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The quantum vacuum interaction energy between a pair of semitransparent two-dimensional plates
in the topological background of a sine-Gordon kink is studied. Quantum vacuum oscillations around
the sine-Gordon kink solution can be interpreted as a quantum scalar field theory in the spacetime
of a domain wall. An extension of the TGTG-formula, firstly discovered by O. Kenneth and I. Klich,
to weak curved backgrounds is obtained.

INTRODUCTION

Topological solitons are finite energy solutions of clas-
sical field equations that asymptotically connect two
nonequivalent vacua in different topological sectors of
the configurational space. Therefore, they break discrete
symmetries [1–3]. In particular, topological solitons and
their quantization are used as models for extended funda-
mental objects such as domain walls [3]. Quantum vac-
uum fluctuations of scalar fields φ(xµ) around these clas-
sical solutions and their interaction with the background
have been extensively studied in Quantum Field Theory
(QFT) [4]. One well-known example is the 1+1 dimen-
sional sine-Gordon model, described by the Lagrangian
density

L =
1

2
∂µφ∂

µφ+ cosφ− 1, xµ = (t, z),

in terms of dimensionless magnitudes. When studying
small fluctuations η(t, z) around the classical static solu-
tion φ(z) = 4 arctan ez up to second order, a Lagrangian
quadratic in the fluctuations is obtained

L =
1

2

[
∂µη∂

µη −
(
1− 2 sech2 z

)
η2
]
.

The propagation of mesons around this background will
be the starting point of this work.

The finite part of the one-loop self-interaction vacuum
diagrams added all together is the so-called zero point en-
ergy [5]. One of its most known manifestation in nature
is the Casimir effect, firstly discovered by H.B.G. Casimir
in 1948 [6], and measured in the laboratory by M.J. Spar-
naay [7]. The Casimir force appears as a result of the dif-
ference between the energy of the fluctuating field when
static or slowly changing external objects are introduced
in the space and when they are removed. These forces
have been studied in [8] for bodies of different shapes
and compositions. They have numerous applications in
nanoelectronic devices [9, 10], in absorption phenomena
in carbon nanotubes [11] and in inflation process [12], to
name just a few of examples.

The direct calculation of the quantum vacuum energy
as the expectation value of the field theoretical Hamil-
tonian for the vacuum state (Evac ∼ 〈0|H|0〉) gives an

infinite answer. It is difficult to remove the inherent ul-
traviolet divergences that appears because of the infi-
nite number of fluctuating modes present in the prob-
lem. Many methods to renormalize these divergences
have been studied [8]. One of the most important theo-
retical results is the so-called TGTG-formula, firstly in-
troduced by O. Kenneth and I. Klich [13] for studying two
bodies separated by a small distance in flat spacetimes.
It is a formalism based on transition operators (more
precisely the so called Lippmann-Schwinger T -operator)
and Green’s functions. The TGTG-formula gives the
distance-dependent finite part of the zero-point energy
in terms of the non-relativistic quantum scattering data
for each of the objects. It is exact whenever the bod-
ies are represented by potentials with disjoint compact
supports.

When considering curved spacetimes, the solutions of
the field equations, the temporal coordinate and the
usual canonical quantization are globally defined only
for globally hiperbolic spacetimes endowed with a global
temporal Killing vector [14]. Whenever there is a fo-
liation in Cauchy surfaces, one could solve the spec-
tra of the Laplacian-Beltrami operator in the spatial
slice for each fixed value of the temporal coordinate as
done in Minkowski metrics. However, in more general
cases, if the curved spacetime is such that the fiber bun-
dle do not allow an interpretation in terms of particle
spectra independent of the observer, neither scattering
nor transfer operators will be universal results. In fact,
there are not many results about the TGTG-formula in
curved backgrounds and sometimes it does not even ex-
ist [15]. However, there is a special case to be taken
into account. When the frequencies of the particles cre-
ated by the gravitational background are much smaller
than the Planck frequency, one could use the perturba-
tion theory as a semiclassical approach to quantum grav-
ity [16, 17]. In doing so, this weak gravitational back-
grounds are treated classically and the matter fields are
the ones which will be quantized. Here, an example of
weak gravitational field is going to be studied: a 3+1
dimensional spacetime with a Pöschl-Teller (PT) kink,
VPT (z) = −2/ cosh2(z), in one of the spatial dimensions
(notice that xµ = (t, ~x‖, z), ~x‖ ∈ R2). This gravity would
be strong enough to produce some effects to the quantum
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matter but not so strong as to require an own quantiza-
tion. Furthermore, the PT potential is transparent in the
sense that the fields could be asymptotically interpreted
as particles. Thus it is possible to define incoming and
outgoing waves and to derive a S-matrix in a similar way
to the usual for flat spacetimes. Furthermore, since VPT
is transparent, there is not additional reflection with re-
spect to the free case.

The aim of this work is to derive a TGTG-formula
for studying the quantum vacuum interaction energy be-
tween two homogeneous plates, mimicked by a point po-
tential V2δ(z) = v0δ(z − a) + v1δ(z − b), v0, v1 ∈ R, em-
bedded in the PT potential background VPT centered at
z = 0. In the last two decades, potentials supported on a
point, or equivalently contact interactions [18], have been
used to mimic plates and other geometries in the Casimir
setup (see [19, 20] and references therein). In fact, the
electromagnetic properties of conducting plates can be
studied through delta interaction couplings, which repre-
sent the plasma frequencies in Barton’s hydrodynamical
models [21].

The present work is organized as follows. Firstly, the
quantum mechanical spectrum of two Dirac δ interac-
tions in the curved background of the kink is described.
Then, the quantum interaction between plates is stud-
ied through the Green’s function and the T -operator in
the TGTG-formalism. Finally, some conclusions are col-
lected. The natural system of units ~ = c = 1 will be
used throughout the text. The full technical details and
additional developments are deferred to the companion
paper [22].

SCATTERING DATA AND SPECTRUM

The Casimir force between plates is due to the cou-
pling between the quantum vacuum fluctuations of the
electromagnetic field with the charged current fluctua-
tions of the plates [23]. For distances between plates
rather larger than any other length scale concerning the
electric response of the plates, only the long wavelength
transverse modes of the electromagnetic field are relevant
to the interaction. They can be mimicked by the normal
modes of a scalar field whose dynamics is described by
the action

S[φ] =
1

2

∫
d4x

[
∂µφ∂

µφ− V2δ(z)φ2 − VPT (z)φ2
]
,

where v0, v1, a < b ∈ R. Notice that z would be the co-
ordinate of the dimension orthogonal to the plates and
x ≡ xµ. I am also considering that the temperature of
the system is zero. A detailed description of the spec-
trum of the associated non-relativistic Schrödinger oper-
ator −∂2~x‖

+ K̂ = −∂2~x‖
− ∂2z + VPT (z) + V2δ(z) is needed

to identify the eigenmodes of the scalar field fluctuations.
The system has an open geometry so the positive energy
spectrum would be continuous. Scattering states corre-
spond to solutions of the Schrödinger equation K̂φ = k2φ
with k ∈ R (such that k2 > 0). Away from the singu-
lar points, the “diestro” scattering solutions (incoming
particles from the left) are of the form:

ψRk (z) =


fk(z) + rR f−k(z), if z < a,

BR fk(z) + CR f−k(z), if a < z < b,

tR fk(z), if z > b,

(1)

being fk(z) = eikz(tanh(z) − ik) the free waves of the
Pöschl-Teller potential. Likewise, the wave function of
“zurdo” scattering (incoming particles from the right)
can be described as:

ψLk (z) =


tL f−k(z), if z < a,

BL f−k(z) + CL fk(z), if a < z < b,

rL fk(z) + f−k(z), if z > b.

(2)

{tL, tR, rL, rR, BL, BR, CL, CR}(k) are the scattering
data. The transmission amplitudes verify tR(k) = tL(k)
due to the time-reversal invariance of the Schrödinger
operator. From now on, they will be replaced by t(k).

Notice that the operator K̂PT
z = −∂2z + VPT (z) is not

essentially self-adjoint when its domain is the Sobolev
space of functionsW 2

2 (R−{a, b},C). For defining the self-
adjoint extensions it is necessary to add some matching
conditions at the boundary points {a, b}:

ψ(a+)
ψ′(a+)
ψ(b+)
ψ′(b+)

 =


1 0 0 0

v0 1 0 0
0 0 1 0

0 0 v1 1




ψ(a−)
ψ′(a−)
ψ(b−)
ψ′(b−)

 . (3)

Above, ψ(z±) means the right-hand (+) or left-hand (−)
limit of the wave function at the point z.

Replacing (1) and (2) in (3) and solving the resulting
two systems of equations, one obtains the scattering data.
The transmission and reflection coefficients are collected
in (5), where W = W [fk(x), f−k(x)] = −2ik(k2 + 1).
Notice that the scattering data explicitly depend on the
position of the plates in a non-trivial way because the
Pöschl-Teller background potential breaks the transla-
tional invariance in the space.

The common denominator of all the scattering param-
eters is the spectral function. Its zeroes on the positive
imaginary axis gives the bound states of the spectrum
of K̂. It can be checked that there are no bound states
with energy below a certain quantity Emin, which takes
the value:

Emin = − 1

16

[
(|v1|+ |v0|) +

√
(|v1|+ |v0|)2 + 16

]2
, (4)

for all a, b, v0, v1 6= 0.
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t =
W 2

W 2 + v0Wfk(a)f−k(a) + v1Wfk(b)f−k(b) + v0v1f−k(a)fk(b)[fk(a)f−k(b)− f−k(a)fk(b)]
,

rR =
−v0Wf2k (a)− v1Wf2k (b) + v0v1fk(a)fk(b)[f−k(a)fk(b)− fk(a)f−k(b)]

W 2 + v0Wfk(a)f−k(a) + v1Wfk(b)f−k(b) + v0v1f−k(a)fk(b)[fk(a)f−k(b)− f−k(a)fk(b)]
, (5)

rL =
−v0Wf2−k(a)− v1Wf2−k(b)− v0v1f−k(a)f−k(b)[fk(a)f−k(b)− f−k(a)fk(b)]

W 2 + v0Wfk(a)f−k(a) + v1Wfk(b)f−k(b) + v0v1f−k(a)fk(b)[fk(a)f−k(b)− f−k(a)fk(b)]
.

The value of Emin is essential for the computation
of the quantum vacuum interaction energy in the cor-
responding QFT. Since the bound state with the lowest
energy is characterized by Emin, the mass of the fluc-
tuations in the theory will be balanced with this value
Emin for making fluctuation absorption impossible. The
unitarity of the QFT sets this lower bound for the mass
of the quantum vacuum fluctuations, so that the total
energy of the lowest energy state of the spectrum will be
zero. In this way, the spectrum will be formed by a set of
discrete states with energies within the gap [0,m2] and
a continuum of scattering states with energies above this
threshold, i.e. E = m2 = |Emin|.

TGTG-FORMULA AND CASIMIR PRESSURE

After second quantization, the non-relativistic quan-
tum mechanical problem explained in the previous sec-
tion is promoted to a QFT. The objective now is to study
the quantum vacuum energy Ẽ0 = 1

2

∑
ω2 ω, where the

summation is performed over the spectrum of the opera-
tor −∂2~x‖

+K̂PT
z +V2δ(z). The modes of the quantum field

satisfy ω2 = ~k2‖ + k2 + m2. Notice that k‖ refers to the
component of the momentum in the two directions par-
allel to the surfaces of the plates and k to the orthogonal
one. In order to compute the interaction energy, Ẽ0 must
be regularized and renormalized to remove the ultravio-
let divergences due to the infinite energy density of the
field theory in the bulk and the subdominant divergences
associated to the infinite area of the plates. Firstly, a reg-
ulator parameter is introduced in the expression of the
vacuum energy per unit area of the plates

E0

A
= lim
ε→0

1

2

∫
R2

d~k‖

(2π)2

∫∑
k

√
~k2‖ + k2 +m2 e−ε(

~k2‖+k
2+m2)

and then, the divergent terms arising in the expansion of
the integrand around ε→ 0 are removed.

The TGTG-formula for flat spacetimes [13] reads

E0 = −i
∫ ∞
0

dω

2π
log
[
1− tr

(
T `G(0)(a, b)T rG(0)(b, a)

)]
, (6)

with G(0) the Green’s function of the plain background,
without plates. The superscript `, r indicates which plate

is being considered: ` for the plate placed on the left on
the system and r for the other one. There are two funda-
mental advantages in this formalism. On the one hand,
when using the scattering data to compute the Casimir
energy between several objects, it is necessary to char-
acterize the whole spectrum in the background of these
two objects, which can frequently be rather difficult. By
contrast, since the TGTG-formula only requires knowing
the spectrum of a single object, the computational effort
is much smaller. On the other hand, the TGTG-formula
is free of divergences and directly gives the Casimir en-
ergy between two separated bodies. Consequently, this
formalism is a convenient option among all existing reg-
ularization procedures.

Since I deal with a weak and transparent background
potential, it is reasonable to look for a generalization of
the TGTG-formula that applies to this specific type of
curved manifolds. This purpose requires computing the
Green’s functions and the transfer operator related to
each plate.

The Green’s function solution of the equation[
∂2t − ∂2~x‖

+ K̂PT +m2 + V2δ(z)
]
G(xµ, yµ) = δ(xµ − yµ),

can be expressed as

G(x, x′) =

∫
d2k‖

(2π)2
ei
~k‖(~x‖−~x′‖)

∫
dω

2π
e−iω(t−t

′)Gk(z, z′).

The reduced Green’s function on the direction orthogonal
to the plates can be computed as

Gk(z, z′)=
u(z − z′)ψRk (z)ψLk (z′)+u(z′ − z)ψRk (z′)ψLk (z)

W [ψRk , ψ
L
k ]

from the scattering solutions (1)-(2) and the unit step
function. The result of this calculation can be written
as Gk(z1, z2) = GPTk (z1, z2) + ∆Gk(z1, z2). Notice that
GPTk (z1, z2) = f−k(z<)fk(z>)/W (being z< and z> the
lesser or the greater of {z1, z2}) is the Green’s function for
the PT potential without any delta interactions. More-
over,

∆Gk(z1, z2) =


rL
W
fk(z1)fk(z2), if z1, z2 > b,

rR
W
f−k(z1)f−k(z2), if z1, z2 < b,

(t− 1)GPTk (z1, z2), otherwise,

(7)
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is the remaining part of the Green’s function when one
of the two plates is removed (i.e v0 = 0). When both
plates are introduced into the system, a more compli-
cated expression for ∆Gk(z1, z2) is obtained but it will
not be included here because it will not be necessary for
the calculation of the TGTG-formula.

From the Lippmann-Schwinger equation and the defi-
nition of Green’s function, it is possible to compute the
transfer operator of the plate placed at z = b as

Tk(z1, z2) = −(t− 1)(K̂PT
z2 − k

2) (K̂PT
z1 − k

2)GPTk (z1, z2)

=
|W |2

k4
δ(z1 − b)δ(z2 − b)∆Gk(b, b).

Here ∆Gk(b, b) is given by (7). The normalization of the
T -operator due to its relation to the scattering matrix
yields

T (z1, z2)=−W ∗δ(z1− b)δ(z2− b)

rL(b), z1, z2 → b+,
rR(b), z1, z2 → b−,
1− t(b), otherwise,

(8)

and analogously for the plate on the left. Asterisk means
complex conjugate. This transfer operator represents the
probability amplitude for a particle to interact with the
potential but without propagation.

Combining (7), (8) and generalizing (6) to three spa-
tial dimensions before performing a Wick rotation in the
momentum, yields the version of the TGTG-formula for
the weak transparent curved spacetime considered:

E0

A
=

1

8π2

∫ ∞
m

dξ ξ
√
ξ2 −m2 log

(
1− Tr

[
T `GPTT rGPT

]∣∣∣
iξ

)

− 1

2

N∑
j=1

(√
(iκj)2 +m2

)3
6π

, (9)

being

Tr TGTG

∣∣∣∣
k

= rrR(k, v1, b) r
`
L(k, v0, a).

Notice that rrR, r
`
L can be obtained from (5) by replacing

v0 = 0 and v1 = 0, respectively. The most interesting
detail about this result is that the only combinations of
the T -operator components that allow coincidences of
the z1, z2 points within the interval [a, b], and thus con-
tribute to the quantum vacuum interaction energy be-
tween plates, depend only on these two reflection coeffi-
cients. This is also the case for flat spacetimes [13]. But
for curved backgrounds that breaks the isotropy of the
space, the scattering data depend explicitly on the po-
sition of each plate, and either the propagator and the
characteristic waves of the specific background have to be
taken into account. Furthermore, the integral (9) is well
define because the TGTG-operator is a trace class one

for configurations with separated bodies and the modu-
lus of its eigenvalues are smaller than one (further details
in [13]).

Figure 1 shows the quantum vacuum interaction en-
ergy for a symmetrical plate configuration in the PT
background. As can be seen, the energy is always nega-
tive, independently of the value of the coefficients of the
delta potentials. This implies that the Casimir force be-
tween plates will always be attractive in this system. If
the Pöschl-Teller well was not confined at all between the
plates and they were far from the kink center, the system
of two δ-plates in flat spacetime would be recovered.

The sudden jump discontinuities present in FIG. 1 are
related to the loss of one bound state with very low mo-
mentum in the spectrum of the fluctuation field. It can
also be seen that the larger the magnitude of the delta
coefficients, the larger the one of E0. Finally, it is worth
pointing that even in the case where one of the delta co-
efficients is zero (and as a consequence, there is only one
plate in the system), the other plate feels the interac-
tion since there is still a non-zero Casimir energy in the
system.

-4 -2 0 2 4

-2

-1

0

v1

E0
A

FIG. 1. E0 per unit area between plates for a = −b = −0.5 as a
function of v1. In this plot v0 = −3 (circles), v0 = 0.1 (squares)
and v0 = 4 (rhombi).

CONCLUSIONS

In this work, a quantum scalar field interacting with
two parallel two-dimensional plates mimicked by Dirac
δ-potentials in a curved background of a topological
Pöschl-Teller kink at zero temperature is presented. The
quantum vacuum interaction energy has been calculated
through a generalization of the TGTG-formula for weak
and transparent gravitational backgrounds. The result
only depends on the reflection coefficients associated
to the scattering problem. The special features of the
curved background chosen are implicit in the definition
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of these scattering coefficients. The virtue of the TGTG-
formula obtained here is that it can be easily general-
ized to other type of configurations, either for another
background and for other potentials that could properly
mimic the plates. In fact, there are evidence [24] that
the introduction of the first derivative of the delta po-
tential for mimicking spherical shells causes the sign of
the Casimir force between them to change in different
areas of the parameter space. This type of δδ′ plates will
be studied in the supplementary material [22].

I would like to finish by mentioning a possible future
phenomenological application of the study collected in
this work. Notice that in the Casimir effect, the elec-
tromagnetic force results from the computation of the
one loop quantum correction to the vacuum polarization
in QED. Nevertheless, taking a quadratic approximation
for the action implies that it does not depend on the
coupling constant of the theory, and for that reason the
force is relevant at the nanometre scale. By the same ar-
gument, if one loop quantum corrections to the graviton
propagator were calculated, the coupling constant of the
gravitational theory would not appear either. And there-
fore, since the graviton has zero mass, one could think of
studying the quantum interacting force between gravita-
tional objects described by sufficiently strong fields sep-
arated by a small distance, using the same quadratic ap-
proximation reasoning applied here. The force caused by
non-massive quantum vacuum fluctuations around a clas-
sical solution for gravitons coupled to no matter which
other massive field would constitute an example of quan-
tum corrections to the gravitational field theory. The
difficulty will lie in finding a material that is opaque to
the gravitational waves [25].
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