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Abstract

We propose a modification of a method based on Fourier analysis to obtain the Flo-
quet characteristic exponents for periodic homogeneous linear systems, which shows a
high precision. This modification uses a variational principle to find the correct Floquet
exponents among the solutions of an algebraic equation. Once we have these Floquet
exponents, we determine explicit approximated solutions. We test our results on systems
for which exact solutions are known to verify the accuracy of our method including one
dimensional periodic potentials of interest in quantum physics. Using the equivalent lin-
ear system, we also study approximate solutions for homogeneous linear equations with
periodic coefficients.
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1 Introduction

Linear periodic differential equations and systems of equations have an enormous presence
in theoretical physics and engineering: harmonic oscillator, little oscillations, vibrations etc.
However, there is a limited number of them that can be exactly solvable. In most cases,
numerical methods are the only available. In order to obtain solutions of linear systems with
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periodic coefficients, one obtain the so called Floquet or characteristic exponents that determine
a fundamental matrix for the system. This determination is usually given by a numerical
approximation. In the case of linear equations with periodic non-constant coefficients, we
always have the possibility of constructing the associated linear system, where the coefficients
are again periodic, and then solving the system by means of the Floquet exponents.

One of the most popular procedures to give approximate solutions for linear differential
equations with periodic coefficients uses truncated Fourier series, whose coefficients are deter-
mined by the widely used Harmonic Balance method [1–4]. A modification of this method,
which is particularly suitable for the Mathieu equation and other Hill type equations has been
proposed in [5]. This modification consists in a non-perturbative semi-analytic method to find
approximate solutions of Hill type equations. The characteristic value is determined through
algebraic functions so as to obtain the periodic solution. This method does not restrict the
value of the Mathieu coefficient.

Precisely, the Harmonic Balance method has been used as an intermediate tool in order to
obtain an approximation of the Floquet exponents for linear systems with periodic coefficients
[6]. In [6], the authors mix the Harmonic Balance, one numerical asymptotic method and the
Hill method in order to compute the stability of the continued periodic solutions.

In the present paper, we introduce a modification of the procedure in [6] including a vari-
ational principle which gives the Floquet exponents as the critical values of this variational
principle. This is easy to use and provides a great accuracy for the Floquet exponents and so-
lutions as an added value. We have tested our procedure in specific examples such as the Math-
ieu equation and others. This method is primarily targeted to obtain the Floquet exponents
of linear periodic systems, although the application to obtain analytic algebraic approximate
solutions of linear differential equations with periodic coefficients is then straightforward.

This consideration of the Floquet coefficients as critical points of a variational problem is
what makes our point of view different from previous methods including those in [6].

Before a description of our method and for the benefit of the reader, let us begin with an
account of some important and well known results which are relevant in our presentation [7].

Let A(t) be an n × n real matrix with continuous entries on the variable t and x(t) ∈ Rn

for each value of t. In addition, all these entries are periodic with the same period T , so that
A(t+ T ) = A(t) for all t. Let us consider a linear system of the form

ẋ(t) = A(t)x(t) , (1)

where the dot means derivative with respect to t. The Floquet theory which refers to this type
of systems is well known [7–10]. In the sequel, we recall some interesting well known facts which
are useful in our discussion [7]:

i.) If Φ(t) is a fundamental matrix of (1), Φ(t + T ) is again a fundamental matrix. As is
the case for any pair of two fundamental matrices, there must be a constant invertible matrix
C such that

Φ(t+ T ) = Φ(t)C . (2)

Since C is invertible, it must exist a n× n matrix B such that

C = eBT , (3)
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where T is again the period for A(t).

ii.) Consider the matrix P (t) := Φ(t) e−Bt. Then, P (t) is periodic with period T and P (t)
is invertible.

iii.) Let us consider the following new indeterminate y(t) as:

y(t) = P−1(t) x(t) . (4)

Since Φ(t) is a fundamental matrix of (1) and, considereing the definition of P (t), we have
that

Ṗ (t) = A(t)P (t)− P (t)B , (5)

where A(t) and B are as in (1) and (3), respectively. Since P (t) is invertible, using (4) gives

ẏ = B y . (6)

Thus, system (1) is equivalent to a system with constant coefficients. We shall recall in a
moment on the importance of the matrix B.

iv.) Then, if we define an initial condition x(t0) := P (t0)y(t0) and taking into account that
the solution of (6) satisfying the initial condition y(t0) is given by

y(t) = e(t−t0)B y(t0) , (7)

we have that

x(t) = P (t) e(t−t0)B P−1(t0) x(t0) . (8)

Let us choose as y(t0) the eigenvector y0 of B with eigenvalue λ0, i.e., B y0 = λ0 y0, where
λ0 is any of the eigevalues of B. Then if x0 := P (t0) y(t0) = P (t0) y0, one has

y(t) = e(t−t0)λ0 y0 =⇒ x(t) = P (t) e(t−t0)λ0 P−1(t0) x0 , (9)

expression which may be written as

x(t) = η(t) e(t−t0)λ0 , with η(t) = P (t)P−1(t0) x0 . (10)

Since P (t) is periodic with period T , equations (9-10) show that η(t) is also periodic with
period T .

In summary, we can obtain particular solutions of (1) if we can determine the eigenvalues
of the matrix B. This eigenvalues are usually called Floquet characteristic exponents or Flo-
quet exponents or simply characteristic exponents. We shall keep this terminology along our
manuscript. There are no general analytic methods to obtain these characteristic exponents
and, hence, numerical methods for their determination are in order.

In the present article, we propose an analytic approximate method in order to obtain the
characteristic coefficients, with the following organization: In Section 2, we give a standard
method to obtain the Floquet characteristic coefficients, important for a comparison with our
proposed method. We introduce our analytic algebraic approximation method in Section 3,
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more precisely on 3.1, where we propose the variational principle to obtain the Floquet critical
exponents. Section 4 is devoted to a test using the Mathieu equation. In Section 5, we consider
two or more dimensional systems in which each component may have different different variation
rates. In Section 6, we test our results on models of interest in physics. We close the paper
with some concluding remarks.

2 Determination of the characteristic exponents: stan-

dard method

Let us go back to Equation (1), in which A(t) is periodic with period T . As initial values, we may
choose any of the vectors of the canonical basis in Rn, i.e., those vectors with all components
equal to zero except the i-th component which is equal to one. Once we have chosen an initial
value, a numerical integration such as a fourth order Runge-Kutta [13] permits us to obtain
n discrete linearly independent solutions on the finite interval (0, T ), where T is the period.
Then, by using interpolation, for instance with splines, we obtain an approximate continuous
solution. Using the initial conditions, we obtain n approximate linearly independent solutions
X1(t), X2(t), . . . , Xn(t), whose columns determine an approximate fundamental matrix Φ(t).
This procedure is rather simple for n = 2, which will be our case.

After (2) and (3), we readily obtain

C := exp{BT} = Φ−1(0) Φ(T ) . (11)

The relation between the eigenvalues δi of C and the characteristic coefficients λi is well
known:

λi =
1

T
log δi , i = 1, 2, . . . , n . (12)

Thus, we have determined the characteristic coefficients and the numerical solution X(t).
We have to take into account that the imaginary part of the characteristic coefficients is not
uniquely determined since:

δi = exp{λi + 2πi/T}T = eλiT . (13)

Our choice will always fix this imaginary part in such a way that the exponent coincides
with λiT , being λi an eigenvalue of B.

The objective of the present article is to show that a good approximation on the characteris-
tic coefficients may be obtained through an algebraic analytic approximation based on Fourier
analysis.

3 Approximated analytic solution

The relation between first order linear systems of the form (1) and linear equations of order n
is well known [7]. With this idea in mind, let us illustrate our method with second order linear
differential equations of the form:
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ÿ(t) + a(t)ẏ(t) + b(t)y(t) = 0 , (14)

where a(t) and b(t) are periodic functions with respective periods Ta and Tb, which are not
arbitrary, since we have to impose the condition that the ratio Ta/Tb be rational. In addition,
a(t) is continuously differentiable and b(t) continuous. The linear system equivalent to (14) is
(z1(t) := y(t), z2(t) = ẏ(t))(

ż1(t)

ż2(t)

)
=

(
0 1

−b(t) −a(t)

)(
z1(t)

z2(t)

)
⇐⇒ ż(t) = A(t) z(t) . (15)

With the change

y(t) = x(t) exp

{
−1

2

∫
a(t) dt

}
, (16)

equation (14) yields to

ẍ(t) + f(t)x(t) = 0 , (17)

with

f(t) = b(t)− 1

2
a′(t)− 1

4
a2(t) . (18)

The function f(t) is continuous and periodic with a period T = max(Ta, Tb). By the Floquet
characteristic exponents, or just characteristic exponents, of (14), we mean the characteristic
exponents of the associated system (15). Analogously, the characteristic exponents of (17) are
the characteristic exponents of its related system.

Let us list in the sequel some of the properties of equation (14):

• Assume that

f(t) > 0 and T

∫ T

0

f(t) dt ≤ 4 . (19)

Then, it has been proven in [8] that all solutions are bounded. Consequently, the charac-
teristic exponents of (14) do not have positive real part.

• If f(t) < 0, let us multiply (14) by y(t) and integrate by parts. Then, we have

d

dt
y2(t) =

∫
[y′(t)]2 dt−

∫
f(t) y2(t) dt > 0 . (20)

Since y2(t) ≤ 0, we note that for large values on the variable t, t 7−→ ∞, the solution y(t)
is not bounded.

Consequently, the characteristic coefficients must have a positive real part.

• Let us go to equation (17). It can be proven [8, 9] that the sum of its characteristic
exponents is equal to zero.
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3.1 The method

Consider equation (17) and assume that λ is one of its characteristic exponents. Choosing for
simplicity t0 = 0, we go back to (17) were it was stated that for each Floquet exponent there
is a solution of the type x(t) = η(t) eλ t, where η(t) is periodic with period T 1. The point is
that η(t) and λ are unknown and our objective is to find an approximate expression for them.
Using this result in (17), we obtain the following differential equation:

η̈(t) + 2λ η̇(t) + (λ2 + f(t)) η(t) = 0 . (21)

We have obtained a second order equation with a periodic coefficient f(t) with period T .
Let us expand η(t) into Fourier series and then truncate this series. The truncated solution
ηn(λ, t) is

ηn(λ, t) =
a0
2

+
n∑
k=1

{ak cos(kωt) + bk sin(kωt)} , (22)

with ω := 2π/T . Now, xn(t) = zn(t, λ) exp(λt).
In order to determine the characteristic exponent λ, we propose the following strategy:

i) First of all, we determine the coefficients ak and bk by means of the Harmonic Balance
(HB) method [1–3]. In summary, we replace (22) into (21) so as to obtain a new Fourier
polynomial. Since equation (20) must be satisfied, coefficients for the harmonics in this Fourier
polynomial must vanish. This yields to an homogeneous linear algebraic system of dimension
2n + 1, with indeterminates a0, ak and bk and k = 1, 2, . . . , n. In order to obtain non-trivial
solutions, the determinant ∆ of the matrix of the system of the coefficients must vanish. Since
(21) is linear, this determinant is a polynomial on λ, so that

∆(λ) = 0 (23)

gives λ in terms of ω and any other parameter appearing in (20). Although (23) has at most n
roots, only two of them could be the characteristic exponents we are looking for. Moreover, it
is not difficult to check that the coefficients ak and bk, k = 1, 2, . . . , n are rational polynomial
functions on λ.

ii) After we have completed the previous step, we shall determine the approximate value of
λ by a variational principle. Since the exact solution x(t) satisfies∫ T

0

(ẍ(t) + f(t)x(t))∗ (ẍ(t) + f(t)x(t)) dt = 0 , (24)

where the star denotes complex conjugation, we propose that the approximate characteristic
exponent, λk, we are searching for is a critical point (usually a minimum) of E(λ) defined as:

E(λ) :=

∫ T

0

(ẍn(t) + f(t)xn(t))∗ (ẍn(t) + f(t)xn(t)) dt . (25)

Note that λ may have an imaginary part and thus x(t). This is the reason why we have to
include a complex conjugation in (24-25).

1We may assume that a basis of solutions is of this form, provided that B be diagonalizable.
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Once we have the Floquet characteristic exponents for the given equation, we determine the
coefficients a0, ak and bk, k = 1, 2, . . . , n for the truncated Fourier series that approximates the
solution.

Our variational principle is just an Ansatz, which should be confirmed by numerical exper-
iments. This is the main objective of the next Section.

4 Application: The Mathieu equation.

The Mathieu equation is a simple non-trivial equation with periodic coefficients which is well
suitable as a laboratory in order to test the above ideas as shown by previous work of our
group [5]. The Mathieu equation has been largely studied, as for instance in [14–19]. Let us
write the Mathieu equation as

ẍ(t) + ω2(1− α cos t)x(t) = 0 . (26)

As is well known, two linearly independent solutions are

x1(t) = C

(
4ω2, 2αω2,

t

2

)
, x2(t) = S

(
4ω2, 2αω2,

t

2

)
, (27)

where C and S stand for the Mathieu sine and cosine [19]. These are exact solutions, so that
we can determine exact characteristic exponents just by constructing a fundamental matrix
with them and, then, making use of equations (12) and (13), which in this case give the exact
results.

Now the objective is clear and is the comparison of the results obtained with our proposed
variational method with the exact results that can be obtained as described above. In addition,
we shall also compare both with those obtained following the lines introduced in Section 2.

Before proceeding, a couple of comments are in order. First of all, using (19) we see that
for ω < 1/4 and for all values of α the solutions are bounded. Also note that whenever λ = ik,
k being an integer number, the solution is periodic with period equal to 2π. Finally, let us
recall that the sum of the critical exponents is equal to zero, an interesting property to take
into account when testing our results.

Let us go back to the determinant (23), that we write now as ∆(λ) ≡ ∆α,ω(λ), due to its
dependence on all these three variables. In our case, it is an even polynomial of degree 2(2n+1).
Furthermore, in all cases studied it is also an even polynomial on the variables α and ω. As an
example, let us take n = 2, so that the polynomial on λ has degree ten:

∆α,ω(λ) =
10∑

k=0,even

ck λ
k . (28)

In (28) all odd coefficients vanish, while the even coefficients are given by:

c0 = 16ω2 + 8 (−5 + α2)ω4 + (33− 14α2)ω6α2 − 1

2
(20− 14 + α4)ω8 −

−8 (1− α2 +
3

16
α4)ω10 ,
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c2 = 16 + (35− 6α2)ω4 + 10(α2 − 2)ω6 + (5− 3α2 +
3

16
α4)ω8 ,

c4 = 40 + 35ω2 + 3α2ω4 + (10− 3α2)ω6 ,

c6 = 33 + 20ω2 − (−10 + α2)ω4 ,

c8 = 5(2 + ω2) ,

c10 = 304 + 80ω2 . (29)

Then, using the Harmonic Balance method that, in this case, is a simple algebraic problem
in which the equations that determine the coefficients ak and bk are homogeneous and starting
with the initial condition a1 = 1, we obtain for the first coefficients the following values:

b1 = (−λα2ω4 + 2λ(−16λ2 − (−4 + λ2 + ω2)2))/d1 ,

b2 = −12λαω2(−4 + λ2 + ω2)/d2 , (30)

a0 =
1

αω2
{3(−2 + λ2 + ω2)− 1

8λ
[(16 + 4λ4 − 20ω2 − (−4 + α2)ω4 +

+λ2(−52 + 8ω2))(−λα2ω4 + 2λ(−16λ2 − (−4 + λ2 + ω2)2)]/d1} ,

a1 = 1 ,

a2 = −1

2
[αω2(−16− 4λ4 + 20ω2 + (−4 + α2)ω4 + λ2(52− 8ω2))]/d2 , (31)

where,

d1 =
1

4
α2ω4(−4 + λ2 + ω2) + (−1 + λ2 + ω2)(−16λ2 − (−4 + λ2 + ω2)2 ,

d2 = 4λ6 + 4λ4(7 + 3ω2) + λ2(32− 8ω2 − (−12 + α2)ω4)−

−(−4 + ω2)(−16 + 20ω2 + (−4 + λ2)ω4)) . (32)

We may obtain similar expressions for higher values of n, although they are increasingly
complicated and do not provide of any new information. Once we have obtained the roots λk
of (23), only two of them can be chosen to be the critical exponents. They are precisely those
which minimize (25). Once we have obtained the critical exponents, we readily determine an
explicit approximated solution of (17).

As an example, let us choose α = 0.5, ω = 1 and n = 2. We obtain the following approximate
solution:
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xA(t) = exp

(
− 1

43
t

)(
267

1069
+ cos t− 4

45
cos 2t− 185

84
sin t+

15

83
sin 2t

)
. (33)

Note that the general exact solution has the form xe(t) = c1 x1(t) + c2 x2(t), where xi(t),
i = 1, 2 are given in (26). The constants ci, i = 1, 2 should be determined through the initial
conditions xe(0) := xA(0) and ẋe(0) := ẋA(0), where the dot represents derivative with respect
to t. These values are obtained with the expression for xA(t) in (33).

We know the exact value of the characteristic exponents, which validates our comparison,
take one and denote it as λe. These characteristic exponents are λ = ±1/43. In order to compare
the exact solution with the approximation given in (33), it is natural to choose the exponent
with minus sign, so that λe = −1/43. Thus, the exact solution has the form xe(t) = eλet η(t),
see comments before (21). Since we have determined already xe(t) through the above initial
conditions, we have η(t). Then, expand η(t) into Fourier series. We obtain an explicit expression
of the form:

xe(t) = exp

(
− 1

43
t

) (
66

265
+

486

487
cos t− 4

45
cos 2t+

+
1

340
cos 3t− 131

60
sin t+

7

39
sin 2t− 1

176
sin 3t+ ...

)
. (34)

The coefficients in both solutions have been adjusted to a rational number with an error
upper bound of 0.07%. The relative difference between approximate (33) and exact (34) so-
lutions is at most less than 0.9%. This is certainly satisfactory. As expected, a higher value
of n gives a higher precision. For instance, take n = 3, α = 0.5 and ω = 1. We have for the
approximate and exact solution, respectively, the following results:

xA(t) = exp

(
− 1

43
t

) (
267

1069
+ cos t− 5

56
cos 2t+

+
1

346
cos 3t− 376

171
sin t+

19

105
sin 2t− 1

178
sin 3t

)
(35)

and

xe(t) = exp

(
− 1

43
t

) (
285

1141
+ cos t− 5

56
cos 2t+

1

346
cos 3t−

−596

271
sin t+

19

105
sin 2t− 1

178
sin 3t

)
+ ... (36)

For n = 3, α = 1 and ω = 1, we obtain analogously:
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xA(t) = exp

(
− 1

10
t

) (
1

2
+ cos t− 1

5
cos 2t+

1

69
cos 3t−

−19

9
sin t+

1

3
sin 2t− 1

50
sin 3t

)
(37)

and

xe(t) = exp

(
− 1

10
t

) (
1

2
+ cos t− 1

5
cos 2t+

1

69
cos 3t−

−19

9
sin t+

1

3
sin 2t− 1

51
sin 3t

)
+ ... (38)

It is important to stress that for n = 2 and n = 3, we have used different initial conditions
so that the exact solutions (36) and (37) do not coincide. These initial conditions are given
by the values of xA(t) and its first derivative at the origin. In particular, for n = 2, we have
x(0) = 1.16088 and ẋ(0) = −1.86793. For n = 3, we have x(0) = 1.16337 and ẋ(0) = −1.88083.
Since we have changed the initial conditions, we have changed the solution and therefore the
critical exponents could be different, which is the case here.

Observe that we have achieved a better precision. The conclusion is that the higher the
harmonic number n is the better accuracy is obtained. This result is quite satisfactory.

α 1/10 3/10 5/10 7/10 1

λe 9.31603 10−4 8.37695 10−3 2.32152 10−2 4.52826 10−2 9.10175 10−2

λA 9.31603 10−4 8.37695 10−3 2.32152 10−2 4.52825 10−2 9.10172 10−2

λnum 9.31620 10−4 8.37697 10−3 2.32151 10−2 4.52826 10−2 9.10175 10−2

S 2 0. 4. 10−9 9. 10−8 6. 10−7 4. 10−6

E(λ) 2.10−10 4.10−7 6.10−6 7.10−5 5.10−4

TABLE 1.- Values of λe, λA, λnum, S 2 and E(λ) for some selected values of the parameter
α.

In Table 1, we compare the values of the approximate characteristic exponents given by
our method, λA, the exact, λe, and the one detemined by the method sketched in Section 2,
λnum, for n = 3, ω = 1 and different values of α. The precision of xA(t) is evaluated through
the second moment

S2 :=
1

T

∫ T

0

(xe(t)− xA(t))∗ (xe(t)− xA(t)) dt . (39)
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Figure 1: Variation of λA in terms of α for n = 2 and ω = 1.

Finally, we include E(λ) given in (24), which measures the deviation of the solution xA(t)
from the exact solution of the differential equation (16). Since the sum of the exponents vanish,
we refer only to one of them. Nevertheless, we must say that errors in the method which are
always present in this kind of estimations, make the sum of both critical exponents not exactly
equal to zero. An estimation with six digits of λA exactly matches the exact result, while
λnum has a minor discrepancy of three units in the last digit. Computational results have been
preformed with the use of Mathematica, the CPU time being negligible.

In Figure 1, we plot the dependence of λA with α for n + 2 and ω = 1. Note that both
solutions appear symmetric with respect to the abscise axis. Recall that there are always two
solutions whose sum is equal to zero.

We finish this discussion with the presentation of some simple physical models which can
be described via the Mathieu equation. Among all possibilities, let us choose the following one
dimensional models:

• The Schrödinger equation of the quantum pendulum is given by

− ~2

2ml2
d2ψ(η)

dη2
+mgl(1 + cos η)ψ(η) = Eψ(η) , (40)

where η is the angle variable.

• The Kapitza pendulum: This is an inverted pendulum for which one point have fast
oscillations upwards and downwards. Its equation is given by:

θ̈(t)− g

`
sin θ(t) =

A

l
` ω2 sinωt sin θ(t) . (41)
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For small oscillations, we have sin θ ≈ θ and, consequently, (41) becomes the Mathieu
equation, which is now periodic for the variable time t.

• One equation which is reducible to the Mathieu equation is the one dimensional Schrödinger
equation with potential given by

V (x) = V0 cos2
(

2π

λ
x

)
, (42)

where V0 > 0 and λ is the wave length of two interfering lasers [20].

5 Solutions growing at different rates.

Along this Section, we shall investigate a situation in which the behaviour of solutions grow
at different rates. In [10], the authors discuss the case in which A(t) and the matrix obtained
by integrating its entries with respect to the variable t commute. We are going to explore how
to apply our method when this is the case. It is noteworthy that we now have an explicit
expression for the fundamental matrix Φ(t). Let us go back to (1) and pose a result that has
been proven in [10]. Here, we use the following hypothesis:

i.) All entries of A(t) in (1) are integrable on the interval [0, t].

ii.) The matrix A(t) fulfils the following commutation relation:[∫ t

0

A(v) dv

]
A(t) = A(t)

[∫ t

0

A(v) dv

]
, (43)

where the integral of a matrix is the matrix resulting of integrating all its entries. A sufficient
condition for this commutation is given by Corollary 2.3 in [10]. However, it is not necessary
and we are not using it in this presentation. Our hypothesis is just (43).

Then [10], its general solution can be written as x(t) = Φ(t) x(0), where the initial condition
x(0) is arbitrary and the fundamental matrix Φ(t) is given by

Φ(t) = exp

{∫ t

0

A(v) dv

}
. (44)

Since we are mainly interested in equations of the type (21), we shall restrict ourselves to
the case n = 2. First of all, let us use the following notation:

D(t) :=

∫ t

0

A(v) dv , (45)

so that (43) takes the form:

D(t)D′(t) = D′(t)D(t) . (46)

We construct the matrix D′(t) by taken the derivative with respect to t of all entries in
D(t). A straightforward integration of (46) shows that there exists two non-zero constants α
and β such that, if we denote by aij(t) the entries of A(t),
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a21(t) = α a12(t) , a22(t) = a11(t) + β a12(t) , (47)

so that

D(t) =

(
f(t) g(t)

α g(t) f(t) + β g(t)

)
, (48)

with

f(t) =

∫ t

0

a11(v) dv , g(t) =

∫ t

0

a12(v) dv . (49)

The converse is also true, in the sense that (47) implies (46).
Then, we may obtain the fundamental matrix (44) in the following form:

Φ(t) = Q(t) exp

{
f(t) +

1

2
β g(t)

}
, (50)

with

Q(t) =

 cosh
(
1
2
γ g(t)

)
− β

γ
sinh

(
1
2
γ g(t)

)
2
γ

sinh
(
1
2
γ g(t)

)
2α
γ

sinh
(
1
2
γ g(t)

)
cosh

(
1
2
γ g(t)

)
+ β

γ
sinh

(
1
2
γ g(t)

)
 . (51)

Here, γ :=
√

4α + β2. Observe that the dependence on t of Q(t) comes solely with g(t) and,
hence, of a12(t) only. An explicit expression for Φ(t) is only possible if we know the primitives
for a11(t) and a12(t). Otherwise, we have to resort to numerical estimations of f(t) and g(t).

Let us prove that the fundamental matrix is given by (50-51). We perform this proof into
two steps. First of all, take β = 0 and then, remove this condition.

i.) The case β = 0. Now, D(t) may be written as

D(t) = f(t) I + g(t)

(
0 1

α 0

)
, (52)

where I is the identity matrix. Since any matrix commutes with the identity, by exponentiation
we have:

Φ(t) = eD(t) = exp{f(t) I} · exp

[
g(t)

(
0 1

α 0

)]
. (53)

In order to calculate the second exponential in (53), we proceed by direct exponentiation of
the involved matrix. Then, (53) becomes

Φ(t) = exp{f(t)}

 1 + g2α
2

+ g4α2

24
+ . . . g + g3α

6
+ g5α2

120
+ . . .

α
(
g + g3α

6
+ g5α2

120
+ . . .

)
1 + g2α

2
+ g4α2

24
+ . . .

 . (54)
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It is obvious that the entries of the matrix in (54) are Taylor series corresponding to sinh
and cosh centred at the origin. Thus we obtain Q(t) as in (48) for β = 0.

ii.) The case β 6= 0. The procedure is essentially the same. In this case, we decompose D(t)
as

D(t) =

{
f(t) +

β

2
g(t)

}
I + g(t)

( −β/2 1

α β/2

)
, (55)

so that

Φ(t) = eD(t) = exp

{
f(t) +

β

2
g(t)

}
· exp

{
g(t)

( −β/2 1

α t β/2 t

)}
. (56)

Since A(t) is periodic with period T , we have from (2), (3) and Φ(T ) = eD(T ), the following
relation:

C = eBT = Φ(T ) = eD(T ) , (57)

so that

B =
1

T
D(T ) . (58)

We see that the matrix B of (6) is the average in the mean of A(t). Since the Floquet
exponents are the eigenvalues of B, we easily determine these Floquet coefficients. In addition,
we provide of an interesting interpretation to the entries of the matrix A(t). Here, the Floquet
exponents have the following form

λ± =
1

T

(
f(T ) +

1

2
(β ± γ) g(T )

)
. (59)

It is important to remark that this procedure makes sense if (45) holds. Otherwise, the
eigenvalues of A(t) may differ from the critical exponents, as in the case of the Marcus-Yamabe
equation to be discussed next. In addition, in our case the critical exponents also coincide with
the eigenvalues of the average of A(t) over a period, which is the matrix given by

A(t) :=
1

T

∫ T

0

A(t) dt . (60)

5.1 An example

The results of the previous subsection allow us to test the method introduced in Section 3.
Now, A(t) is a 2 × 2 periodic matrix so that relations (48) are valid. For the independent
entries and parameters in (48), we choose:

a11(t) = −1 , a12(t) = 2 + sin t , α = −1 , β = 0 . (61)
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Relations (61) fully determine A(t), which is periodic with period 2π. Using (10) and (11),
we have

Φ(t) = e−t

(
cos(1 + 2t− cos t) sin(1 + 2t− cos t)

− sin(1 + 2t− cos t) cos(1 + 2t− cos t)

)
. (62)

Using these data, let us write equation (1) as a second order linear equation. This gives:

(2 + sin t)ẍ(t) + (4− cos t+ 2 sin t)ẋ(t) + (10− cos t+ 13 sin t+ 6 sin2 t+ sin3 t)x(t) = 0 . (63)

Next, we determine the critical exponents by our method for n = 3. The result is a double
λA = −1− 1.9998i (we recall that the exponents are unique modulus kπi/T , k being integer).
Here, it is possible to obtain the exact value, which gives λe = −1− 2i. The conclusion is that
our method gives far more precision than the standard numerical method.

Finally, let us integrate (63) using our method, approaching coefficients by their nearest
rational number and use trigonometric relations. We have the following approximation for the
solution:

xA(t) = e−t
(

1

8
i+

8

17
cos t− 7

8
i cos(2t) +

1

2
cos(3t) +

1

8
i cos(4x)− 1

42
cos(5t)

−10

19
i sin t− 26

30
sin(2t)− 1

2
i sin(3t) +

1

8
sin(4t) +

1

42
i sin(5t) + . . .

)
. (64)

Using (62), let us obtain the first terms of the exact solution by using the initial conditions
x(0) = xA(0) and ẋ(0) = ẋA(0) and expanding the entries of Φ(t) in Fourier series. The result
is

xe(t) = e−t
(

1

8
i+

7

15
cos t− 7

8
i cos(2t) +

1

2
cos(3t) +

1

8
i cos(4x)− 1

45
cos(5t)

−6

7
i sin t− 26

30
sin(2t)− 1

2
i sin(3t) +

1

8
sin(4t) +

1

45
i sin(5t) + . . .

)
. (65)

The coincidence between both results is high showing the remarkable accuracy of our
method.

5.2 A second example: The Marcus-Yamabe equation

As a second example, let us consider the Marcus-Yamabe system, which is of second order.
This has been given as a counter-example of a periodic system such that the eigenvalues of
A(t) are constant, i.e., independent of t, equal to (−1±

√
7 i)/4 and yet being the zero solution

not stable [9, 11]. The Marcus Yamabe system is of the form (1), with matrix A(t) given by
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A(t) =

( −1 + 3
2

cos2 t 1− 3
2

cos t sin t

−1− 3
2

cos t sin t −1 + 3
2

sin2 t

)
. (66)

System (64) has two linearly independent solutions of the form:

x1(t) =

( − cos t

sin t

)
et/2 , x2(t) =

(
sin t

cos t

)
e−t . (67)

It is easy to write the associated differential equation of the Marcus-Yamabe system, the
Marcus-Yamabe equation. This is

(8− 6 sin 2t)ẍ(t) + (4 + 12 cos 2t− 3 sin 2t)ẋ(t) + (−5 + 3 cos 2t+ 9 sin 2t)x(t) = 0 . (68)

This equation does not have singular points. Its Floquet characteristic coefficients are −1
and 1/2, see (67). If we apply the method introduced in Section 3 with n = 3, we obtain the
same critical exponents and the following basis of the space of solutions:

x1(t) = e−t sin t , x2(t) = et/2 cos t , (69)

with coincide with the exact solution as we see from (67). The conclusion is that our approxi-
mate method has yield to the exact solution with n = 3.

5.3 A third simple example

In [12], the authors propose a multiple shooting method combined with continuous orthonormal-
ization in order to solve multi-periodic problems. We want to comment one of their examples
and show that we arrive to the same solution using the ideas we have introduced in the present
Section. In fact, we choose their example 5.2, in which

A(t) =

(
0 β sin(α t)

−β sin(α t) 0

)
. (70)

Let us choose α = β = 1 for simplicity. Note that in (70) we have used the notation in [12],
so that the parameters α and β in this matrix have nothing to do with others previously
introduced by us.

Then after (60), we conclude that the average matrix A(t) is the zero matrix, so that the
critical exponents are zero. In consequence all solutions are periodic.

Following the above notation, we have

f(t) ≡ 0 , g(t) ≡ 1− cos t . (71)

Consequently, matrix D(t) defined in (45) satisfies the commutation relation (46). Observe
that γ in (51) is here given by γ = 2i, so that the fundamental matrix Φ(t) obtained after
(50)-(51), is now given by
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Figure 2: The potential of compact support (71) extended by periodicity

(
cos(1− cos t) sin(1− cos t)

− sin(1− cos t) cos(1− cos t)

)
, (72)

which is exactly the result given in [12].

6 Some models of interest in Physics.

In this Section, we propose some other examples of application of the general formalism as
described in Sections 2 and 3. All the following examples are one dimensional quantum models
of interest in physics, are periodic and governed by a second order linear equation such as the
Schrödinger equation. We intend to develop with some detail one of them and leave the others
for the reader consideration.

• Schrödinger equation with potential given by a periodic function with compact support.
This is (~/(2m) = 1)

− d2

dx2
ψ(x) + V (x, a)ψ(x) = Eψ(x) , (73)

where a > 0 is a fixed real number and

V (x, a) :=

 0 if |x| ≥ a ,

N exp
(

1
x2−a2

)
if −a ≤ x ≤ a .

(74)

We choose the constant N in such a way that the area under each bump be one. This
gives

N =
e1/a

2

√
π aU

(
1

2
, 0,

1

a2

) , (75)
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where U(a, b, z) is the second kind Kummer function. This potential is extended by
periodicity as shown in Figure 2.

Prior to the study of (73), let us make some considerations. To begin with, let us write
the Hill equation

ψ′′(x) + α(x)ψ(x) = 0 , (76)

with x real and α(x) is periodic with period T . Since we want to compare (46) with the
Schrödinger equation let us choose the following form for α(x):

α(x) = E − V (x) , (77)

with a normalization condition of the type

∫ T/2

−T/2
V (x) dx = 1 . (78)

An interesting property of the Hill equation is the following [8, 11]: Let us assume that
α(x) is strictly positive, α(x) > 0 and

0 < T

∫ T/2

−T/2
α(x) dx ≤ 4 . (79)

Then, all solutions of (76) are bounded. In particular and taking into account (77) and
(78), we have bounded solutions of (76) and, therefore, of (73) if and only if E satisfies
the inequalities

T < E ≤ T +
4

T
. (80)

This result is an obvious consequence of (19).

Next, let us consider the Sturm-Liouville associated to the boundary conditions:

ψ

(
−T

2

)
= ψ

(
T

2

)
, ψ′

(
−T

2

)
= ±ψ′

(
T

2

)
, (81)

and E the eigenvalue to be determined. In order to connect this Sturm-Liouville problem
to our original periodic potential Schrödinger equation, let us write a = T

2r
with r > 0, a

fixed real number. On the interval of the form [−T/2, T/2], the potential is equal to (70)
if |x| ≤ T

2r
and vanishes in the two subintervals for which T

2r
< |x| < T

2
. In Figure 2, we

have chosen a = 1 and T = 2π.

Boundary conditions (81) imply that the solution ψ(x) is periodic with period T . After
the Floquet theorem, the solution can be written as

ψ(x) = exp{λx}P (x) , (82)
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where λ is the Floquet exponent and P (x) is T -periodic. Note that we write ψ(x) in the
form (82) in order to implement our method and its algorithm, as was implemented in
Section 4, concerning the example after the Mathieu equation. As in Figure 2, we may
choose T = 2π without loss of generality.

Next, we want to apply our harmonic balance based method to the above situation. To
this end, we write both α(x) and P (x) by menas of respective Fourier polynomials of
period T , for which the coefficients depend on the Floquet exponent and the energy E,
to be determined. Since we are looking for periodic solutions, then λ = ik, k being an
integer number, which we choose equal to one for simplicity. Also, the sum of the two
Floquet exponents for the Hill equation is zero [8], so that these exponents can be chosen
to be λ± := ±i.
We obtain the energy levels with a slight modification of the application of the harmonic
balance method as exposed in Section 3.1. There, the objective was the computation of
the Floquet exponents. Now, it is of the energy levels. To this end, use (82) into (73), so
as to obtain the following differential equation:

P ′′(x) + 2λP ′(x) + (λ2 + E − V (x, a))P (x) = 0 . (83)

As for (21), we approximate a solution for P (x) through a Fourier polynomial as

Pn(x) =
a0
2

+
n∑
k=1

{an cos(kωx) + bk sin(kωx)} , (84)

where ω = 2π/T .

Next, we fix λ, either i or −i. Then, apply the harmonic balance method so as to
determine the Fourier coefficients ak and bk as functions of the energy, ak(E) and bk(E),
n = 1, 2, . . . , n. Let us use (84) in (53). These coefficients must vanish, which gives a
homogeneous linear system in the indeterminates a0, ak and bk, k = 1, 2, . . . , n, so that
the determinant of the coefficients must vanish. This determinant is a polynomial ∆(E),
which yields to the algebraic equation:

∆(E) = 0 . (85)

In relation to the degree of this polynomial, some comments are in order. For the Mathieu
equation, discussed in Section 4, if we approximate the solution with the Fourier polyno-
mial with two frequencies, the degree is ten. With more frequencies, it must be higher.
For instance, with three frequencies the polynomial degree is fourteen. Similar for the
other worked examples. For instance, for the Harbola comb (see below) and the potential
in (74), we have used a polynomial (55) of degree fourteen. This is obvious: When we
use two harmonics, we have five coefficients so that the matrix for which the determinant
is ∆(E) is a 5× 5 matrix with argument E2, so that the determinant is of degree ten on
E. If we had chosen three harmonics, we need to determine seven coefficients and this
is the order of the corresponding determinant on E2, so that the polynomial is of order
fourteen, and so on.
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Figure 3: Three first energy levels in terms of r. The growing and decreasing curves correspond
to even and odd solutions, respectively.

However, not all solutions of (55) are good solutions, since good solutions must approx-
imate the exact solutions. This gives a manner to choose the “good” solutions. As
in (23) and (24) and taking into account that the exact solution, {ψ(x), E}, for of the
Sturm-Lioville problem should satisfy:

∫ T

0

(ψ′′(x) + (E − V (x, a))ψ(x))∗ (ψ′′(x) + (E − V (x, a))ψ(x)) dx = 0 . (86)

Then, we propose the Ansatz according to which the correct approximate value for the
energy, that we denote here as Er should minimize the following expression:

D(Er) =

∫ T

0

(P ′′n,r(x)+(Er−V (x, a))Pn,r(x))∗ (P ′′n,r(x)+(Er−V (x, a))Pn,r(x)) dx , (87)

where Pn,r(x) = exp{λx}ψn,r(x) is the solution of the form (53) with ak = ak(Er) and
bk = bk(Er), n = 1, 2, . . . , n.

Needless to say that a Sturm-Liouville like this one under our study shows an infinite
number of the energy levels. In this approximation, we obtain just a finite number of
these levels, number which depends on the number of harmonics chosen in (84). The
more harmonics the more solutions one may expect to find (although with increasing
calculation difficulty). Also, one may look for “even” or the “odd” solutions, which are
those for which we choose the bk or the ak coefficients equal to zero, respectively.

In Figure 3, we represent the dependence of the values of the energy with the parameter
r. The growing curves in the energy represent even solutions, while the decreasing curves
correspond to odd solutions. Observe that, for the ground state no distinction is shown
between the energies of even and odd solutions.

For the potential (71), a = T/(2r), we have the following:

i.) The limit limr→∞ V (x, a) = N∞ δ(x), where N∞ is a constant.
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Figure 4: Potential for r = 2 and λ = i.

ii.) The limit limr→0 V (x, a) = 1/T , for −T/2 < x < T/2.

iii.) If we consider just the odd solutions and take the limit r 7−→ 0, we may obtain the
exact value of all energy levels. These values are:

En =
1

T
+ n2 , n = 0, 1, 2, . . . . (88)

Same for even solutions. In this case, we obtain in the limit r 7−→ 0 the following energy
levels:

En =
1

T
+

(2n+ 1)2

4
, n = 0, 1, 2, . . . . (89)

Finally, in Figure 4, we depict the potential (70) for r = 2 and λ = i.

In addition to above model, we have studied some others with detail. Methods and results
are essentially identical to those discussed so far, so that there is no serious point in a detailed
analysis of those. Nevertheless, an account of the models studied may be interesting. These
models are:

• The Harbola comb.

This is a periodic potential, for which the basic cell is given by the function [21]:

f(x, a, b) :=
N√
x2 + b2

, x ∈ [−a, a] , N =
1

2 arcsinh (a/b)
. (90)

Then, we extend it by periodicity outside the interval [−a, a]. This periodic potential
(Harbola comb) is depicted in Figure 5. Observe that for high energy values, this potential
resembles a Dirac comb [22].

21



-5 0 5

1

2

3

4

5

Figure 5: Harbola comb.

-3 π -2 π -π -1 1 π 2 π 3 π

-2.0

-1.5

-1.0

-0.5

Figure 6: Periodic Coulomb potential with k = 1 and ε = 1.

• One dimensional periodic Coulomb potential.

Here, the function for the basic cell is

f(x, a, ε) =


−k
ε

if |x| ≤ ε ,

−k
x

if ε < |x| < π ,

(91)

so that, the basic cell is the interval [−π, π]. Then, we extend this potential by periodicity.
This potential is depicted in Figure 6. Observe that we have avoided the singularity with
this choice.

• Other potentials. We give the equations that use these potentials, being their explicit
form evident.

i.) The Kroning-Penney model is very well known in solid state [23].

ii.) The Meissner equation, which is a particular case of the Hill equation [24]. This
is rather similar to the Kroning-Penney model, although in this case, the equation is
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Figure 7: Meissner potential given in (92) (to the left) and (93) (to the right).

periodic with respect to time instead of the spatial variable. It is usually presented into
two equivalent forms, either as

d2y(t)

dt2
+ (α2 + ω2 sgn(cos t))y(t) = 0 , (92)

or

d2y(t)

dt2
+

(
1 + r

sin(ωt)

| sin(ωt)|

)
y(t) = 0 . (93)

Here, the Floquet exponents may be exactly determined [25]. In Figure 7, we see the
form of periodic potential.

iii.) Lamé equation. It has the form [26]:

d2y(x)

dx2
+ (A+B℘(x))y(x) = 0 , (94)

where A and B are constants and ℘(x) the Weierstrass elliptic function [27,28].

7 Concluding remarks

The Hill-Harmonic Balance method was designed in order to obtain the Floquet characteristic
exponents for linear differential equations and systems with periodic coefficients. These expo-
nents are solutions of an algebraic equation of degree 2n+ 1, where n is the order of a Fourier
polynomial that it is used in order to obtain an approximate analytic solution for the equation.
Since in general, 2n + 1 is much larger than the order of the equation, that in many practical
cases is two, Hill-Harmonic Balance is not efficient. We propose a modification of this method
that permits to choose the Floquet exponents among the solutions of the algebraic equation
efficiently. Following our method, the Floquet coefficients are determined through a variational
principle. It is precisely the use of this variational principle that determines the Floquet ex-
ponents as its critical points, which makes our procedure different from other discussed in the
literature. These tools are easy to implement for practical applications. We obtain an excellent
precision in function of the number of harmonics used.

We have compared our results with the exact results known for the Mathieu equation. They
show a good accuracy even if we just take the first two nodes (up to n = 2) in the Fourier
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series. The precision obtained for n = 3 is excellent. We also have compared our results with
those obtained with the standard method described in Section 2. The conclusion is that we
obtain better results with little effort and negligible computational time.

One dimensional periodic models are of great interest in Quantum Physics as they serve as
toy models in the search for crystal properties, starting with the celebrated Kroning-Penney
model. We have studied a variety of these models under the perspective of the formalism
introduced in the present article. We have listed some of the most relevant among the studied
models and give a detailed analysis on one of them. Results for the others are similar.

We have also given Floquet exponents for two dimensional models and added some examples
thereof.

In conclusion: This is a method to obtain Floquet characteristic coefficients which is simple,
efficient and with an excellent precision as shown in the testing examples. Although we have not
proposed an explicit formula to evaluate the error, once we have determined critical exponents
and approximate solutions, formula (24) may serve to test the accuracy of a given solution.
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