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a b s t r a c t

In this paper the interaction between the shape modes of the wobbling kinks arising in the family
of two-component MSTB scalar field theory models is studied. The spectrum of the second order
small kink fluctuation in this model has two localized vibrational modes associated to longitudinal
and orthogonal fluctuations with respect to the kink orbit. It has been found that the excitation of the
orthogonal shape mode immediately triggers the longitudinal one. In the first component channel
the kink emits radiation with twice the orthogonal wobbling frequency (not the longitudinal one
as happens in the φ4-model). The radiation emitted in the second component has two dominant
frequencies: one is three times the frequency of the orthogonal wobbling mode and the other is the
sum of the frequencies of the longitudinal and orthogonal vibration modes. This feature is explained
analytically using perturbation expansion theories.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Topological defects have played an essential role over the last
ecades to describe phase transitions in cosmology [1,2], super-
onductivity in modern condensed matter [3], protein folding
4,5], cluster of living species [6,7] and molecular systems [8,9],
ust to quote a few application areas. Kinks are the simplest
orm of a topological defect solution in (1 + 1)-dimensions and
hey naturally arise in a variety of scalar field models, all of
hem sharing the essential feature of living in non-linear sce-
arios [10,11]. Two paradigmatic examples in this context are
he sine–Gordon and the φ4-models. On the one hand, the sine–
ordon model is an integrable system that presents solitary wave
olutions, called solitons. In fiber optics these solutions have
een widely used to describe traveling digital signals over long
aul fibers [12–14]. On the other hand, the φ4-model is a non-
ntegrable system that present solitary wave solutions called
inks. These solutions are stable under small fluctuations. In
ddition to the translational mode they have one localized vi-
rational mode, which is referred to as the shape mode. In kink–
ntikink collisions energy can be transferred from one of these
odes to the other. This resonant energy transfer mechanism is

responsible for the fractal structure found in the final versus
initial velocity diagrams and the n-bounce window distribution,
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see [15–35]. This complex pattern arises in a wide variety of
non-integrable models: the double sine–Gordon model [36–43],
the φ6-model [44–49], the φ8-model [50–53], non-polynomial
models [54–57], two-component scalar field theories [58–68], etc.
In each of the previously cited works different aspects of the kink
scattering are explored: resonance phenomena, long range forces,
kink collisions with boundaries, impurities or defects, evolution
of Bogomolnyi–Prasad–Sommerfield defects without intersoliton
forces, presence of spectral walls, etc.

In the kink–antikink scattering, the wobbling kinks or wob-
blers (kinks whose vibrational or shape mode has been excited)
play an essential role in the previous scattering processes be-
cause after the first collision the shape mode is excited and
kinks becomes wobblers. For this reason, the evolution of single
wobbling kinks has been thoroughly studied both analytically and
numerically [69–73]. In the φ4-model it has been found that while
vibrating with wobbling frequency ω =

√
3 these solutions emit

radiation with frequency 2ω = 2
√
3, that is, twice the natural vi-

brational frequency. This behavior has been analytically explained
by employing perturbation theory in several works, see [70–73].
For example, Manton and Merabet [71] obtained the decay law of
the wobbling amplitude by using a Lindstedt–Poincaré method.
In the same context, Barashenkov and Oxtoby [72] employ a
perturbation expansion which remains uniform to all orders by
introducing a hierarchy of space and times scales. Furthermore,
the collision between wobbling kinks has been investigated in the

4
φ -model [74,75] and the double sine–Gordon model [76].

https://doi.org/10.1016/j.physd.2022.133590
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A natural generalization of the φ4-model to theories involving
several coupled scalar fields is given by the one-parameter family
of the Montonen–Sarker–Trullinger–Bishop (MSTB) models. This
system is a deformation of the O(2) linear sigma model preserving
the existence of two discrete vacua. It has been the focus of study
by many researchers for decades [77–89]. A brief description
of the main works concerning the family of MSTB models is
introduced in [90]. The usual kink (found in the one-component
φ4-model) is embedded in these two-component scalar field the-
ories. For the model parameter σ in the interval σ ∈ (1,∞)
the spectrum of the second-order small kink fluctuation operator
implies the existence of a longitudinal vibrational mode (the
usual shape mode found in the φ4-model) and an orthogonal
vibrational mode, whose eigenfrequencies are, respectively, given
by ω =

√
3 and ω̂ =

√
σ 2 − 1. This implies that the kink

an vibrate in two different channels, periodically affecting the
nergy distribution of the extended particle described by this
opological defect. In this work we will investigate the interaction
etween the vibrational modes of the kink in the MSTB model
hen the orthogonal shape mode is initially excited. It has been
hecked that in these circumstances the longitudinal shape mode
s immediately triggered although it was initially unexcited. A
urprising result is that the kink does not emit radiation with
requency 2ω in the longitudinal channel, as found in the φ4-
odel, but with frequency 2ω̂, that is, twice the frequency of the
rthogonal shape mode. In the orthogonal channel, the frequen-
ies of the emitted radiation are given by ω+ ω̂ and 3ω̂. In order
o elucidate this behavior numerical and analytical approaches
ave been employed in this paper. This analysis can shed light on
he energy transfer mechanism in scattering processes involving
inks in both one-component and two-component scalar field
heory models.

The organization of this paper is as follows: in Section 2 the
heoretical background of the MSTB model is introduced. The
pectrum of the second order small kink fluctuation operator
s thoroughly discussed. The eigenfunctions of the longitudinal
nd orthogonal shape modes are analytically identified. Section 3
escribes the problem addressed in this work: the evolution
f a kink whose orthogonal shape mode has been initially ex-
ited. This problem is also numerically studied in this Section.
he frequencies of the radiation reaching the simulation bound-
ry are determined. The dependence of the amplitude of these
igenmodes on the model parameter σ is also discussed. In the
ext two sections, the above numerical results are explained
nalytically by applying perturbation expansion theories. In fact,
n Section 4 the procedure introduced by Manton and Merabet
n [71] is used, and in Section 5 the technique developed by
arashenkov and Oxtoby in [72] will be applied to our problem.
inally, the conclusions of this work are summarized in Section 6.

. The kink in the MSTB model: stability and two shape modes

The dynamics of the one-parameter family of MSTB models is
overned by the action

=

∫
d2x

[1
2
∂µφ∂

µφ +
1
2
∂µψ∂

µψ − U(φ,ψ)
]
, (2.1)

here the potential function U(φ,ψ) is determined by the fourth-
egree polynomial

(φ,ψ) =
1
2
(φ2

+ ψ2
− 1)2 +

1
2
σ 2ψ2 . (2.2)

s usual, φ,ψ : R1,1
→ R are dimensionless real scalar fields

nd the Minkowski metric is taken as (gµν) = diag{1,−1}. Each
ember of this family of models is characterized by the value of

he coupling constant σ that appears in (2.2), which belongs to
2

the interval σ ∈ [0,∞). The field equations in this case are given
y the following system of coupled nonlinear partial differential
quations of the nonlinear Klein–Gordon type:

∂2φ

∂t2
−
∂2φ

∂x2
= 2φ(1 − φ2

− ψ2) , (2.3)

∂2ψ

∂t2
−
∂2ψ

∂x2
= 2ψ

(
1 − φ2

− ψ2
−

1
2
σ 2
)
. (2.4)

olutions of Eqs. (2.3) and (2.4) involve a kink variety with a very
ich structure. The usual kink solution that arises in the φ4-model

φK (x) = tanh x (2.5)

and its antikink are embedded into this two-component scalar
field theory model as

K (±)(x) = (±φK (x) , 0)t = (± tanh x , 0)t . (2.6)

Here and throughout this article we assume that the center of
the kink is at the origin, x = 0, but it could be located at another
point xC ∈ R, which would be achieved with a simple translation
in (2.5). The signs in (2.6) distinguish between the kink (+) and
the antikink (−). The solution (2.6) arises for any value of the
model parameter σ although this topological defect is unstable
for σ < 1, as we will see below. In this regime, a pair of two
nonzero component topological kinks arise, which are less ener-
getic than the kinks (2.6) and become linearly stable. In addition
to these solutions, a one-parametric family of non-topological
kinks emerges for each vacua in the model, see [85,86,90]. In this
paper, however, we are interested in the regime σ ≥ 1, where the
one nonzero component kink (2.6) is the only topological defect
and is stable. This statement can be checked by analyzing the
evolution of a perturbation of the static kink (2.6) of the form

K (x, t;ω, a) = K (±)(x) + a eiωt Fω(x), (2.7)

where a is a small real parameter. This leads to the spectral
problem

H Fω(x) = ω2Fω(x), (2.8)

where H is the second order small fluctuation operator

H =

(
H110
0 H22

)
=

(
−

d2

dx2
+ 4 − 6 sech2x 0

0 −
d2

dx2
+ σ 2

− 2 sech2x

)
. (2.9)

From the expression (2.7) it is clear that the solution (2.6) is stable
only if the eigenvalues of the operator (2.9) are not negative.
Note that (2.9) is a diagonal matrix differential operator. The
spectral problem (2.8) in this case consists of two exactly solvable
spectral problems (independent of each other) corresponding to
Schödinger operators H11 and H22 with Pöschl–Teller potential
wells. Taking into account that the orbit of the kink solution (2.6)
is located on the φ-axis of the internal plane, perturbations of the
form

Fω(x) = (η(x), 0)t

characterize longitudinal fluctuations on the kink while those of
the form

Fω(x) = (0, η̂(x))t

determine orthogonal or transverse fluctuations of (2.6). As men-
tioned above, these types of perturbations are decoupled in this
case, so that the spectrum of (2.9) is described as follows:
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• Longitudinal eigenmodes: It can be checked that the opera-
tor (2.9) involves two discrete longitudinal eigenfunctions.
These states are the zero mode

F 0(x) = (η0(x), 0)
t
= (sech2x, 0)t (2.10)

and the so-called shape mode

F√
3 (x) = (ηD(x), 0)

t
= (sech x tanh x, 0)t (2.11)

whose eigenvalue is given by ω2
= 3. This means that

the kink when excited by this longitudinal shape mode
vibrates with frequency ω =

√
3. It can be checked that the

maximum deviation of this vibrating kink (or wobbler) from
the static kink (2.6) happens at the points

x(±)
M = ± arccosh

√
2 . (2.12)

The longitudinal continuous spectrum emerges on the
threshold value ω2

c = 4, that is, ω2
q = 4+q2 with q ∈ R. The

corresponding eigenfunctions read

F√
4+q2

(x) =(ηq(x), 0)
t

=

(
eiqx[−1 − q2 + 3 tanh2 x − 3iq tanh x] , 0

)t
.

(2.13)

The relations (2.10), (2.11) and (2.13) are also employed
to define respectively the functions η0(x), ηD(x) and η(x).
Obviously, the spectrum of the longitudinal fluctuations is
the same as that found for the one-component kink in the
φ4-model because, as previously mentioned, this kink is
embedded in the MSTB model. Indeed, ηD(x) is the usual
shape mode that turns a static kink into a wobbling kink,
see [70–75]. As we will see below, in the MSTB model the
kink can also vibrate in the orthogonal direction through a
vibrational mode, which we will continue to call shape mode.

• Orthogonal eigenmodes: In this case, the spectrum of orthog-
onal fluctuations contains only a discrete eigenvalue ω̂2

=

σ 2
− 1, whose eigenfunction is

F̂√
σ2−1

(x) = (0, η̂D(x))t = (0, sech x)t . (2.14)

This orthogonal vibrational or shape mode maximally vi-
brates at the point

x0 = 0 (2.15)

with frequency ω̂ =
√
σ 2 − 1 if σ > 1. Note that if σ < 1

the kink (2.6) becomes unstable because the eigenvalue ω̂2

is negative. In this case the kink (2.6) decays to one of the
previously mentioned less energetic two non-null compo-
nent kinks which arise in this regime. An interesting remark
is that for σ = 1 the solution (2.6) has two zero modes
despite the fact that it is the only kink present in the model
and, therefore, it is not a member of a one-parametric family
of solutions. This is a very singular situation. Of course, this
model parameter value defines a phase transition where a
family of non-topological kinks starts to emerge, see [90].
Finally, the orthogonal continuous spectrum verifies the dis-
persion relation ω̂2

q = σ 2
+ q2, q ∈ R, with eigenfunctions

F̂√
σ2+q2

(x) = (0, η̂q(x))t =
(
0 , eiqx(q + i tanh x)

)t
, (2.16)

which emerge on the threshold value ω̂2
c = σ 2.

The structure of the spectrum of (2.8)–(2.9) depends on the
value of the coupling constant σ . In Fig. 1 the eigenfrequencies ω
derived from the spectrum of the operator (2.9) are represented
as functions of the model parameter σ by solid lines. The longitu-
dinal eigenfrequencies are shown in Fig. 1(a) while the orthogonal
3

ones are shown in Fig. 1(b). For later purposes, some discrete
eigenfrequencies combinations have also been represented in
Fig. 1 by dashed curves. In particular, the values 2ω, 2ω̂, 4ω̂ and
ω+2ω̂ are included in the first graph and ω+ ω̂, |ω − ω̂| and 3ω̂
in the second. This allows us to distinguish two significant values
of σ , which will play a relevant role later. Specifically we have
the following:

• σ1 =
√
2 ≈ 1.41421. For σ > σ1 the relation 2ω̂ > ωc

holds, that is, twice the frequency ω̂ of the orthogonal shape
mode can be found as an eigenfrequency in the continuous
longitudinal spectrum, see Fig. 1(a). On the other hand, if
σ < σ1 the inequality 2ω̂ < ωc holds, which means
that there is no radiation with this frequency in the first
component.

• σ2 =
1
2

√
7 ≈ 1.32288. For σ = σ2 the equality 2ω̂ = ω is

verified, that is, twice the frequency of the orthogonal shape
mode coincides with the frequency of the longitudinal shape
mode. Also note that 3ω̂ = ω + ω̂ and ω̂ = ω − ω̂ are also
valid, see Fig. 1(b).

It is worth anticipating that these values of σ will become
specially important later on because just in σ1 and σ2 there are
ivergences in the radiation amplitudes that will be calculated in
ections 4 and 5.

. Interaction between the normal modes of vibration

In this section we will analyze the interaction between the
hape modes described above, which allow the kink solution (2.6)
o vibrate in a longitudinal or orthogonal channel. This interaction
s governed by the nonlinear Klein–Gordon Eqs. (2.3)–(2.4). The
oupling between the field components present in the different
erms of the MSTB potential (2.2) implies that the excitation of
ne of the eigenmodes can excite other different vibrational or
adiation modes. For our case, it is clear that orthogonal modes
annot be triggered by longitudinal modes. If the second field
omponent vanishes, ψ = 0, then the problem reduces to the
sual one-component φ4-model and the second component ψ is
ot affected by kink evolution. Here, we will address the reverse
ituation, that is, we will discuss how the longitudinal modes are
ffected when the orthogonal shape mode F̂ (x) of the static kink
2.6) is excited. In this scenario, the initial configuration can be
haracterized by the linear approximation

(x, t; a) = K (+)(x) + a sin(ω̂t) F̂√
σ2−1

(x) (3.1)

derived from linear stability analysis. By construction, this is a
good approximation when a is small. Using (2.6) and (2.14), the
expression (3.1) can be written in components as

K (x, t; a) =

(
φK (x) , a sin(ω̂t) η̂D(x)

)t
=

(
tanh x , a sin(

√
σ 2 − 1 t) sechx

)t
. (3.2)

fter the excited kink (3.1)–(3.2) has evolved sufficiently, we
xpect other eigenmodes to become excited, so that eventually
he kink is more accurately described by the expression1:

K (x, t; a) = K (+)(x) +

∑
ω∈SpecH

aω sin(ωt + ϕω) Fω(x), for t ≫ 0

(3.3)

1 Recall that for the usual φ4-model, the kink evolves by vibrating through
he initially excited shape mode channel while emitting radiation with twice the
ω wobbling frequency. Using the notation employed in (3.3) this would mean
aω ̸= 0 and a2ω ̸= 0. Note that in this case the frequency 2ω is embedded in
the continuous spectrum.
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Fig. 1. Solid lines are the eigenfrequencies ω (the square root of the eigenvalues of the operator (2.9)) associated to the longitudinal (a) and orthogonal (b) fluctuations
s a function of the coupling constant σ . Some combinations of these eigenfrequencies that will be relevant later are also included (dashed lines).
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which is a generalization of (2.7) and (3.1).
In the following sections we will study the problem proposed

in this work from two different perspectives. On the one hand,
we will use numerical analysis to extract the spectral information
associated with the excitation of the different eigenmodes of the
evolving kink. For example, Fig. 2 shows the evolution of the two-
component kink solution when the orthogonal shape mode has
been initially excited with amplitude a = 0.6. The value of a has
been chosen high enough to better visualize the behavior of the
fields in the graphics. We can clearly see that the initial excitation
of the orthogonal shape mode F̂ (x) causes an almost immediate
xcitation of the longitudinal shape mode F (x). Note the small
ipples around the center of the kink in the first plot. Another
haracteristic that is shown in Fig. 2 is that the amplitude of the
rthogonal shape mode decreases as time passes. As mentioned
bove, this behavior is expected since this also occurs in the
volution of the wobbling kink in the one-component φ4-model.
s a consequence, some radiation is emitted in this process. As
tated above, in the φ4 model plane waves are generated with a
requency of 2ω. In our model, radiation can propagate through
oth components of the found as field. Furthermore, the kink
2.6) can vibrate with two different wobbling frequencies ω and
. For this reason it is difficult to anticipate the frequencies of
he radiation emitted by the excited kink (3.1). On the other
and, in Sections 4 and 5 two analytical approaches based on the
erturbation expansion theory will be introduced. We will use
wo different techniques that have been employed by Manton and
erabet [71] and by Barashenkov and Oxtoby [72] in the analysis
f the wobbling kink in the φ4-model. This study will be applied
o the predominant regime σ ∈ (σ1,∞), see Fig. 1. This will allow
s to obtain an analytical understanding of the numerical results
nd of the mechanism involved in the interaction between the
ifferent eigenmodes. The σ ∈ (1, σ1) regime implies much more
omplex dynamics, where added frequencies start to come into
lay due to couplings between higher order terms.

.1. Numerical simulations

As mentioned before, in this section we will perform numer-
cal simulations to gain a global understanding of the problem.
his is characterized by a static kink whose orthogonal shape
ode is initially excited with a certain initial amplitude a and
volves fulfilling the partial differential Eqs. (2.3) and (2.4). These
quations will be discretized using an explicit fourth-order finite
ifference algorithm implemented with fourth-order Mur bound-
ry conditions, which has been designed to deal with non-linear
lein–Gordon equations (see the Appendix in [66]). The initial
onditions are easily implemented from the initial configuration

3.2) with t = 0. The simulations have been executed in the l

4

patial interval x ∈ [−100, 100] for a time range t ∈ [0, 1200].
The space and time intervals have been chosen to correctly esti-
mate the spectral data associated with the vibrations of the fields
using a fast Fourier transform algorithm. Different choices of
space and time intervals have also been considered giving similar
results. The spectral analysis mentioned above has been applied
to time series obtained by evaluating the field components of the
solutions at different points in space. This procedure is justified
by the fact that the shape modes are localized and the estimation
of their frequencies and amplitudes is optimized using different
points xi. The choice of these points is specified as follows:

1. Spectral information for time series evaluated at x = x0 =

0. The vibration of the orthogonal shape mode F̂ (x) is most
pronounced at the origin of the spatial axis, see (2.14).
The time series extracted by evaluating the second field at
this point allows us to assess, for example, the resulting
amplitude of the orthogonal shape mode F̂ (x) associated
with the evolving kink. Note that the first field component
in this solution always vanishes at x0.

2. Spectral information for time series evaluated at x = x(+)
M .

The amplitude of the longitudinal shape eigenmode is max-
imized at these points, see (2.11) and (2.12). The spectral
analysis at the point x(+)

M defines an optimized method to
assess the excitation of this vibration channel. In contrast
to the point x0, which can be considered the source of the
radiation emitted by the vibrating kink, some continuous
eigenmodes propagating from the origin can be detected
here.

3. Spectral information for time series evaluated at x = xB
with xB representing a spacial value near the limits of
the simulation. The set of radiation modes emitted by the
wobbling kink can be identified by the fluctuations away
from the kink center xC . This makes it possible to iden-
tify the frequencies of the radiation emitted in both the
longitudinal and orthogonal channels.

The spectral analysis of the time series corresponding to the
oints x0, x

(+)
M and xB is shown in the following figures for various

alues of the coupling constant σ and for the value of the initial
mplitude a = 0.1. It has been verified that for other values of a
n the range (0, 0.6] the results are very similar. For this reason
he particular value a = 0.1 can be considered as a represen-
ative case of the problem we are dealing with. Obviously, the
esulting spectral information depends on the value of the model
arameter σ . In the following figures, the results for the particular
alues σ = 1.2, σ = 1.5 and σ = 2.5 are illustrated. These cases
escribe the wide variety of behaviors that arise in this problem.
ome of the most interesting features are set out in the following

ist:
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m

m

Fig. 2. Evolution of the first (left) and second (right) field components of the kink (2.6) initially excited by the orthogonal shape mode F̂ (x)(2.14) with amplitude
a = 0.6.
Fig. 3. Spectral distribution of the time series obtained by evaluating the first field component at the point x(+)
M for the evolving kink with initial orthogonal shape

ode amplitude a = 0.1. This information is displayed for three representative values of the model parameter: σ = 1.2 (left), σ = 1.5 (middle), and σ = 2.5 (right).
Fig. 4. Spectral distribution of the time series obtained by evaluating the first field component at the point xB for the evolving kink with initial orthogonal shape
ode amplitude a = 0.1. This information is shown for three representative values of model parameter: σ = 1.2 (left), σ = 1.5 (middle) and σ = 2.5 (right).
• Fig. 3 represents the amplitude aω of the different longi-
tudinal eigenmodes Fω(x) as a function of the frequency
ω when the time series are evaluated at the point xM ,
which is the optimum point to assess the excitation of the
longitudinal shape mode Fω(x). You can see that this mode
is excited even though it initially was not. The first field
component evaluated at this point also involves a vibration
with frequency 2ω̂. To check if it is a localized fluctuation
or corresponds to a radiation mode, the spectral analysis
must be carried out far from the center of the kink. This is
discussed in the next point.

• Fig. 4 shows the spectral distribution of the radiation emit-
ted in the first component channel that reaches the limits
of the simulations. In practice, the time series in this case
are constructed at a point xB (far from the center of the
kink). In the one-component φ4-model, nonlinearity causes
the emission of radiation with frequency 2ω. An unexpected
novelty appears in our model: radiation is also emitted but
its frequency is not 2ω but 2ω̂, that is, twice the frequency of
the orthogonal shape mode. This behavior can be observed
in Fig. 4 (center and right) for the model parameters σ = 1.5
and σ = 2.5. Note that the frequency 2ω̂ is embedded in
5

the longitudinal continuous spectrum for σ > σ1 =
√
2

which includes the cases mentioned above. The amplitude
of the excited eigenmodes depends on the value of the
model parameter σ . This can be partly explained by the
fact that higher frequencies are more difficult to excite and
that the eigenvalues associated with the orthogonal eigen-
fluctuations depend on σ . The case σ = 1.2 shown in
Fig. 4 (left) does not satisfy the previous inequality, so there
is no continuous longitudinal eigenfunction with frequency
2ω̂. Instead, a continuous eigenmode with frequency 4ω̂
can be identified, albeit very slightly excited. Clearly, this
indicates that higher order nonlinear terms are involved
in the emission of this radiation. On the other hand, note
that the frequency ω observed in Fig. 3 is not present here
because this massive eigenmode is localized around the kink
center.

• The pattern found in Fig. 5 is different. The spectral analysis
is applied, in this case, on time series obtained by the values
of the second field component extracted from our simula-
tions computed at the kink center x0 = 0. By symmetry, this
point can be considered the source of the radiation emitted
by the wobbling kink. For this reason, the plots included
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Fig. 5. Spectral distribution of the time series obtained by evaluating the second field component at the point x0 for the evolving kink with initial orthogonal shape
ode amplitude a = 0.1. This information is shown for three representative values of model parameter: σ = 1.2 (left), σ = 1.5 (middle) and σ = 2.5 (right).
Fig. 6. Spectral distribution of the time series obtained by evaluating the second field component at the point xB for the evolving kink with initial orthogonal shape
ode amplitude a = 0.1. This information is shown for three representative values of model parameter: σ = 1.2 (left), σ = 1.5 (middle) and σ = 2.5 (right).
in Fig. 5 show that the orthogonal shape mode (initially
excited by construction) continues to be excited over time.
However, the amplitude of this localized vibration seems to
follow a non-trivial behavior. We will return to this point
later.

• To identify the spectral distribution of the radiation emitted
in the channel of the second component of the field, the time
series associated with this component must be evaluated at
a point xB far from the center of the kink. Fig. 6 illustrates the
results found in this case. The most remarkable fact in these
plots is that radiation with frequencies ω+ω̂ (i.e. the sum of
the frequencies of the two shape modes) and 3ω̂ is detected
at the simulation bounds. Note that for σ = 1.2 shown in
Fig. 6 (left), the most excited continuous eigenmode involves
the frequency 3ω̂, which is the lowest of the two frequencies
mentioned above. In the rest of the graphs this situation is
reversed. In fact, for σ = 2.5 this amplitude becomes very
small.

In the previous figures, the spectral information of our prob-
em has been described for three specific values of the model
arameter σ . In order to have a global understanding of the exci-
ation process of the different eigenmodes, the previous spectral
nalysis has been carried out for values of σ in the interval σ ∈

1, 5] with a parameter step ∆σ = 0.01. As before, the initial
mplitude of the orthogonal shape mode in these simulations has
een chosen as a = 0.1. The results have been summarized in
igs. 7 and 8.
The graphs show the set of frequencies that are excited as a

unction of the model parameter σ . These frequencies are repre-
ented by a pixel with a grayscale pattern, where black is assigned
o the most excited frequency for each σ . For the rest of fre-
uencies (less excited) the intensity of gray represents the ratio
etween the amplitude associated with this frequency and that
orresponding to the predominant frequency mentioned above.
f a frequency involves negligible amplitude, it is represented by
white pixel. We can observe the following characteristics:

• Fig. 7 (left) shows that 2ω̂ and ω are the frequencies of the
excited longitudinal eigenmodes at the point xM . We can see
that if σ ∈ (1, σ2) then the kink vibrates predominantly with
the frequency 2ω̂ but for σ > σ the wobbling frequency ω
2

6

is dominant. This behavior seems to favor the less energetic
eigenmode.

• Fig. 8 (left) confirms that the orthogonal shape mode is the
only excited mode of the evolving kink when evaluated at
the origin in the channel of the second field component.
Remember that the origin can be considered as the emission
source of the radiation and therefore no frequencies in the
orthogonal continuous spectrum are found in the spectral
analysis for this point.

• Fig. 7 (right) characterizes the frequencies of the radiation
moving away from the simulation through the first field
component. For σ > σ1, the wobbling kink emits radiation
with a frequency 2ω̂, though when it becomes too ener-
getic, the radiation frequency changes to the longitudinal
threshold value ωc . This happens approximately for σ > 3.
For σ < σ1, the previous frequency 2ω̂ is not included
in the continuous spectrum. In this regime, the radiation
can propagate with frequencies close to the threshold value
ωc but also with frequencies 4ω̂ or ω + 2ω̂. This behavior
appears to be a consequence of the interaction between the
shape modes at the higher order.

• Finally, Fig. 8 (right) shows that if σ > σ2 the radiation
propagating in the channel of the second field component
has a dominant frequency ω + ω̂ which is progressively
replaced by values close to the threshold value ω̂c when the
previous one is high enough. On the other hand, for σ < σ2
the vibrating kink emits radiation with frequency 3ω̂ which
in this regime is easier to excite because it is less energetic
than for higher values of σ .

Figs. 7 and 8 show that only a few eigenmodes are excited in
the evolution of a kink initially excited by the orthogonal shape
mode. It is also interesting to investigate the dependence of the
amplitude of these eigenmodes on the value of the parameter
σ . Fig. 9 (left) represents this dependence for the longitudinal
shape eigenmode (evaluated at the point xM ) for the usual value
a = 0.1. Note that for small values of σ the amplitude aω is almost
insignificant but for σ ≈ 1.32, when the frequency 2ω̂ coincides
with the frequency ω of the longitudinal shape mode, the am-
plitude exhibits a peak with amplitude aω ≈ 0.03. Finally, the
amplitude goes asymptotically to the constant value a = 0.001.
ω
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Fig. 7. Frequencies of the excited longitudinal eigenmodes at x = xM (left) and x = xB (right) when the static kink is initially excited by the orthogonal shape mode
with amplitude a = 0.1.
Fig. 8. Frequencies of the excited orthogonal eigenmodes at x = x0 (left) and x = xB (right) when the static kink is initially excited by the orthogonal shape mode
with amplitude a = 0.1.
Fig. 9. Amplitudes of longitudinal shape mode, evaluated at xM (left), and of the longitudinal continuous mode with frequency 2ω̂, evaluated at xB (right), as a
function of the model parameter σ .
On the other hand, the amplitude of the longitudinal radiation
mode with frequency 2ω̂ that escapes from the simulation is max-
imized for the value σ ≈ 1.44 when this frequency crosses the
threshold value ωc associated with the continuous longitudinal
pectrum. At this point, the amplitude reaches approximately the
alue 0.0024, see Fig. 9 (right).
Fig. 10 (left) represents the amplitude aω̂ of the orthogonal

hape mode as a function of the model parameter σ . Here, the
mplitude is almost constant a = 0.1 although some depressions
an be identified around the previously mentioned values σ =

.32 and σ = 1.46, where the amplitude of other frequencies
s maximized. Fig. 10 (center) represents the amplitude of the
rthogonal radiation eigenmodes with frequency ω+ ω̂. The peak
f this graph arises at the value σ = 1.32. Finally, Fig. 10 (right)
epresents the amplitude of the eigenmode with frequency 3ω̂.
ere, we find that this eigenmode is highly excited for σ < 1.36,
howing two peaks located at σ = 1.068 and σ = 1.32. After
hat, the amplitude decreases.

In the next two sections, perturbation expansion theory will
e used to explain some of the surprising results found in the
resent section. In particular, we will apply the techniques of
anton & Merabet [71] and Barashenkov & Oxtoby [72] to our
roblem. Obviously, some modifications of these two approaches
ill be implemented because we are dealing with a two-
7

component field theory model with a particular initial setting.
The results found in each case will be compared. In particular,
we are very interested in understanding the suppression mecha-
nism of longitudinal radiation emission with frequency 2ω. We
remember that in the φ4-model radiation with this frequency
was emitted, however in our extended model it is replaced by
longitudinal radiation with frequency 2ω̂. Another feature which
will be examined is the presence of orthogonal radiation with
frequency ω+ω̂ and, more surprisingly, with frequency 3ω̂ at the
same scale. This means that the radiation emission in the latter
case is not a higher order effect in the perturbation expansion, but
must be explained in the same order as the previous frequency.
The explanation of this behavior lies in the interaction between
the longitudinal and orthogonal shape modes in the problem
presented in the present section.

4. Perturbative approach: Manton and Merabet approach

As previously mentioned, in [71] Manton and Merabet applied
a perturbation expansion to the φ4-model to explain the emission
of radiation by a wobbling kink with twice its natural vibration
frequency, and they also estimate the decay rate of the wobbling
amplitude due to this process. In the sequel we will follow the
essence of this method to analyze the system we are dealing with.
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In this case, the components of the fields will be written as

φ(x, t) = φK (x) + a(t) ηD(x) + η(x, t),
ψ(x, t) = â(t) η̂D(x) + η̂(x, t), (4.1)

where φK (x), ηD(x) and η̂D(x) where defined respectively in (2.5),
2.11) and (2.14). The time dependent functions a(t) and â(t)
espectively describe the evolution of the amplitudes of the lon-
itudinal and orthogonal shape modes. On the other hand, the
pace and time dependent functions η(x, t) and η̂(x, t) determine
the evolution of the longitudinal and orthogonal radiation eigen-
modes. For the sake of clarity, from now on the variables on
which both the functions a and â and the eigenfunctions ηD, η̂D,
η, and η̂ depend, are not written explicitly. Thus, if we substitute
the expression (4.1) into the field Eqs. (2.3) and (2.4) we find

ηD(3 a + att ) + ηtt − ηxx + η (6φ2
K (x) − 2) + 6 a2 η2D (η +ΦK (x))

+ 6 a η ηD (η + 2φK (x)) + 2a3 η3D + 6 η2 φK (x) + 2 η3 + 2 η η̂2 (4.2)
+2 a η̂2 ηD + 4 â η η̂ η̂D + 4 a â η̂ ηD η̂D + 2 â2 η η̂2D
+ 2 a â2 ηD η̂

2
+ 2 η̂2 φK (x) + 4 â η̂ η̂D φK (x) + 2 â2 η̂2D φK (x) = 0

for the first component, and

ηD (̂att + (σ 2
− 1) â) + (σ 2

− 2) η̂ + 2 η2 η̂ + 2̂η3 + 4 a η η̂ ηD
+ 2 a2 η̂ η2D + 2 â η2 η̂D + 6 â η̂2 η̂D + 4 a â η ηD η̂D (4.3)
+2 a2â η2D η̂D + 6 â2 η̂ η̂2D + 2 â3 η̂3D + 4 η η̂ φK (x)
+ 4 a η̂ ηD φK (x) + 4 â η η̂D φK (x) + 4 a â ηD η̂D φK (x)
+ 2 η̂ φ2

K (x) + η̂tt − η̂xx = 0

for the second one. In the problem at hand, we assume that
the amplitude of the orthogonal shape mode is small, so we can
neglect terms of the form a3, η2, ηa, etc. in (4.2) and (4.3), where
a stands for either a or â and η stands for η or η̂. Furthermore,
the amplitudes of the emitted radiation are assumed to be much
smaller than those associated with the shape modes. Under these
assumptions Eqs. (4.2) and (4.3) reduce to

ηD(3 a + att ) + ηtt − ηxx + η(6φ2
K (x) − 2) + 6a2 η2DφK (x)

+ 2 â2 η̂2D φK (x) ≈ 0 (4.4)

nd

D (̂att + (σ 2
− 1) â) + η̂tt − η̂xx + (−2 + σ 2

+ 2φ2
K (x)) η̂

+ 4a â ηD η̂D φK (x) ≈ 0. (4.5)

he projection of (4.4) onto the longitudinal shape mode ηD leads
to the relation

att + 3 a +
9
16
π a2 +

3
8
π â2 = 0, (4.6)

hile the projection of (4.5) onto the orthogonal shape mode η̂D
ields

tt + (σ 2
− 1) â +

1
π a â = 0. (4.7)
4 i

8

On the other hand, substituting (4.6) in (4.4) we get that the
equation for the longitudinal radiation component η is

ηtt − ηxx + (6φ2
K (x) − 2) η +

[
6 η2D φK (x) −

9
16
π ηD

]
a2

+

[
2̂η2D φK (x) −

3
8
π ηD

]̂
a2 = 0, (4.8)

while substituting (4.7) in (4.5) we get for the orthogonal com-
ponent η̂ the equation

ηtt − η̂xx + (σ 2
−2+2φ2

K (x)) η̂+

[
4 ηD φK (x)−

π

4

]
η̂D a â = 0. (4.9)

The problem addressed in this work is characterized by the ex-
citation of the orthogonal shape mode while the longitudinal
remains initially unexcited. We are interested in analyzing the
mechanism of energy transfer between the shape modes and the
emission of radiation in this process. It is clear that the quadratic
term â2 arising in (4.6) implies the subsequent excitation of the
longitudinal shape mode since the evolution of a is forced by this
term. Therefore, we can assume that at first-order the amplitude
a of the orthogonal shape mode follows the expression

a(t) = â0 sin(ω̂ t) = â0 sin(
√
σ 2 − 1 t). (4.10)

f we substitute (4.10) into (4.6) and the initial conditions a(0) =

at (0) = 0 are implemented, then the evolution of the amplitude
a(t) of the longitudinal mode is given by

a(t) =
π â20
16

[
−1 +

4(σ 2
− 1)

4σ 2 − 7
cos(

√
3t)

−
3

4σ 2 − 7
cos(2

√
σ 2 − 1 t)

]
. (4.11)

e can see that the above formula anticipates that σ = σ1 =

7/2 is special because for precisely that value the denominators
in (4.11) cancel. We can check in Figs. 9 and 10 that for this
value of the coupling constant σ the amplitude of the longitudinal
shape mode exhibits an abrupt peak. In this case a resonance
arises between the frequencies ω and 2ω̂. However, in this ar-
ticle we will not deal with this particular case because we are
interested in the more general interval σ > σ1 =

√
2 where the

value 2ω̂ enters into resonance with the continuous frequencies
in the longitudinal channel.

From (4.11) it is clear that a ∼ O(̂a2), i.e. the scales of the
amplitudes of the shape modes are different. Taking into account
that

(̂a(t))2 =
1
2
â20 (1 − cos(2 ω̂ t)) =

1
2
â20
(
1 − cos(2

√
σ 2 − 1 t)

)
and that the response of η to the time-independent source is itself
time-independent and carries no energy, then the non-trivial
evolution of longitudinal radiation is governed by the equation

ηtt − ηxx + (6φ2
K (x) − 2) η = f (x) ei 2ω̂t , (4.12)

hich has been derived from the second-order truncation of (4.8)
n â . This means that terms involving a2(t) in (4.8) have been
0
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gnored because a ∼ O(̂a2), as mentioned above. At this point
t is necessary to clarify that, in order to simplify the tedious
alculations that must be carried out, we have decided to use
maginary exponentials in (4.12). But in fact, at the end of the
alculation, only the real part of the solutions of (4.12) will be
elevant, so this choice does not affect the final results of this
ection. In fact, the function f (x) of (4.12) has the following
xpression:

(x) =
1
2
â20
(
2 η̂2D φK (x) −

3
8
π ηD

)
= −

1
2
â20
(3
8
π sech x tanh x − 2 sech2x tanh x

)
. (4.13)

In these circumstances it can be assumed that the function de-
scribing the longitudinal radiation has the form

η(x, t) = η(x) ei 2ω̂t , (4.14)

which leads to the following ordinary differential equation:

−η ′′(x) + [−2 + 6φ2
K (x) − 4ω̂2

] η(x) = f (x). (4.15)

A similar argument is used to obtain an ordinary differential
equation for the orthogonal component. The expression (4.9)
contains the product of the amplitudes

a(t )̂a(t) =
π â30 (17 − 8σ 2)
32
(
4σ 2 − 7

) sin(ω̂t) +
π â30

(
σ 2

− 1
)

8
(
4σ 2 − 7

) sin[(ω + ω̂)t]

−
π â30

(
σ 2

− 1
)

8
(
4σ 2 − 7

) sin[(ω − ω̂)t]

−
3π â30

32
(
4σ 2 − 7

) sin(3 ω̂t), (4.16)

that contains sinusoidal functions with four different frequencies:

ω1 = ω̂, ω2 = 3 ω̂, ω3 = ω + ω̂, and ω4 = ω − ω̂. (4.17)

ote the presence, a priori unexpected, of ω2, three times the
atural vibration frequency ω̂ of the orthogonal shape mode.
ue to the linearity of (4.9), the effect of each term in (4.16)
n the radiation solution can be studied separately. Therefore,
he emission of radiation with frequency ωℓ can be examined
y analyzing the following four partial differential equations in
omplex form

tt − η̂xx + (σ 2
− 2 + 2φ2

K (x))̂η = gℓ(x)eiωℓt , (4.18)

where

g1(x) = −
â30 π (8σ

2
− 17) (π − 16 sech x tanh2 x) sech x

128(4σ 2 − 7)
,

g2(x) = −
â30 3π (π − 16 sech x tanh2 x) sech x

128(4σ 2 − 7)
,

g3(x) = −g4(x) =
â30 π (σ

2
− 1)(π − 16 sech x tanh2 x) sech x

32(4σ 2 − 7)
.

As before, it is assumed that for each frequency ωℓ this orthogonal
radiation can be written as

η(x, t) = η̂(x) eiωℓt ,

which leads to the four ordinary differential equations

−η̂′′(x) + (σ 2
− 2 + 2φ2

K (x) − ω2
ℓ ) η̂(x) = gℓ(x), ℓ = 1, 2, 3, 4.

(4.19)

Now Eqs. (4.15) and (4.19) will be solved to determine the radia-
tion emission of the shape modes in each channel. As mentioned
above, this study will be carried out in the σ > σ regime
1

9

where twice the frequency of the orthogonal shape mode is
included in the longitudinal continuous spectrum. We explicitly
recall the notation introduced in (2.13) for the first component of
the continuous longitudinal eigenfunctions:

ηq(x) = eiqx
(
−1 − q2 + 3φ2

K (x) − 3iqφK (x)
)
. (4.20)

From the dispersion relation, we have that q =
√
ω2 − 4 with

ω| ≥ 2. Note that the Wronskian associated with these solutions

W q = W [ηq(x), η−q(x)] = −2iq(q2 + 1)(q2 + 4)

s constant. The solution of (4.15) that describes the radiation
mitted from the origin with frequency 2ω̂ is given by the ex-

pression

η(x) = −
η−q1 (x)

W q1

∫ x

−∞

ηq1 (ξ )f (ξ )dξ −
ηq1 (x)

W q1

∫
∞

x
η−q1 (ξ )f (ξ )dξ ,

(4.21)

where q1 =

√
(2ω̂)2 − 4 = 2

√
σ 2 − 2. The asymptotic behavior

f (4.21) can be identified analytically and turns out to be

η(x)
x→∞
−→ e−iq1x â20

π

16
q1(2 + 3iq1 − q21)
(q21 + 1) sinh πq1

2

.

Multiplying the above result by ei 2ω̂t and using (4.14) we get
η(x, t). Then, taking only its real part, which is what really inter-
ests us, it can be determined that the behavior of the longitudinal
radiation of frequency 2ω̂ turns out to be

η(x, t)
x→∞
−→

π
√
σ 2 − 2

4 sinh(π
√
σ 2 − 2)

√
σ 2 − 1
4σ 2 − 7

â20 cos (2ω̂t − q1x + δ1) ,

δ1 = arctan
(

3q1
2 − q21

)
.

(4.22)

Therefore, the amplitude of the radiation emitted with frequency
2ω̂ in the longitudinal channel is

2ω̂ =
π

√
σ 2 − 2

4 sinh(π
√
σ 2 − 2)

√
σ 2 − 1
4σ 2 − 7

â20. (4.23)

t can be checked from (4.23) that a2ω̂ ∼ O(̂a20).
The asymptotic behavior of orthogonal radiation can be ob-

ained in a similar way for each frequency ωℓ in (4.17). In this
ase, the second component of the orthogonal continuous eigen-
odes is

qℓ (x) = eiqℓx (qℓ + iφK (x)) ,

ith qℓ =

√
ω2
ℓ − σ 2 such that |ωℓ| > σ . The Wronskian

associated to this case is given by

Ŵqℓ = W [̂ηqℓ (x), η̂−qℓ (x)] = 2iqℓ(q2ℓ + 1) .

ow the radiation emitted from the origin with frequency ωℓ is
etermined by the general formula

ωℓ (x) = −
η̂−qℓ (x)
Ŵqℓ

∫ x

−∞

η̂qℓ (ξ ) gℓ(ξ ) dξ

−
η̂qℓ (x)
Ŵqℓ

∫
∞

x
η̂−qℓ (ξ ) gℓ(ξ ) dξ ,

which allows us to obtain the following asymptotic behavior for
ηωℓ (x):

η̂3ω̂(x)
x→∞
−→ −e−iq2x

3π2 â30
2

q32 (q2 − i)
2 πq2

,

128(4σ − 7) i(q2 + 1) sinh 2
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Fig. 11. Comparison between the numerical and analytical results for the dependence on the parameter σ of the amplitudes of the radiation emitted with frequencies
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u

q2 =

√
8σ 2 − 9 , (4.24)

ω+ω̂(x)
x→∞
−→ e−iq3x

π2 â30 (σ
2
− 1)

32(4σ 2 − 7)
q33 (q3 − i)

i(q23 + 1) sinh πq3
2

,

q3 =

√
2 + 2

√
3
√
σ 2 − 1 . (4.25)

Note that the frequency ω4 = ω − ω̂ has not been considered in
this calculation because in the regime σ > σ1 its value is under
the orthogonal continuous spectrum. Again, taking the imagi-
nary part of the previous expressions, we obtain the physically
relevant solutions, which are

η̂3ω̂(x, t)
x→∞
−→

3π2 â30
128(4σ 2 − 7)

q32√
q22 + 1 sinh πq2

2

× sin(ω2t − q2x + δ2), δ2 = arctan (q2) ,

ω+ω̂(x, t)
x→∞
−→ −

π2 â30 (σ
2
− 1)

32(4σ 2 − 7)
q33√

q23 + 1 sinh πq3
2

× sin(ω3t − q3x + δ3), δ3 = arctan (q3) ,

o the amplitudes of the radiation with frequencies ω+ ω̂ and 3ω̂
re written as

3ω̂ =
3π2 â30

128(4σ 2 − 7)
q32√

q22 + 1 sinh πq2
2

,

ω+ω̂ =
π2 â30 (σ

2
− 1)

32(4σ 2 − 7)
q33√

q23 + 1 sinh πq3
2

.

(4.26)

Fig. 11 shows the analytical results found at (4.23) and (4.26)
for the amplitudes of the radiation emitted with frequencies 2ω̂,
3ω̂ and ω + ω̂, and are compared with the numerical results
hown in Section 3. It can be seen that the dependence of these
mplitudes on the model parameter σ is very well adjusted for
he last two frequencies in the interval σ > σ1. Furthermore, the
ivergences in the radiation amplitudes occur for the same values
f the parameter σ .

.1. Amplitude decay law

It is well known that the average power radiated in a period
y a wave of the form η = A cos(ωt − qx + δ) is ⟨P⟩ = −

1
2A

2ωq,
ut as this radiation is emitted both to the right and to the left
f the real line, then the power emitted would be doubled, that
s, ⟨Ptotal⟩ = −A2ωq. In the previous section we have seen that
t distances far from the origin of coordinates in the first field
adiation is emitted with frequency 2ω̂ while in the second field
he frequencies are 3ω̂ and ω+ω̂. Hence, rewriting the amplitudes
escribed by the formulas (4.23) and (4.26) as

2ω̂ = â20A2ω̂, a3ω̂ = â30A3ω̂, aω+ω̂ = â30Aω+ω̂, (4.27)

and taking into account that the radiation is emitted both from
the right and from the left, we obtain that the average power
 I

10
radiated by the system is

⟨P⟩ =
dE
dt

= −
(̂
a40 A

2
2ω̂ (2ω̂) q1 + â60 A

2
3ω̂ (3ω̂) q2

+ â60 A
2
ω+ω̂ (ω + ω̂) q3

)
. (4.28)

On the other hand, in the previous Section we have considered
that the differential equation that describes the dynamics of â is
approximately

att + ω̂2 â ≈ 0, (4.29)

that is, we consider that the orthogonal discrete vibrational mode
behaves as a harmonic oscillator at each point in space. Therefore,
we are going to assume that the energy density of this vibration
is given by the expression

E =
1
2
ω̂2 (̂a0̂ηD)2. (4.30)

ntegrating this last expression over the whole space, we obtain
hat the corresponding total energy will be E = ω̂2̂a20. As for the
iscrete mode of the first field, it will not be considered because
e are going to assume that we are working for very long times,

n which this vibration has already been excited and, therefore,
he energy of the orthogonal discrete mode will be inverted only
n terms of exciting radiation. If we now take into account the
ormula (4.28) and neglect the sixth order terms, we arrive at the
ifferential equation

ω̂2 d̂a
2
0

dt
≈ â40A

2
2ω̂2ω̂q1, (4.31)

hose solution is

2
0(t) ≈

â20(0)

1 +
2q1A2

2ω̂

ω̂
â20(0) t

. (4.32)

unction (4.32) directly gives us the decay law of the orthogonal
iscrete mode amplitude which, as we saw in Fig. 2, shows a clear
ecrease in the value of this amplitude as time progresses.
In the next Section we will calculate another decay law for

his same amplitude which, despite not being exactly the same,
ill have a very similar form to the one calculated here. This
iscrepancy in the amplitude decay of the discrete vibration
odes also occurred in the study of the φ4 model in [71–73]
nd in fact the law obtained in this section has a very similar
orm to those calculated in these references. Finally, we can
ighlight that, although we have not considered the sixth-order
erms in (4.28), they show that the orthogonal channel radiation
nfluences the time evolution of â0, although to a lesser extent
han the radiation emitted in the parallel channel.

. Perturbative approach: Barashenkov and Oxtoby procedure

Barashenkov and Oxtoby employed a more formal approach
sing perturbation theories in [72] to address the same problem.
n this Section, the perturbation theory will be applied to our
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roblem following precisely the procedure described in [72]. As
sual, the starting point is given by Eqs. (2.3) and (2.4). Taking
nto account the scenario described in Section 3, the following
xpansions of the fields about the kink are proposed

φ = φ0 + ϵ2φ2 + ϵ4φ4 + · · · ,

= ϵψ1 + ϵ3ψ3 + · · · , (5.1)

here ϵ is a formal small real parameter. In addition to this
expansion, a sequence of stretched spaces and times will also be
used:

Xn ≡ ϵn x , Tn ≡ ϵn t. (5.2)

n the limit ϵ → 0 the variables Xn and Tn become independent.
The derivatives with respect to the original variables can also be
expanded into the new ones as follows:
∂

∂x
= ∂X0 + ϵ ∂X1 + ϵ2 ∂X2 + · · · , with ∂Xn ≡

∂

∂Xn
, (5.3)

∂

∂t
= ∂T0 + ϵ ∂T1 + ϵ2 ∂T2 + · · · , with ∂Tn ≡

∂

∂Tn
. (5.4)

f we substitute the expressions (5.1)–(5.4) in (2.3)–(2.4) we ob-
ain a hierarchy of equations for the fields φk and ψk for different
orders in the ϵ-expansion, which we will consider in some detail
below.

5.1. Zero order approximation: φ0

In zero order approximation, the following relation

∂T0,T0φ0 − ∂X0,X0φ0 − 2φ0 (1 − φ0)2 = 0

must be verified. As expected, the kink/antikink solution (2.5)

φ0(X0) = ±φK (X0) = ± tanh X0 (5.5)

meets the above condition and is considered the solution in this
order.

5.2. First order approximation: ψ1

In the first order approximation, Eq. (2.3) gives us the relation

∂T0,T1φ0 − ∂X0,X1φ0 = 0 ,

which is checked automatically because as we have seen φ0 in
(5.5) is independent of T0, X1 and T1. On the other hand, the
second Klein–Gordon Eq. (2.4) leads to(
∂T0,T0 − ∂X0,X0 − 2 + σ 2

+ 2φ2
0

)
ψ1 = 0 ,

which corresponds to the spectral problem for the orthogonal
channel, see (2.9). Therefore,

ψ1 = Â(X1, . . . ; T1, . . . ) eîωT0 η̂D(X0) + c.c.+ η̂(X0, T0) ,

where we recall that η̂D(X0) = sech X0 and ω̂ =
√
σ 2 − 1. As

usual, the abbreviation c.c. indicates the complex conjugate of the
previous expression, and

η(X0, T0) =

∫
∞

−∞

R̂(q) eîωq T0 η̂q(X0) dq + c.c.

is a wave packet traveling in the second field component, with
orthogonal continuous eigenfunctions η̂q(x) defined on (2.16), and
ωq =

√
σ 2 + q2, as defined in (2.16). Taking into account that the

problem we are dealing with only involves the initial excitation of
the orthogonal shape mode, the field component ψ1 is assumed
to be

ψ = Â(X , . . . ; T , . . . ) eîωT0 sech X + c.c. (5.6)
1 1 1 0

11
5.3. Second order approximation: φ2

In the second order approximation, the following condition on
ψ1

∂T0,T1ψ1 − ∂X0,X1ψ1 = 0

is found. Plugging (5.6) into the previous relation we have

∂T1 Â = 0 , ∂X1 Â = 0 ,

hich implies that the amplitude Â does not depend on the slow
ariables X1 and T1, that is,

= Â(X2, . . . ; T2, . . . ) .

n the other hand, the condition extracted in this order for the
ield component φ2 reduces to

∂T0,T0 − ∂X0,X0 − 2 + 6φ2
0 ]φ2 = −2φ0 ψ

2
1 = F 2 , (5.7)

here

F 2 = −4|̂A|
2
sech2X0 tanh X0 − 2̂A2 sech2 x0 tanh X0 ei2ω̂T0 + c.c.

= F
(0)
2 + F

(1)
2 ei2ω̂T0 + c.c.

The solution of the homogeneous equation associated with (5.7)
can be written as

φ2H = C η0(X0) + A eiω T0 ηD(X0) + c.c + η(X0, T0) , (5.8)

here η0(X0) = sech2X0, ηD(X0) = sech X0 tanh X0 and ω =
√
3

as explained in Section 2. Besides,

η(X0, T0) =

∫
∞

−∞

R(q)eiωq T0 ηq(X0) dq + c.c. (5.9)

represents a wave packet evolving in the longitudinal channel,
where ηq is given by formula (2.13) with dispersion relation ωq =

4 + q2. In the scenario described in Section 2, the kink center
s set to the origin, so the translational mode is not excited and
he value C = 0 can be assumed in (5.8). Based on the same
rguments used for the orthogonal channel, the coefficients of the
cattering eigenmodes are assumed to vanish: R(q) = 0 in (5.9).
Therefore, Eq. (5.8) simplifies to

φ2H = A eiω T0 sech X0 tanh X0 + c.c , (5.10)

A particular solution of the non-homogeneous linear differential
Eq. (5.7) can be found in the form

φ2P = φ
(0)
2 + φ

(1)
2 ei 2ω̂ T0 + c.c. , (5.11)

which leads to equations similar to (5.7) for the variables φ(i)
2

associated to terms F
(i)
2 . The first of these equations reads

[−∂X0,X0 − 2 + 6φ2
0 ]φ

(0)
2 = −4 |̂A|

2
sech2X0 tanh X0 , (5.12)

where it has been considered that φ(0)
2 does not depend on the

slow time T0. According to Fredholm’s alternative, inhomoge-
neous equations admit bounded solutions if and only if the func-
tions F

(i)
2 are orthogonal to the corresponding homogeneous so-

lutions. In the case at hand, the homogeneous solution is φ(0)
2H =

sech2X0, which is orthogonal to F
(0)
2 . Therefore, the solution of

(5.12) can be written as

φ
(0)
2 (X0) = −|̂A|

2
X0 sech2X0 . (5.13)

Note the factor X0 sech X0 in the above expression, which does
not oversize the previous term φ0 in the ϵ-expansion, although
they become larger than the difference φ0 ∓ 1 as X0 → ±∞.
This behavior could lead to non-uniformity of these expansions,
see [72]. This problem can be solved by noting that X sech2 X
0 0
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an be expressed as the derivative of tanh(kX0) with respect to k.
his implies that

anh[(1 − |̂A|
2
)X0] ≈ tanh X0 − |̂A|

2
X0 sech2 X0 + o(|̂A|

2
) ,

hich means that φ(0)
2 is responsible for a variation of the kink

ize.
On the other hand, the differential equation for φ(1)

2 is

−∂X0,X0 −2+6φ2
0 − (2ω̂)2]φ(1)

2 = −2 Â2 sech2X0 tanh X0 , (5.14)

hich must be solved under the symmetry conditions imposed
y our problem, which in turn imply that the solution of (5.14)
ust be an odd function in the variable X0. This means that

(1)
2 (X0, X2, . . . ; T2, . . . ) = Â2 h(X0; q1)+c.c. , q1 = 2

√
σ 2 − 2 ,

(5.15)

here

(X0; q) = −
q2 − 2

4(q2 + 1)
tanh X0

+ eiqX0
πq

8(q2 + 1)

× cosech
πq
2

(
q2 − 2 + 3iq tanh X0 + 3 sech2 X0

)
+h1(X0, q) + h1(X0,−q) , (5.16)

with

h1(X0, q) =
−1

8(q2 + 1)

(
q2 − 2 − 3iq tanh X0 + 3 sech2 X0

)
×

(
2F1[1,

iq
2
, 1 +

iq
2
,−e2X0 ]

−
q

q − 2i
e2X0 2F1[1, 1 +

iq
2
, 2 +

iq
2
,−e2X0 ]

)
.

(5.17)

herefore, the final expression for the first component of the
calar field in the second order approximation φ2, taking into
ccount (5.10), (5.13) and (5.15), is given by

2 =A eiω T0 sech X0 tanh X0 − |̂A|
2
X0 sech2X0

+ Â2 ei 2ω̂ T0 h(X0; q1) + c.c. (5.18)

he asymptotic behavior of this field is

lim
0→∞

φ2 ≈
π Â2

2

√
σ 2 − 2

sinh(π
√
σ 2 − 2)

√
σ 2 − 1

√
4σ 2 − 7

ei (2ω̂ T0−q1X0+δ1) .

(5.19)

From (5.19) it is immediate to see that, as in Section 4, we find
that the system emits radiation in the first component of the
field with frequency 2ω̂. On the other hand, it can be verified
that the radiation amplitude obtained in this section has a very
similar shape to that calculated in the previous section. In fact,
the only appreciable difference between the amplitudes obtained
with both perturbative methods is that the one given in (5.19) is
just twice the one that can be seen in (4.23).

5.4. Third order approximation: ψ3

At third order we find the following condition for the field φ2

−∂X0,X1φ2 + ∂T0,T1φ2 = 0 .

If we substitute the solution (5.18) into the previous equation, the
amplitude of the longitudinal shape mode must comply with

∂ A(X , T ) = ∂ A(X , T ) = 0 ,
X1 1 1 T1 1 1

12
which means that

A = A(X2, . . . ; T2, . . . ) .

On the other hand, the condition for the second field component
at this order reads

∂T0,T0ψ3 + [−∂X0,X0 − 2 + σ 2
+ 2φ2

0 ]ψ3 = F̂3 , (5.20)

here

3 = eîωT0 [ − 2̂A |̂A|
2
sech X0(3 sech2X0 + 2h(X0) tanh X0)

−2i sech X0(ω̂∂T2 Â − i tanh X0∂X2 Â)

+4|̂A|
2̂
A X0 sech3X0 tanh X0] + c.c.

+e3îωT0 [−2̂A3 sech X0(sech2X0 + 2h(X0) tanh X0)] + c.c.
+ei(ω+ω̂)T0 [−4A Â sech2X0 tanh2 X0] + c.c.
+ei(ω−ω̂)T0 [−4A Â∗ sech2X0 tanh2 X0] + c.c.

= F̂ (0)
3 eîωT0 + F̂ (1)

3 e3îωT0 + F̂ (2)
3 ei(ω+ω̂)T0 + F̂ (3)

3 ei(ω−ω̂)T0 + c.c.

(5.21)

xploiting the linearity of Eq. (5.20) it can be assumed that

3 = ψ
(0)
3 eîωT0 + ψ

(1)
3 e3îωT0 + ψ

(2)
3 ei(ω+ω̂)T0 + ψ

(3)
3 ei(ω−ω̂)T0 + c.c.

(5.22)

f we substitute (5.22) into Eq. (5.20) we can determine the
ffect of every term ψ̂

(i)
3 on the global solution. For example the

rdinary differential equation which sets ψ̂ (0)
3 has the form

∂X0,X0ψ
(0)
3 + (−2 + σ 2

+ 2φ2
0 − ω̂2)ψ (0)

3 = F̂ (0)
3 .

rom the Fredholm alternative to obtain bounded solutions the
rojection of F̂ (0)

3 on the homogeneous solution must be zero, that
s,

∞

−∞

dX0 sech X0

[
−2̂A |̂A|

2
sech X0

(
3 sech2X0 + 2 h(X0) tanh X0

)
−

−2 i sech X0
(
ω̂ ∂T2 Â − i tanh X0 ∂X2 Â

)
4|̂A|

2̂
A X0 sech3X0 tanh X0

]
= 0 ,

hich leads to the condition

ω̂ ∂T2 Â +

(
5
3

+ ξ (σ )
)
Â |̂A|

2
= 0 , (5.23)

here

(σ ) =

∫
∞

−∞

dX0 h(X0; q) sech2X0 tanh X0 ,

nd h(X0) is given in (5.16). Returning to the unscaled amplitude
= ϵÂ of the orthogonal wobbling amplitude and the original

ime variable t , we can write (5.23) as

ω̂
∂ â
∂t

+

(
5
3

+ ξ (σ )
)
â |̂a|2 = 0 ,

hich leads to the equation

∂|a|2

∂t
= −

2 Im ξ (σ )
ω̂

|a|4,

such that

|a(t)|2 =
|a(0)|2

1 +
2 Im ξ (σ )

ω̂
|a(0)|2 t

.

The equation determining the field ψ (1)
3 becomes

− ∂X0,X0ψ
(1)
3 + [−2 + σ 2

+ 2φ2
0 − 9ω̂2

]ψ
(1)
3 = F̂ (1)

3

= −2̂A3 sech X0 (sech2X0 + 2h(X0) tanh X0) . (5.24)
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e recall that η̂q(x) = eiqx(q + i tanh x) and that the Wronskian
associated to these solutions is given by Ŵq = W [̂ηq(x), η̂−q(x)] =

2iq(q2 + 1). With this notation the expression for ψ (1)
3 extracted

from (5.24) can be written as

ψ
(1)
3 (X0) =

1
Ŵq2

{
η̂q2 (X0)

∫
η̂−q2 (X0) F̂

(1)
3 (X0) dX0

− η̂−q2 (X0)
∫
η̂q2 (X0 )̂F

(1)
3 (X0) dX0

}
,

where q2 =
√
8σ 2 − 9 because (3ω̂)2 = 9(σ 2

− 1).
On the other hand, from (5.20)–(5.21) the equation for ψ (2)

3
reads

− ∂X0,X0ψ
(2)
3 + [−2 + σ 2

+ 2φ2
0 − (ω + ω̂)2]ψ (2)

3 = F̂ (2)
3

= −4A Â sech2 X0 tanh2 X0 . (5.25)

In this case the solution is given by

ψ
(2)
3 (X0, X2, . . . ; T2, . . . ) = A Â g(X0; q3) ,

here q3 is given in (4.25) and

g(X0; q) = −
q2

2(q2 + 1)
+ sech2X0 +

πq3eiqX0

4(q2 + 1) sech πq2
× (−iq + tanh X0) + g1(X0, q) + g1(X0,−q) ,

ith

1(X0; q) = −
iq2(q − i tanh X0)

4(q2 + 1) 2F1[1,
iq
2
, 1 +

iq
2
,−e2X0 ] +

+
q3

4(q2 + 1)(q − 2i)
e3X0 sech X0

iq + tanh X0

1 + tanh X0

× 2F1[1, 1 +
iq
2
, 2 +

iq
2
,−e2X0 ] .

e have that the asymptotic behavior for X0 → ∞ is

(2)
3

X0→∞

−→ A Â
πq33

4(−1 + iq3) sinh
πq3
2

ei ((ω+ω̂) T0−q3X0) + c.c. (5.26)

s we can see, this term corresponds to a radiative term, as oc-
urred in Section 4. In the present case, the amplitude obtained is
ifferent, although the qualitative behavior obtained from (5.26)
s the same as that obtained can extract from (4.26).

.5. Fourth order approximation: φ4

At fourth order we find the following condition for the field
4

T0,T0φ4 + [−∂X0,X0 − 2 + 6φ2
K ]φ4 = −(6φ0φ

2
2 + 2φ2ψ

2
1

+4φ0ψ1ψ3 −

−2∂X0,X2φ2 − ∂X1,X1φ2 + 2∂T0,T2φ2 + ∂T1,T1φ2) = F 4. (5.27)

As in previous sections, the non-homogeneous term of this dif-
ferential equation will present terms with different frequencies,
so that

F 4 = F
(0)
4 + F

(1)
4 eiωT0 + F

(2)
4 e2îωT0 + F

(3)
4 e2iωT0 + (5.28)

F
(4)
4 e4îωT0 + F

(5)
4 e2îωT0+iωT0 + F

(6)
4 e2îωT0−iωT0 + c.c.

e will now focus only on the term with frequency ω, as it will
e used to find the decaying law for A. For this frequency, the

corresponding differential equation will be the following:

−ω2φ
(1)
4 + [−∂X0,X0 − 2 + 6φ2

0 ]φ
(1)
4 = −4|̂A|

2
A sech3 X0 tanh X0

12X0 |̂A|
2
A sech3 X0 tanh2 X0 −

−4|̂A|
2
A sech X tanh X g(X ) − 2iω sech X tanh X ∂ A
0 0 0 0 0 T2

13
+2 sech3 X0 ∂X2A −

−2 sech X0 tanh2(X0) ∂X2A = F
(1)
4 (X0).

From Fredholm’s alternative we know that in order to obtain
bounded solutions, in the previous equation the solution of the
homogeneous part must be orthogonal to the inhomogeneous
term. This results in the following condition∫

∞

−∞

dX0

(
sech X0 tanh X0F

(1)
4 (X0)

)
= 0, (5.29)

which leads us to the differential equation

− 5iω ∂T2A + (3 − 15µ(σ ))A|̂A|
2

= 0, (5.30)

where

µ(σ ) =

∫
∞

−∞

dX0 g(X0)sech2 X0 tanh2 X0. (5.31)

If â = ϵÂ and a = ϵA, then

∂|a|2

∂t
= |a|2 |̂a|2

(
−6 Imµ(σ )

ω

)
. (5.32)

Finally, the solution of (5.32) leads to the time evolution law for
a being

|a(t)|2 = |a(0)|2(ωω̂)
3 Imµ(σ )ω̂
Im ξ (σ )ω

(
(2|̂a(0)|2Im ξ (σ ) t + ω̂)ω

)− 3 Imµ(σ )ω̂
Im ξ (σ )ω .

(5.33)

his procedure has some similarities with the one carried out in
he previous section, since, for example, the differential
qs. (5.23) and (5.30) present a very similar form to each other.
owever, there are also very important differences. For exam-
le, in this case we can see how A is affected by Â, while in

the calculation of Â something similar does not happen. This is
easonable since we are initially only exciting the discrete mode
f the second field, so it makes sense that Â dictates the behavior

of A. Note that in this perturbative theory we have managed to
reach fourth order. It is also important to note that in (5.28) the
frequency terms 4ω̂ and 2ω̂+ω appear, which correspond to the
extra radiative terms that we found in Fig. 7 .

6. Concluding remarks

In this paper we have investigated the interaction between
the shape modes associated to the one non-null component kink
present in the family of MSTB models. In this case, in addition
to a longitudinal shape mode whose eigenfrequency has been
denoted by ω, an orthogonal shape mode is also found whose
frequency ω̂ is a function of the model parameter σ . For this
reason, three different regimes have been distinguished which
are delimited by the special values of the model parameter σ1
and σ2 introduced in Section 2. In particular, the evolution of the
kink is numerically studied when only the orthogonal shape is
initially excited. Following the excitation of the orthogonal shape
mode, the longitudinal shape mode and the radiation modes in
both the longitudinal and orthogonal channel are also excited for
some particular frequencies corresponding to some linear combi-
nations of ω and ω̂. This demonstrates that the energy stored in
orthogonal shape mode can freely excite other vibrational modes.
For σ > σ1 longitudinal radiation with frequency 2ω̂ is emitted,
hat is, twice the eigenfrequency associated with the orthogonal
hape mode (and not the longitudinal shape mode as we could
ave initially inferred from the behavior of the φ4 model). For
< σ1 the pattern is much more complex and frequencies such

s ω + 2ω̂ and 4ω̂ replace the previously mentioned frequency.
This behavior involves the prevalence of higher order terms in
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he interaction between the vibrational modes in this regime.
n the other hand, for the orthogonal channel the radiation is
redominantly emitted with frequency ω+ ω̂ for σ > σ1 and 3ω̂
or σ < σ1.

In Sections 4 and 5 the analytical understanding of the pre-
ious numerical results have been achieved by applying per-
urbation theory to our problem in the regime σ > σ1. The
pproaches used by Manton and Merabet [71] (based on the
indstedt–Poincaré method) and by Barashenkov and Oxtoby [72]
based on the method of multiple scales) to study the evolution
f the wobbling kinks in the φ4 model have been considered
espectively in each section. With both, similar results are ob-
ained and the non-linear terms responsible for the excitation
f the different radiation frequencies found in our numerical
imulations are identified. The amplitudes of the radiation are
lso derived from these analytical procedures and they are found
o be in concordance with the numerical results. On the other
and, although the regime σ < σ1 has not been analytically
ddressed the previous study indicates that for the values σ =

1 and σ = σ2 some resonances arise. In these cases, some
etuning parameters must be introduced in the perturbation
heory approach. In addition to this, new higher order terms must
e included in the analysis which explain the presence of other
xcited frequencies. The situation is so complex that the study of
hese regimes has been postponed for future research.

In summary, the interaction between longitudinal and orthog-
nal shape modes analyzed in this paper shows some fascinating
ovel behaviors that open new possibilities for further works. A
ascinating idea to unveil more features in the energy transfer
echanism between shape modes is to construct a new two-
omponent scalar field model in which both components exhibit
ore bound states above the zero mode to investigate how en-
rgy flows from one to other higher excited modes. Furthermore,
he present investigation extends new perspectives to inves-
igate the scattering between excited topological defects in a
wo-component real scalar field model.
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