expression
in which the time-ordering operator product has been
considered. All eigenstates of K̂PT with fixed energy k2

can be described in terms of the orthonormal basis of left
and right Pöschl-Teller free waves. By labeling R = fk(z)
and L = f−k(z), the Green’s function or propagator can
be written in this basis as

GPT (a, b) =
1

W
|L(a)〉 〈L(b)| ,

GPT (b, a) =
1

W
|R(b)〉 〈R(a)| ,

being a < b and the trace of the TGTG-operator behaves
as:

trT `GPTT rGPT = 〈R(a)|T ` |L(a)〉 〈L(b)|T r |R(b)〉
= r`L(v0, w0, a, k) rrR(v1, w1, b, k). (16)

It has been taken into account that T |R〉 = |L〉 and vice
versa. So, it is clear that the TGTG-formula will involve
the reflection coefficients, which depend explicitly on the
position of each plate. The above formula is the only

product of the T -matrix components that allows coin-
cidences of the z1, z2 points in [a, b] and contributes to
the quantum vacuum interaction energy between plates.
Since the modulus of the eigenvalues of the TGTG oper-
ator is less than one, it is possible to use

tr log(1− TGTG) = log det(1− TGTG)

≈ log(1− tr TGTG) (17)

as a good approximation up to first order to simplify
(13). The demonstration is collected in Appendix B. In
summary, replacing (16) and (17) in (13) and generalizing
it to three dimensions leads the final expression (18), with
m2 = |Emin|.

There are some details that are worth highlighting.
Firstly, if f±(z) were replaced by the usual plain waves,
Kenneth and Klich’s original TGTG-formula would be
restored. The reason is that in flat isotropic spacetimes
the scattering coefficients for plates placed at another
point different from the origin are equal to the ones at
z = 0 times an exponential factor that accounts for the
translation that has taken place:

r`L(a) = r`L(0) e−2iak = r`L(0)W G
(0)
−k(−a, a),

rrR(b) = rrR(0) e2ibk = rrR(0)W G
(0)
k (−b, b).

On the contrary, the main difference when working with
weak and transparent curved spacetimes that breaks the
isotropy of the space is that this rule no longer applies.
Thus, the scattering coefficients for plates placed at an-
other point different form the origin are equal to the ones
at z = 0 times the quotient between the transmitted
probability amplitude at the generic point and the one
at z = 0, and multiplied by another function related to
the configuration of the space:

r`L(a) = r`L(0)
GPT−k (−a, a) t(a)h+(α0, β0,−a)

GPT−k (0, 0) t(0)h+(α0, β0, 0)
,

rrR(b) = rrR(0)
GPTk (−b, b) t(b)h−(α1, β1, b)

GPTk (0, 0) t(0)h−(α1, β1, 0)
,

being h±(αi, βi, x) = αiβi±(α2
i−1)f ′(k, x)/f(k, x). This

fact is crucial to generalize the TGTG-formula in the case
studied.

E0

A
= −1

2

N∑
j=1

(√
−κ2

j +m2
)3

6π
+

1

8π2

∫ ∞
m

dξ ξ
√
ξ2 −m2 log(1− TrTGTGξ), (18)

=−1

2

N∑
j=1

(√
−κ2

j +m2
)3

6π
+

1

8π2

∫ ∞
m

dξ ξ
√
ξ2 −m2 log

[
1− r`L(v0, w0, a, iξ) r

r
R(v1, w1, b, iξ)

]
.

Secondly, by defining the potential Vi(z) to describe each of the two plates as Vi(z) = vi δ(z−zi)+wiδ
′(z−zi) (with
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i = 0, 1 and z0 = a, z1 = b) , the Schrödinger operators

K̂i = −∂2
z−Vi(z) are defined over a Hilbert space that, in

general, is not isomorphic to that of K̂PT . Hence, GPT

and T r,` do not act in the same spaces and T `GPTT rGPT

is ill-defined. To avoid this problem, a Wick rotation of
the momentum k must be performed in order for all the
operators to act in the same Hilbert space. The integral
(18) is thus convergent and can be evaluated numerically
with Mathematica. In the next section, the results of the
Casimir energy for some configurations of the plates in
the PT background potential are going to be discussed.

VI. CASIMIR PRESSURE

Once the quantum vacuum interaction energy is deter-
mined, one can study the Casimir force between plates
as

F = − ∂E0

∂d
.

being d the distance between plates. Nevertheless, as
already explained, the translational invariance is broken
due to the PT background, which means that the scatter-
ing data for the plates explicitly depend on the position
in a non-trivial way. Hence, when computing the Casimir
force, a non-trivial contribution coming from the deriva-
tives of the scattering amplitudes of one of the plates with
respect to the position will appear. There is an ambigu-
ity yet not clarified in this calculation. One can either
introduce the dependence on the distance between plates
in three different ways:

1. Putting the left-hand side plate at z1 = a and the
right-hand side one at z2 = a+d. In this case, only
the scattering data of the plate on the right will
depend on the distance d, and only the derivative
of rrR(v1, w1, a+d, k) with respect to d will appear.

2. Considering the right-hand side plate placed at
z2 = b and the left-hand side one at z1 = b − d.
Analogously to the previous case, the derivative of
r`L(v0, w0, b − d, k) with respect to the distance is
the only possible contribution.

3. When one of the plates is to the left of the origin
and the other one to the right, one could describe
the location of the plates as the left one being at
z1 = −d+ b and the other one at z2 = d+ a, with
a < 0 and b, d > 0. This case is different because
the derivatives of the reflection coefficients of both
plates rrR(v1, d+ a, k) and r`L(v0,−d+ b, k) will be
taken into account.

It is work in progress to check that these three situations
give rise to the same force. However, it seems reason-
able to think that if the Casimir energy between plates
has a change in the sign for some values of the param-
eters {v0, v1, w0, w1, a, b}, the Casimir force will present

it too. Consequently, studying numerical results for the
quantum vacuum interaction energy is enough to discuss
whether this flip of sign appears as a consequence of the
introduction of the δ′ potential, as was the case in other
configurations in flat spacetimes [10, 49].

Figures 2 and 3 show the quantum vacuum interaction
energy per unit area of the plates for different configura-
tions of the system of two plates in the PT background.
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FIG. 2. Casimir energy per unit area between plates situated
at the points a = −0.2, b = 0.8, as a function of the coefficient
w1. Different configurations are shown: a) Pure δ′ plates (i.e.
v0 = v1 = 0) with w0 = 3 (rhombi), b) Identical plates char-
acterized by v0 = v1 = 1 and w0 = w1 (circles), c) Opposite
plates described by v0 = v1 = 1 and w0 = −w1 (squares).
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FIG. 3. Casimir energy per unit area between plates situated
at the points a = −0.2, b = 0.8, as a function of the coefficient
w1. A generic δδ′ potential with v0 = 1, v1 = −4, w0 = 2.5
has been considered.

In [40], it was shown that for pure delta plates (i.e.
w0 = w1 = 0) the energy is always negative indepen-
dently on the value of the delta coefficients. Further-
more it could be checked numerically that the quantum
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vacuum interaction energy is definite negative regardless
of the relative position of the plates with respect to the
kink center as well. However, due to the changes of the
spectrum of bound states as a function of {v0, v1} and the
relative position between the plates and the kink, there is
a peculiar fact characteristic of the spectra shown in the
figure in [40]. The sudden discontinuities present in the
plot are related to the loss of one bound state with very
low k = iκ (nearly zero) in the spectrum of the system.
At this point it is necessary to realize that the whole sys-
tem of the two plates together with the PT potential acts
as a well with a fixed depth and width. Consequently, at
the configuration in the space of parameters at which the
jump appears, the resulting well is not deep enough to
hold more bound states with large negative energy. This
loss of a bound state translates into a jump in the energy
for the pure delta plates problem. Here, as can be seen in
FIG. 2 and 3, the energy is also negative independently
of the value of the coefficients of the δδ′ potentials. This
implies that the Casimir force between plates will always
be attractive in this system too. In general terms, it can
be also seen that the larger the magnitude of the delta
coefficients {v0, v1}, the larger the one of the quantum
vacuum interaction energy providing w > −2. The jump
discontinuities in the energy appear for the δδ′ plates case
whenever vi > 0. It can be checked that for the cases of
identical and opposite plates, if vi < 0, the results would
be qualitatively similar to those shown in FIG. 3. Conse-
quently, the introduction of the δ′ potential modifies the
spectrum in such a way that the well represented by the
system can better accommodate bound states if vi < 0.
In these cases, for different configurations of the coeffi-
cients of the δδ′ functions very close to each other, no
bound states with momenta close to zero are lost.

Another important conclusion can be drawn. For flat
spacetimes, it has been proved that the introduction of
the δ′ potential causes the sign of the force to change in
different areas of the parameter space. This behaviour
has been observed for instance for a scalar field and two
concentric spheres defined by such a singular δδ′ potential
on their surfaces [49] or in [50] for δδ′ plates. However,
curiously, when considering this last configuration in a
curved spacetime, the change of sign in the energy disap-
pears. Namely, if one considers a curved spacetime that
is confining (in the sense that the background acts as a
well) and the plates are within the support of that well,
then even in the case where the plates act as very repul-
sive barriers, there are still negative energy states in the
spectrum of the associated Schrödinger operator and the
Casimir energy between plates will be attractive. Con-
sequently, although the background potential under con-
sideration constitutes an example of weak curved back-
ground, the results are quite different from the flat case.
When the Pöschl-Teller potential is not confined at all
between the plates and they are far from the kink centre,
the system of two δδ′-plates in flat spacetime is recovered.
This is the reason that the numerical representation for
this situation, which has already been studied in the lit-

erature, is not included here. However, it is available in
[50].

Finally, is worth pointing that even in the case where
there is only one plate in the system, the other plate feels
the interaction because there is still a non-zero quantum
vacuum interaction energy in the system. This can be
checked by looking at the non-zero values of the energy
appearing in the vertical axis for the pure δ′ plates (in
this axis, w1 = 0 and there is no right plate in the system)
in Figure 2.

VII. CONCLUSIONS

In this work, a quantum scalar field between two par-
allel two-dimensional plates in a curved background at
zero temperature is presented. The main result is the
generalization of the TGTG-formula for weak and trans-
parent gravitational backgrounds in which the frequen-
cies of the particles created by the gravitational back-
ground are much smaller than the Planck frequency, and
the fields could be asymptotically interpreted as parti-
cles. The quantum vacuum interaction energy has been
calculated using this formula, which only depends on the
reflection coefficients associated to the scattering prob-
lem. They involve a dependence on the analogous of the
plane waves in flat spacetimes but for the specific curved
background potential chosen. The Casimir energy thus
depends on the parameters describing the potentials and
on the distance from the plates to the center of the kink.
For obtaining the energy, it has been necessary to com-
pute the Green’s functions from the scattering data. The
transfer matrix has been determined with complete gen-
erality too, in terms of the Green’s function. Although
the TGTG-formula has the advantage that it depends
only on the scattering data of one of the plates and it is
not necessary to solve the scattering problem of the whole
system, the well-known DHN formula has also been de-
rived.

As an example, two plates mimicked by Dirac δ-
potentials in a curved background of a topological Pöschl-
Teller kink is studied. The quantum vacuum fluctua-
tions around the kink solution could be interpreted as
mesons propagating in the spacetime of a domain wall.
One of the relevant characteristics of the configuration
of the open system of two plates in a Pöschl-Teller back-
ground is that the translational symmetry is broken and
the space is anisotropic. This translates into the fact
that the scattering coefficients, as well as the Green’s
function, will depend on the position of the plates in a
non-trivial way. The wave functions of the continuous
spectrum of states with positive energy have been char-
acterized by means of the scattering data. The bound
states have also been studied, setting a threshold for the
minimum negative energy in the system. The unitarity
of the QFT requires this lower bound be fixed as the
mass of the quantum vacuum fluctuations so that the to-
tal energy of the lowest energy state of the spectrum will
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be zero, making fluctuations absorption impossible. It
is worth highlighting that the quantum vacuum energy
for this (3+1)-dimensional problem is only negative, in-
dependently on the value of the coefficients of the δδ′

potentials and its location in relation to the kink cen-
ter. This implies that the Casimir force between plates
will be attractive in this system. Furthermore, even in
the case where there is only one plate in the system, the
other plate feels the Casimir interaction because there is
still a non-zero quantum vacuum interaction energy in
the system.

Once the Casimir energy between plates in the curved
background of a sine-Gordon kink has been computed
by using the TGTG-formula, it would be enlightening to
obtain the same result but from the integration of the
00-component of the energy-momentum tensor. In this
way one could also study the spatial distribution of the
energy density. It is left for further investigations. It is
worth noticing that the virtue of the method presented
here for obtaining a TGTG-formula valid in weak curved
spacetimes is that it can be easily generalized to other
type of configurations, either for another background and
for other potentials that could properly mimic the plates.
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Appendix A: Scattering data and Green’s function
for two δδ′ plates in a PT background

The scattering data for the non-relativistic mechan-
ical problem of scalar fields propagating in the curved
background of a topological PT kink while interact-
ing with two Dirac δδ′ plates are given in (A1). The
notations Ai(z) = −βi fk(z) + αi f

′
k(z) together with

W = −2ik(k2 + 1) have been used to simplify the ex-
pressions.

Notice that the denominator of all the scattering pa-
rameters, Υ(k), is the Jost function. Its zeroes on the
positive imaginary axis of the complex momentum plane
characterize the wave vector of the bound states in the
quantum mechanical problem.

t(k) =
1

Υ(k)
α0α1W

2,

rR(k) =
1

Υ(k)
[−fk(b)fk(a)

(
f ′−k(b) (f ′k(a)− α0A0(a)) + α2

0f
′
−k(a) (−α1A1(b) + f ′k(b))

)
+ α1A1(b)fk(a)f−k(b) (f ′k(a)− α0A0(a))− fk(b)f−k(a) (f ′k(a) + α0β0fk(a)) (α1A1(b)− f ′k(b))],

rL(k) = − 1

Υ(k)
[f−k(b)fk(a)f ′k(a)(−α1A∗1(b) + f ′−k(b)) + α0β0f

2
−k(a)(−f−k(b)f ′k(b) + α1fk(b)A∗1(b))

+ f−k(a)[f−k(b)α0A0(a)(α1A∗1(b)− f ′−k(b)) + (−1 + α2
0)f ′−k(a)(−α1fk(b)A∗1(b) + f ′k(b)f−k(b))]],

BR(k) =
1

Υ(k)
[α0W

(
fk(b)f ′−k(b)− α1A1(b)f−k(b)

)
],

BL(k) = − 1

Υ(k)
[α1Wf−k(a)

(
f ′−k(a)− α0A∗0(a)

)
],

CR(k) = − 1

Υ(k)
[α0Wfk(b) (f ′k(b)− α1A1(b))],

CL(k) = − 1

Υ(k)
[α1W

(
α0A0(a)f−k(a)− fk(a)f ′−k(a)

)
],

Υ(k) = −
(
α0A∗0(a)− f ′−k(a)

) [
fk(b)

(
f−k(a) (α1A1(b)− f ′k(b)) + fk(a)f ′−k(b)

)
− α1A1(b)fk(a)f−k(b)

]
+ α2

0 W
(
fk(b)f ′−k(b)− α1A1(b)f−k(b)

)
. (A1)

The Green’s function of the associated QFT can be
written as Gk(z1, z2) = GPTk (z1, z2) + ∆Gk(z1, z2) with
∆Gk(z1, z2) given by (A2). The scattering data involved
are collected in (A1). The points {a, b} at which the

plates are located are completely general and can be re-
placed by any other pair of points, independently of their
position with respect to the origin, around which the PT
kink is centered.
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∆Gk(z1, z2) =



rL
W fk(z1)fk(z2), if z1, z2 > b,

rR
W f−k(z1)f−k(z2), if z1, z2 < a,

BRBL

tW fk(z1)fk(z2) + CRCL

tW f−k(z1)f−k(z2) if a < z1 < b and a < z2 < b,

+CRBL

tW (f−k(z>)fk(z<) + fk(z>)f−k(z<)),

(t− 1)GPTk (z1, z2), if z2 > b and z1 < a (or z1 ↔ z2),

(CL − 1)GPTk (z1, z2) + BL

W fk(z1)fk(z2), if z2 > b and a < z1 < b (or z1 ↔ z2),

(BR − 1)GPTk (z1, z2) + CR

W f−k(z1)f−k(z2), if z2 < a and a < z1 < b (or z1 ↔ z2).

(A2)

Appendix B: Proof of equation (17)

In Appendices B and C of [5] the authors prove that
if the Green’s function G(x, y) is smooth for x 6= y, then
for any two disjoint objects A,B separated by a finite
distance, GAB is a trace-class operator. Moreover, TA

and TB are bounded and TAGABTBGBA is a trace-class
operator. They also prove that the modulus of the eigen-
values of TAGABTBGBA is less than one. The same rea-
soning holds here for the weak and transparent curved
background considered.

The aim of this appendix is to demonstrate that

tr log(1− TGTG) = log det(1− TGTG)

≈ log(1− tr TGTG), (B1)

is satisfied whenever there are two separate objects in
a weak curved background as the one discussed in this
paper. The above first equality can be proven by taking
into account that any Hermitian matrix P representing
an Hermitian operator can be transformed into a diago-

nal matrix, so that PD = QPQ−1. In this way:

etr log P = etr log (Q−1PDQ) = etr [Q−1(logPD)Q]

= etr log PD = e
∑
i log λi =

∏
i

λi = detPD

= det (QPQ−1) = detP.

The cyclic property of the trace has been used above.
The eigenvalues of the diagonal matrix PD have been
denoted by λi. On the other hand, denoting by αi the
eigenvalues of M = TGTG, it is easy to prove the second
claim in (B1) because

log det (1−M) = log det [Q−1
1 (1−MD)Q1]

= log
∏
i

(1− αi) = log[1−
∑
i

αi + o(αiαj)]

≈ log[1− tr MD] = log[1− tr
(
Q1MQ−1

1

)
]

= log[1− tr M ].

It constitutes a good approximation up to first order since
the norm of M is less than one.
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