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Is it there a Bose Einstein condensation in the presence of a Gamow state ?
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The Bose-Einstein Condensation (BEC) is a well-known phenomena common to a variety of
quantum many-body systems. In this note we address the question of the realization of BEC in
presence of quantum unstable states, as it is the case of bosons moving in a central potential which
exhibits bound-states and resonances. The formalism needed to include resonances in the calculation
of thermodynamical functions is discussed in the text.The explicit calculation of boson occupation
factors shows that BEC is inhibited if resonances are present in the boson spectrum.

I. INTRODUCTION

When the motion of non-interacting particles, which
obey the Bose-Einstein statistics, is treated at very low
temperatures, the dominance of the occupation of the
state with zero-momentum (ground state configuration),
over that of excited states, becomes more and more man-
ifest as the temperature T goes to zero. In the limit of
T=0 all particles occupy the state of zero momentum pro-
vided they are massive-particles and that the system has
a finite density. The number of particles in the ground
state becomes equal to the total number of particles of
the system and the chemical potential becomes a negative
infinitesimal at the same limit (T=0). This phenomena is
exclusively due to the statistics and is known as the Bose-
Einstein Condensation (BEC). It was described long-ago
[1, 2] and in recent times it has attracted the attention
of experimentalists and theoreticians working in differ-
ent areas of physics. It should be stressed that BEC is
not a phase transition, in spite of the similitude between
the aspect of the temperature-density domain where it
takes place and that of, for instance, regions of the same
space limited by critical exponents [3]. It is also well-
known that BEC depends on space-dimensions (it does
not take place in systems with an even number of dimen-
sions,for instance)[4, 5]. In practically all studies of the
phenomena it has been assumed that the configuration
space includes states with real values of the energy, that
is the case of plane waves, states in a central potential
and particles in a box [6]. However, a complete quantum
mechanical description of single-particle basis should in-
clude also resonances, like Gamow-States, with complex
energies [5, 7]. To handle resonances in the context of
ordinary quantum mechanics [8, 11] there exist several
possibilities, namely: one may extend the Hilbert space
representation [12], perform analytic continuations of the
spectrum [13–15] or construct hybrid basis with bound,
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quasi-bound and resonant states [7]. The literature is rich
enough in aspects concerning the limitations of each ap-
proach and we shall avoid to enumerate them here. The
reader may find the details in, for instance, [16]. In the
case of the BEC phenomena, the presence of states with
complex energy is expected to change the picture. The
relations between the density and the temperature, in
presence of resonances, may amount to a drastic change
in the conditions which determine the manifestation of
the BEC.
The paper is organized as follows: In Section II, the

conventional formalism of BEC is revisited, and its ex-
tension to bases which contain Gamow states is presented
in detail. Next, in Section IV we shall discuss the numer-
ical applications of the formalism and present the results.
Finally, conclusions are presented in Section V.

II. FORMALISM

A. Conventional BEC formalism

To start with, let us review the basic concepts related
to the BEC mechanism. The grand partition function,
which describes a system of N massive bosons which oc-
cupy without restrictions a space consisting of an array
of levels {nL} of energy ǫi is written

ZD =
∑

{nL}

e−β(ǫi{nL}−µ{nL}) =
∏

j

(

∞
∑

ni=0

e−β(ǫj−µ)ni

)

=
∏

j

1

1− e−β(ǫj−µ)
, (1)

where the sum on configurations is replaced by the di-
rect product of geometric series, each of them of ratio
e−β(ǫj−µ), where β is the inverse temperature (β = 1/kT ,
being k the Boltzmann constant) and µ is the chemical
potential. The total number of bosons, N , is given by
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the derivative

N =
1

β

∂

∂µ
logZD , (2)

leading to the expression

N =
∑

j

nj(T ) , (3)

where the boson occupation numbers, nj(T ), have been
defined as

nj(T ) =
1

eβ(ǫj−µ) − 1
. (4)

Therefore, the calculation of any thermodynamical
function requires the explicit knowledge of the occupa-
tion factors nj(T ) .

B. Unlimited energy spectrum

To start with, we shall assume that the physical system
consists of a fixed number of massive bosons moving in a
energy space of unlimited plane wave states with discrete
energy levels. Then, for such a system we have

N = ngs(T ) +
∑

excited

nj(T ), (5)

where we have written separately the occupation factor
of the ground state ngs(T ), which corresponds to ǫj = 0,
and those of excited energy levels. In terms of the factors
of Eq.(4) the expression Eq.(5) takes the form

N =
eβµ

1− eβµ
+

4πV

(2π~)
3

∫

dp
p2

eβ(ǫj−µ) − 1
, (6)

where the replacement of the summation on excited
states by an integral on phase space has been applied.
Further, by expanding the denominator under the inte-
gral in terms of powers of eβ(ǫj−µ), one gets

N =
eβµ

1− eβµ
+

V

(2π)2

(

2mkBT

~

2)3/2

Γ(3/2)
∑

k=0

e(k+1)βµ

(k + 1)3/2
,

(7)
where

Γ(a) =

∫ ∞

0

dw wa−1 e−w , (8)

is the standard definition of the Gamma function.
This equation determines the value of µ, which in the

limit T → 0 goes to eβµ → N
N+1 . If we introduce the

short hand notation

α(T ) =
V

(2π)2

(

2mkBT

~

2)3/2

Γ(3/2) ,

φ(T ) = eβµ ,

σ(T ) =
∑

k=0

e(k+1)βµ

(k + 1)3/2
. (9)

Equation (7) is written

(1 − φ(T ))N = φ(T ) + (1− φ(T ))α(T )σ(T ) , (10)

with solutions, keeping up to second powers of φ(T ),
given by

φ(T ) =
α(T ) +N + 1

α(T )
±(1/2)

√

(
α(T ) +N + 1

α(T )
)
2

− 4N

α(T )
,

(11)
of which the solution with negative sign in front of the
square root gives the correct physical solution, which
obeys the limit φ(T ) → N

N+1 as T → 0. From this re-
sult, the number of particles in excited states and in the
unlimited energy space is written

Nexcited = α(T )φ(t) . (12)

As T → 0 only the ground state will be fully occu-
pied. As the temperature increases the occupation of the
ground , state decreases and it vanishes at a certain crit-
ical temperature Tc. The explicit structure of this tem-
perature dependence is easily extracted from the previous
equations by taking the ratio of the expression of Eq.(7)
at T ≤ Tc and it at T = Tc, namely

Ngs = N

(

1− α(T )

α(Tc)

)

= N

(

1−
(

T

Tc

)(3/2)
)

, (13)

which is the famous result known as the Bose-Einstein
Condensation (BEC).

C. Limited energy spectrum

When the energy spectrum is truncated at a certain
value ǫmax the function Γ(3/2) of Eq.(7) should be re-
placed by the incomplete gamma function

γ(3/2, ǫmax/kBT ) =

∫ ǫmax/kBT

0

dw w1/2e−w , (14)

whose analytic expression is written

γ(3/2, ǫmax/kBT ) =

√
π

2
erf

(√

ǫmax

kBT

)

−
√

ǫmax

kBT
e
−( ǫmax

kBT
)
. (15)

Then, in the notation of the previous subsection, the
number of particles in excited states is given by

Nexcited =
α(T )φ(T )

Γ(3/2)
γ(3/2, ǫmax/kBT ) . (16)

D. Resonances (Gamow States)

Let us assume that the spectrum, in addition to a
given number of discrete states, has an unstable quan-
tum state, with resonant energy ǫ0 > ǫM and decay
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width γ. The unstable quantum state belongs to the
type of states generically known as Gamow states [13].
In order to disentangle the effects of both types of states
we shall calculate the total density ρ as the sum of two
terms ρD and ρG, which are the densities corresponding
to the discrete (D) and unstable (G) sectors of the basis,
respectively. In non-relativistic quantum mechanics, a
quantum resonance can be represented by a vector state
which has a Breit-Wigner energy distribution up to some
approximation. An exact Breit-Wigner energy distribu-
tion will correspond with a vector state |ψ〉 such that
its decay probability P (t) = 〈ψ|e−itH |ψ〉 is an exponen-
tial for all times t ≥ 0. This is not possible if |ψ〉 is a
normalizable vector in a Hilbert space for the following
reasons: i.) Since the spectrum of the Hamiltonian that
produces the decay H has to be bounded from below,
no vector may have the Breit-Wigner energy distribution
(also called the Cauchy distribution), which is non-zero
for all real values; ii.) For small values of t, P (t) cannot
be exponential (Zeno effect) and iii.) For large values of
t, P (t) has also structural deviations from the exponen-
tial decay law for small as well as large values of the time
t.

Nevertheless, these deviations are difficult to detect,
Zeno times are very small and deviations for large values
of time occur when almost the whole sample has decayed.
Therefore, for most practical purposes the exponential
decay is a good approximation for the decay probability
in most physical situations. However and as noted in the
previous paragraph, no normalizable vector state may
decay exponentially for all values t ≥ 0.

Resonances are characterized by the value of two pa-
rameters [7–9], the resonance energy ǫ0 and the width
γ > 0. In 1958, Nakanishi proposed [10] that a vector
representing an exponentially decay state, |ψG〉, should
be an eigenvector of the Hamiltonian responsible for the
decay with a complex eigenvalue of the form H |ψG〉 =
(ǫ0 − iγ/2) |ψG〉, so that e−itH |ψG〉 = e−iǫ0t e−γt|ψG〉,
which implies that it decays exponentially for all positive
values of time. An immediate difficulty arises after this
description: The Hamiltonian H should be self adjoint
and self adjoint operators do not have complex eigenval-
ues. At least in Hilbert space. The solution is to extend
the Hilbert space in order to accommodate the Gamow
vector into a well defined mathematical structure, see [7]
and references thereof. This is the rigged Hilbert space,
which is a triplet of states Φ ⊂ H ⊂ Φ×, where H is
the Hilbert space. We may always construct a rigged
Hilbert space such that [7, 9]: i.) The Gamow vector
|ψG〉 is in the bigger space Φ×. ii.) The Hamiltonian H
can be extended to Φ×, so that the eigenvalue equation
H |ψG〉 = (ǫ0 − iγ/2) |ψG〉 holds in Φ×. iii.) Also, the
equation e−itH |ψG〉 = e−iǫ0t e−γt|ψG〉 is well defined in
Φ×. iv.) Finally, one may find a particular representa-
tion of Φ ⊂ H ⊂ Φ× such that |ψG〉 has a Breit-Wigner
energy distribution [7, 9].

E. Particle number calculation for a limited energy
space and resonances

If in addition to the upper limit of the energy, ǫmax,
we include a resonance in the spectrum, as explained in
the previous subsection, of energy ǫG and width γG, its
projection on the real energy axis takes the form

D(ǫ, ǫG, γG) =
γG
π

1

(ǫ − ǫG)
2
+ (γG/2)

2 . (17)

The contribution of this state to the number of particles
in excited states is given by the integral

Nexcited =

∫ ǫG+γG/2

ǫG−γG/2

dǫ D(ǫ, ǫG, γG)
1

eβ(ǫ−µ) − 1
, (18)

which, after some straightforward steps yields

Nexcited = α(T )φ(t)
4

π

(

ǫG
kBT

)(1/2)

e
−

ǫG
kBT /Γ(3/2) , (19)

provided γG/2 is much smaller than ǫG.
To conclude with the analysis of the results for the par-

ticle number density note that Eq.(19) vanishes if ǫG →
∞ and Eq.(16) coincides with Eq.(12) when ǫmax → ∞.

III. MEAN VALUE OF THE ENERGY

Proceeding with the study of the thermal response of
a system of massive bosons with real and complex ener-
gies, we shall, in this section, calculate the mean energy
of the system under the conditions described in the pre-
vious section, namely: for unlimited and limited energy
spectrum and for the case where a resonance is included
in the spectrum.

A. Mean Energy for the unlimited spectrum

The mean value of the energy is written

〈E − µ〉 = −∂logZ
∂β

=
∑

j

(ǫj − µ)

eβ(ǫj−µ) − 1
. (20)

By transforming the sum into an integral on space and
momentum, and using the variables introduced previ-
ously when calculating the number of particles, the mean
energy acquires the expression:

〈E−µ〉 = V

(2π)
2

(

2mkBT

~2

)3/2

eβµkBT (Γ(5/2)−βµΓ(3/2)) .

(21)
Then, replacing the functions Γ by their values the

mean energy is given by

〈E−µ〉 = V

(2π)2

(

2mkBT

~2

)3/2

eβµ
√
π

2
(
3

2
kBT−µ) , (22)
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which is further written in the form

〈E − µ〉
〈N〉 =

(

3

2
kBT − µ

)

, (23)

after using the known expression for the average number
of particles.

B. Mean Energy for the limited spectrum

Following the same sort of replacements of the sum on
energy levels by integrations in phase space the expres-
sion for the mean energy, when the energy ǫj of the states
belonging to the spectrum is limited to a certain cut-off
value ǫmax such that ǫj ≤ ǫmax, is easily obtained. The
explicit expression for it is the following:

〈E − µ〉 = V

(2π)
2

(

2mkBT

~2

)3/2

eβµkBT ×

(γ(5/2, ηmax)− βµγ(3/2, ηmax)) , (24)

with, as before

γ(a, ηmax) =

∫ ηmax

0

dw wa−1 e−w , (25)

being ηmax = ǫmax/kBT . It just amounts to the use of
incomplete gamma functions γ(r, ηmax), with a = 3/2
and a = 5/2, instead of the regular gamma functions
Γ(a) which appear in the case of the unlimited value
ηmax → ∞. In addition, we may use the expression of the
incomplete gamma functions to write Eq.(24), leading to
the following expression:

〈E − µ〉
〈N〉 =

(

3

2
kBT − µ

)

erf (
√
ηmax)

− 2√
π

√
ηmax

(

1

2
+ ηmax

)

e−ηmax . (26)

C. Mean energy associated to the resonance

The expression of the mean energy for the region of
the spectrum where the resonance is located is written

〈E − µ〉 = γG
π

∫ ǫG+
γG
2

ǫG−
γG
2

dǫ
(ǫ − µ)

(eβ(ǫ−µ) − 1)

1

(ǫ − ǫG)
2 +

γ2

G

4

,

(27)
making use of the explicit expression given in Eq.(17).
To calculate this integral we shall write it in the complex
plane making use of the identity

1

(ǫ− ǫG)
2
+

γ2

G

4

= − i

γG

(

1

ǫ− ǫG − iγG

2

− 1

ǫ− ǫG + iγG

2

)

,(28)

and expanding, as done before, the exponential in the
denominator

1

(eβ(ǫ−µ) − 1)
=

∞
∑

n=0

e−(n+1)β(ǫ−µ) . (29)

Then, calling z0(±) = ǫG − µ± iγG

2 and z = ǫ−µ, the
integral of Eq.(27) becomes

− i

γG

∞
∑

n=0

∫

dze−(n+1)βz

(

z

z − z0(+)
− z

z − z0(−)

)

.(30)

The result of it, by applying Cauchy’s residues theorem
is just

4π

γG

∞
∑

n=0

e−(n+1)β(ǫG−µ)((ǫG − µ) cosαn + γ sinαn) ,(31)

with αn = (n+ 1)βγG

2 .
Finally, by multiplying Eq.(31) by the remaining factor

γG

π one obtains the contribution to the mean value of the
energy given by the resonance.
As a limiting value, assuming that βγG

2 is much smaller
than 1, which is to say that the factor kBT is much
greater γG, this mean value takes the form

〈E − µ〉 ≈ 4(ǫG − µ)e−β(ǫG−µ) . (32)

IV. RESULTS

To begin with the discussion of our results we shall
show those obtained by the use of the formalism intro-
duced in subsection II B. Figure 1 shows the conventional
BEC mechanism. It is then evident that for the unlim-
ited energy space the ground state occupancy dominates
the picture until the inversion of the population takes
place at a certain critical temperature. As discussed in
the text this is not the signature of a phase transition
but just the inversion of the population of levels with the
complete depopulation of the ground state.
The situation changes when the energy space is trun-

cated and a resonance is added to it. The formalism
was presented in subsections II C and II E. The results
shown in Figure 2 indicated that the BEC mechanism is
prevented. The fractional occupancy shown by the lower
curve of Figure 2 does not exhibit the crossing character-
istic of the BEC (see Figure 1) but rather it grows up at
a lower pace.
Since the effect of the inclusion of the resonance is hid-

den because the excited state occupancy includes also its
contribution, we have taken them separately. To better
illustrate the effect we have worked out the solution for
a two level model space to which a resonance is added,
as explained next.



5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  2  4  6  8  10  12  14  16  18  20

fr
ac

tio
na

l o
cc

up
an

cy

temperature (energy units)

FIG. 1. Occupation factors as a function of the temperature.
The fraction of particles in the ground state (solid line) and in
excited states (dashed-line) for a system with a finite number
of bosons occupying an unrestricted number of energy lev-
els is shown as a function of the temperature (given in units
of energy). The results have been obtained by solving the
equations given in subsection IIB, as explained in the text.

.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  2  4  6  8  10  12  14  16  18  20

fr
ac

tio
na

l o
cc

up
an

cy

temperature (energy units)

FIG. 2. Occupation factors as a function of the temperature.
The fraction of particles in the ground state (solid line) and in
excited states (dashed-line) for a system with a finite number
of bosons occupying a restricted number of energy levels, to
which it has been added a resonance, is shown as a function of
the temperature (given in units of energy). The results have
been obtained by solving the equations given in subsection
II E, as explained in the text.

A. Two level model

We have taken a system consisting of two levels sepa-
rated in energy by an energy gap ǫ0, each level having a
degeneracy Ω and a number of bosons Nb. To this space
we add a resonance at an energy ǫG with a width γG. For
the sake of the calculations we have fixed these values at
ǫ0 = 4, ǫG = 3 ∗ ǫ0, γG = ǫG/100 (all these values are
given in arbitrary energy units, the same as for the abso-
lute temperature) and fixed the degeneracy of the levels
at the value Ω = 2000. The number of bosons was fixed
at Nb = 200. The solution for the number of particles oc-
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FIG. 3. Number of particles, for each level, for a system
consisting of two discrete levels plus a resonance. The upper
and middle curves show the number of particles which occupy
the ground state and the excited state of the two-level model,
and the lower curve shows the number of particles which goes
to the resonance, respectively, as discussed in subsection IVA.
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FIG. 4. Mean energy per particle, as a function of the tem-
perature. The results for the unrestricted energy spectrum
(Eq.(23)) are represented by a solid line. Those for the re-
stricted spectrum (Eq.(26)) are show with dashed lines.

cupying each level is rather easily obtained, by applying
the procedure described in the previous subsections. The
results of the calculations, for the two level model con-
figuration, are shown in Figure 3. At lower temperatures
the majority of the bosons occupy the ground state, but
as the temperature increases the sum of the number of
bosons in the first two levels differs significantly from the
initial value Nb. The difference in the number of parti-
cles, that is Nb −Ngs −Nexcited is precisely equal to the
number of bosons which reach the resonance. Physically
it means that the Gamow state is acting as a doorway
for the emission of particles from the system, preventing
the occurrence of the Bose-Einstein condensation.
Figure 4 shows the results for the mean energy per par-

ticle, both for the unrestricted and the restricted energy
spectra. The features of these results, as a function of the
temperature, are consistent with the fact that the BEC
is not a phase transition, otherwise there should be an
abrupt change in both curves at a certain critical value
of the temperature. Instead, when the temperature is
above kBTc ≈ 14 energy units the solution for the unre-
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stricted goes almost linear while for the solution for the
restricted energy spectrum the curve saturates.

V. CONCLUSIONS

In this work we have addressed the question related
to the effects associated to the presence of resonances in
a system of massive bosons at finite temperature. The
path chosen to investigate it consisted of the inclusion in
the spectrum of a resonance (i.e: a Gamow state). The
statistical treatment shows that:
1.- The BEC does not take place when resonance states

are present in the energy spectrum. They act as door-
ways from where the particles escape. In other words, the
replacement of the continuum by one or more resonances
inhibits the BEC mechanism.
2.- Similarly, other thermodynamical functions in the

presence of a resonant state will depart from their ordi-
nary values.
Both features may be of relevance in dealing with phys-

ical systems where the resonances are indeed a compo-
nent of the spectrum, like, for instance, the atomic nu-
cleus and other quantum many particle systems.
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