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Abstract: In this note, we first evaluate and subsequently achieve a rather accurate approximation of
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1. Introduction

The present note will attempt to establish a connection between Hermite functions,
integral operators, and solutions of two-dimensional quasi-solvable quantum models,
with the discussion of some mathematical properties that arise in the study of a specific
model. A first motivation for the present investigation comes after the following: in 1929,
Plancherel and Rotach published a remarkable article on the asymptotic properties of
Hermite polynomials [1]. Plancherel’s findings enabled B. Simon to investigate in depth
the decay properties of the sequences of both the pointwise value and the supremum
norm of the eigenfunctions of the harmonic oscillator [2] four decades later in [3]. Some
generalisations of Hermite functions have been discussed in the literature [4]. Hermite
functions are the eigenfunctions of the quantum harmonic oscillator and, therefore, they
appear as an ingredient in the kernels of integral operators for models that use the harmonic
oscillator. Apart from representing one of the fundamental topics in Functional Analysis
and Operator Theory, integral operators have played a crucial role in several areas of
Applied Mathematics for more than a century.

The analysis of solvable or quasi-solvable models in Quantum Mechanics is very
useful in order to study properties of quantum objects as well as making approximations
valid for a wide range of systems. Solvable models such as the one-dimensional square well
or the harmonic oscillator serve as essential tools in the teaching of quantum mechanics.
Point potentials are also typical solvable models, which serve as a laboratory to investigate
bound states, scattering, resonances, self-adjoint determinations, etc. [5,6].

Quasi-solvable models are those that permit approximate solutions of the spectral
problem for the Hamiltonian, at least for a finite number of eigenvalues. Generally speaking,
quasi-solvable models are far from trivial and often require sophisticated mathematical
methods for their resolution and this even may include the solution for the ground state.

While many solvable models are one-dimensional, interesting quasi-solvable models
arise in the two-dimensional world. Two-dimensional models are interesting both from
the physical as well as the mathematical point of view. From the physical point of view,
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it is well known that a 3D material with a two-dimensional confinement is a quantum
wire. A typical example of a quantum wire is a carbon nanotube, which is of great in-
terest in the physics of materials. In the study of a quantum wire, one usually considers
the limiting case of a two-dimensional layer with a one-dimensional confining potential.
Furthermore, two-dimensional systems are important in the physics of materials due to
the properties of graphene or other kinds of thin films. From the mathematical point of
view, two-dimensional models are often much more challenging than one-dimensional or
three-dimensional ones. Some of these difficulties have their origin in the existence of a
logarithmic singularity in the resolvent kernel of the free two-dimensional Laplacian [5,7].
In addition, point interactions in dimensions higher than one usually require renormalisa-
tion. Moreover, while point perturbations of the negative free Laplacian in both one and
three dimensions may admit bound states for the attractive case only, two-dimensional
point interactions may admit a bound state even if the interaction is repulsive [5,7]. In
the case of point perturbations of the Hamiltonian of the harmonic oscillator, the striking
difference characterising the two-dimensional model is given by the fact that the so-called
level crossings of eigenvalues do not occur at the same value of the coupling constant, as
fully shown in [8,9]. These are some of the facts that make the study of two-dimensional
quantum models interesting and attractive.

In recent papers [10,11], we have considered a two-dimensional quasi-solvable model
that combines several properties such as simplicity in the Hamiltonian with a mathematical
complexity to solve the eigenvalue problem associated to this Hamiltonian, even for the
calculation of the energy of the ground state, which is already a real challenge. In addition,
this model serves as a two-dimensional limit for a quantum wire. This is a two-dimensional
generalisation of the one-dimensional Hamiltonian H := −d2/dx2 − λ e−x2

, λ > 0, which
has received attention due to its quasi-solvability [12]. A slight generalisation of this one-
dimensional Hamiltonian, say H := −d2/dx2 + x2 − λ e−x2

, λ > 0, is also quasi-solvable
and the lowest energy eigenvalues have been obtained using the properties of the Birman–
Schwinger operator [13]. Let us briefly describe this two-dimensional model and the
technique used for its resolution. The point of departure is a free Hamiltonian given by

H0 = −1
2

(
d2

dx2 + x2
)
− 1

2
d2

dy2 . (1)

It is to be noted that H0 has no spatial symmetry with respect to the variables: while
we have a harmonic oscillator in the x-variable, the motion with respect to the y-variable
is that of a free particle. Then, we introduce an attractive isotropic Gaussian perturbation
with coupling constant λ > 0, so that the total Hamiltonian is

Hλ := H0 − λe(x2+y2) . (2)

As shown in [10], this Hamiltonian, Hλ, is self-adjoint in the sense of quadratic forms,
which implies that Q(Hλ) ≡ Q(H0) Q(A) representing the quadratic form for the operator
A, as fully explained in [14]), and is bounded from below. In order to estimate the spectrum
of Hλ, let us set V := e−(x2+y2) and consider the following Birman–Schwinger operator
(see [15–18]):

BE := V1/2(H0 − E)V1/2 , E ∈ ρ(H0) , (3)

where ρ(H0) means the resolvent (complex numbers which are not in the spectrum, see [14])
of H0. In the present case, this operator is Hilbert–Schmidt (for a pedagogical introduction
to trace ideals of bounded operators, we refer the reader to [14,15]). This fact shows that
the eigenvalues of Hλ are the zeros of the modified Fredholm determinant, which are the
values of E for which

det2[I − λBE] = 0 , (4)



Mathematics 2022, 10, 3012 3 of 11

where for any Hilbert–Schmidt operator A, we define the modified Fredholm deter-
minant as det2[I + A] := det[I + A] e−Tr A, where det[I + A] is the ordinary Fredholm
determinant [5,19,20] and I the identity operator. Note that A either could be or could
not be trace class.

The Birman–Schwinger operator (3) is an integral operator with integral kernel
given by

BE(x, x′, y, y′) = e−(x2+y2)/2

[
∞

∑
n=0

eγn(E) |y−y′ |

γn(E)
φn(x)φn(x′)

]
e−(x′2+y′2)/2 (5)

=
∞

∑
n=0

KE,n(x, x′, y, y′) ,

where the meaning of each of the KE,n(x, x′, y, y′) is obvious and the functions φn(x) are
the L2(R) normalised Hermite functions

φn(x) =
1√

2nn!
√

π
e−x2/2 Hn(x) , (6)

Hn(x) being the well-known Hermite polynomials [2]. Here, we see the relation between
Hermite functions and integral kernels mentioned earlier and that is specific for the present
model. The functions γn(E) are given by

γn(E) =

√
2
(

n +
1
2
− E

)
, n = 0, 1, 2, . . . (7)

As was done in [11], for a given value of the coupling constant λ, the energy of the
ground state is given by E0(λ) =

1
2 − ε0(λ), with ε0 > 0. Then, γ0(ε0) =

√
2ε0. For this

value of E, the integral kernel, denoted by Bε0 , can be divided for the sake of convenience
into the sum of three terms [11]:

Bε0 = Pε0 + Mε0 + Nε0 , (8)

where Pε0 (respectively Mε0) is the integral kernel of a rank one (respective trace class)
operator. The last term, Nε0 , is the integral kernel of a positive Hilbert–Schmidt operator
and has the following form (compare to (5)):

Nε0(x, x′, y, y′) = e−(x2+y2)/2

[
∞

∑
n=1

eγn(ε0) |y−y′ |

γn(ε0)
φn(x)φn(x′)

]
e−(x′2+y′2)/2 , (9)

with γ(ε0) =
√

2(n + ε0), n ≥ 1.
The main objective of the present note is the study of some mathematical properties of

the operator with integral kernel given by Nε0(x, x′, y, y′).
From a broader mathematical point of view, due to the structure of the Kernels (5)

and (9), it might be worth pointing out that our work can be regarded as a two-dimensional
approximation method for convolutions using orthogonal functions, namely those of the
harmonic oscillator. Other examples of two-dimensional approximation methods were
dealt with in [21,22].

2. On the Mathematics of the Integral Kernel Nε0(x, x′, y, y′)

From (5) and (9), we have that

Nε0(x, x′, y, y′) =
∞

∑
n=1

Kε0,n(x, x′, y, y′) , (10)



Mathematics 2022, 10, 3012 4 of 11

where the term with n = 0 in (5) contributes to the sum Pε0 + Mε0 .
We have already shown in [11] that, although each summand Kε0,n(x, x′, y, y′) is the

integral kernel of a trace class operator, its sum Nε0(x, x′, y, y′) is not. Instead, Nε0(x, x′, y, y′)
is the integral kernel of a Hilbert–Schmidt operator. In fact, as ε0 → 0+, the integral
operator with kernel Nε0(x, x′, y, y′) converges in the Hilbert–Schmidt norm to another
integral operator with kernel

N0(x, x′, y, y′) = e−(x2+y2)/2

[
∞

∑
n=1

e−
√

2n |y−y′ |
√

2n

]
e−(x′2+y′2)/2 , (11)

satisfying the following estimate:

Tr(N2
ε0
) ≤ Tr(N2

0 ) ≤
π

3
2

4

[
∞

∑
n=1

φ2
2n(0)

n
3
4

]2

≈ 1.66265 , (12)

see [11].
By setting

f (n)ε0 (x, y) = e−x2/2 φn(x) e−y2/2 e−
√

2(n+ε0) |y| , n = 0, 1, 2, . . . , (13)

so that f (n)0 := limε0→0+ f (n)ε0 . We recall that the evaluation of the scalar product
(

f (0)0 , N0 f (0)0

)
was achieved in [11] by using the explicit Expression (11). Here, we wish to generalise that
argument by estimating the following scalar product instead:

(
f (0)ε0 , N0 f (0)ε0

)
=

∞

∑
n=1

∫
R4

f (0)ε0 (x, y)K0,n(x, x′, y, y′) f (0)ε0 (x′, y′) dx dx′ dy dy′

=
∞

∑
n=1

1√
2n

[∫
R

e−x2
φ0(x)φn(x) dx

]2[∫
R2

e−y2−
√

2ε0|y|e−
√

2n|y−y′ | e−y′2−
√

2ε0|y′ | dy dy′
]

(14)

= π
∞

∑
n=1

1√
2n

[∫
R

φ3
0(x)φn(x) dx

]2[∫
R2

e−y2−
√

2ε0|y|e−
√

2n|y−y′ | e−y′2−
√

2ε0|y′ | dy dy′
]

= π
∞

∑
n=1

1√
2n

(
φ0, φ2

0φn

)2 ∫
R2

e−y2−
√

2ε0|y|e−
√

2n|y−y′ | e−y′2−
√

2ε0|y′ | dy dy′ .

In [13], the following relations were established:

(φ0, φ2
0φ2n−1) = 0 , (φ0, φ2

0φ2n) =
φ2

2n(0)
22n+1

√
π

, n = 1, 2, . . . (15)

Thus,(
f (0)ε0 , N0 f (0)ε0

)
=

√
π

4

∞

∑
n=1

φ2
2n(0)

22n√n

∫
R2

e−y2−
√

2ε0|y|e−2
√

n|y−y′ | e−y′2−
√

2ε0|y′ |dydy′ (16)

=

√
π

4

∞

∑
n=1

φ2
2n(0)

22n√n

∫
R

e−y2−
√

2ε0|y|
[
e−2
√

n|·| ∗ e−(·)
′2−
√

2ε0|·|
]
(y) dy,

where f * g denotes, as usual, the convolution between the functions f and g.
Next, let us find an upper and a lower bound for

(
f (0)ε0 , N0 f (0)ε0

)
using the right-

hand side of (16). As a straightforward consequence of Young’s inequality regarding the
convolution of two functions [15], we have:
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∣∣∣∣∣∣e−(·)′2−√2ε0|·|
[
e−2
√

n|·| ∗ e−(·)
′2−
√

2ε0|·|
] ∣∣∣∣∣∣

2
≤
∣∣∣∣∣∣e−(·)′2−√2ε0|·|

∣∣∣∣∣∣
2

∣∣∣∣∣∣e−2
√

n|·| ∗ e−(·)
′2−
√

2ε0|·|
∣∣∣∣∣∣

2

≤
∣∣∣∣∣∣e−(·)′2−√2ε0|·|

∣∣∣∣∣∣2
2

∣∣∣∣∣∣e−2
√

n|·|
∣∣∣∣∣∣

1
=

2√
n

∫ ∞

0
e−2(y2+

√
2ε0y)dy =

2 eε0
√

n

∫ ∞

0
e−2(y+

√
ε0/2)2

dy (17)

=
2 eε0
√

n

∫ ∞√
ε0
2

e−2y2
dy =

√
2
n

eε0

∫ ∞

√
ε0

e−y2
dy =

√
π

2n
eε0 erfc(

√
ε0).

Thus, (16) is bounded from above by

π

2
√

2
eε0 erfc(

√
ε0)

∞

∑
n=1

φ2
2n(0)

22n(2n)
=

√
π

8
ln
(

4(2−
√

3)
)

eε0 erfc
(√

ε0
)

. (18)

The series in (18) converges rapidly due to the decay of φ2
2n(0) ≈

1√
2n

, which is a
consequence of the properties of Hermite polynomials, first established by Plancherel and
Rotach [1] (see also [23–27]). Therefore, the general term in the series in (18) decays like

1
22n(2n)3/2 .

In order to obtain a lower bound for the scalar product
(

f (0)ε0 , N0 f (0)ε0

)
, we take into

account that
e−2
√

n (|y|+|y′ |) ≤ e−2
√

n |y−y′ | , (19)

and use Inequality (19) into the first series in (16), thus leading to the lower bound:

√
π

4

∞

∑
n=1

φ2
2n(0)

22n√n

[∫
R

e−y2−2(
√

n+
√

ε0/2)|y| dy
]2

=
√

π
∞

∑
n=1

φ2
2n(0)

22n√n

[∫ ∞

0
e−y2−2(

√
n+
√

ε0/2)y dy
]2

=
√

π
∞

∑
n=1

φ2
2n(0)

22n√n

[
e(
√

n+
√

ε0/2)2
∫ ∞

0
e−(y+

√
n+
√

ε0/2)
2

dy
]2

(20)

=
√

π
∞

∑
n=1

φ2
2n(0)

22n√n

[
e(
√

n+
√

ε0/2)2
∫ ∞
√

n+
√

ε0/2
e−y2

dy
]2

.

Then, taking into account that 0 ≤ ε0 ≤ 1, we obtain the following lower bound:

√
π3

4

∞

∑
n=1

φ2
2n(0)

22n√n
e2n erfc2

(
√

n +

√
1
2

)
≈ 0.00006617 . (21)

Next, we wish to obtain an analytical expression for
(

f (0)ε0 , N0 f (0)ε0

)
using the first series

in (16), where a double integral appears. Let us solve this integral by splitting its calculation
into two steps. First, we consider the integration over the first and third quadrant of the
(x, y) plane:
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I1,3 =
∫ ∞

0

∫ ∞

0
e−y2−

√
2ε0ye−2

√
n|y−y′ | e−y′2−

√
2ε0y′dy dy′

+
∫ 0

−∞

∫ 0

−∞
e−y2+

√
2ε0ye−2

√
n|y′−y| e−y′2+

√
2ε0y′dy dy′

=
∫ ∞

0

∫ ∞

0
e−y2−

√
2ε0ye−2

√
n|y−y′ | e−y′2−

√
2ε0y′dy dy′ (22)

+
∫ −∞

0

∫ −∞

0
e−y2+

√
2ε0ye−2

√
n|y′−y| e−y′2+

√
2ε0y′dy dy′

= 2
∫ ∞

0

∫ ∞

0
e−y2−

√
2ε0ye−2

√
n|y−y′ | e−y′2−

√
2ε0y′dy dy′ .

The y-integral can be split into two by writing explicitly the absolute value inside the
exponent of the second exponential inside the integrand

I1,3 = 2
∫ ∞

0
e−y2−

√
2ε0y
[∫ y

0
e−2
√

n(y−y′)e−y′2−
√

2ε0y′dy′
]

dy

+2
∫ ∞

0
e−y2−

√
2ε0y
[∫ ∞

y
e−2
√

n(y′−y)e−y′2−
√

2ε0y′dy′
]

dy

= 2
∫ ∞

0
e−y2−2(

√
n+
√

ε0/2)y
[∫ y

0
e−y′2+2(

√
n−
√

ε0/2)y′dy′
]

dy (23)

+2
∫ ∞

0
e−y2+2(

√
n−
√

ε0/2)y
[∫ ∞

y
e−y′2−2(

√
n+
√

ε0/2)y′dy′
]

dy

= 2e2n+ε0

∫ ∞

0
e−(y+

√
n+
√

ε0/2)2
[∫ y

0
e−(y

′−
√

n+
√

ε0/2)2
dy′
]

dy

+2e2n+ε0

∫ ∞

0
e−(y−

√
n+
√

ε0/2)2
[∫ ∞

y
e−(y

′+
√

n+
√

ε0/2)2
dy′
]

dy .

The last term in (23) can be easily written in terms of the error function [2] as

√
π e2n+ε0

∫ ∞

0
e−(y−

√
n+
√

ε0/2)2
erfc

(
y +
√

n +
√

ε0/2
)

dy , (24)

while the previous term can be treated by using integration by parts as follows:

2e2n+ε0

∫ ∞

0
e−(y+

√
n+
√

ε0/2)2
[∫ y

0
e−(y

′−
√

n+
√

ε0/2)2
dy′
]

dy

=
√

πe2n+ε0

∫ ∞

0

[
− d

dy
erfc

(
y +
√

n +
√

ε0/2
)][∫ y

0
e−(y

′−
√

n+
√

ε0/2)2
dy′
]

dy

=
√

πe2n+ε0

[
−erfc

(
y +
√

n +
√

ε0/2
) ∫ y

0
e−(y

′−
√

n+
√

ε0/2)2
dy′
]∞

0
(25)

+
√

πe2n+ε0

∫ ∞

0
erfc

(
y +
√

n +
√

ε0/2
)[ d

dy

∫ y

0
e−(y

′−
√

n+
√

ε0/2)2
dy′
]

dy

=
√

π e2n+ε0

∫ ∞

0
e−(y−

√
n+
√

ε0/2)2
erfc

(
y +
√

n +
√

ε0/2
)

dy .
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By performing a simple change of variables, we see that the sum of (24) plus (25) gives:

I1,3 = 2
√

π e2n+ε0

∫ ∞
√

ε0/2
e−(y−

√
n)2

erfc
(
y +
√

n
)
dy . (26)

The contribution from the fourth quadrant to the double integral in (16) is

I4 =
∫ ∞

0

∫ 0

−∞
e−y2−

√
2ε0ye−2

√
n(y+|y′ |) e−y′2−

√
2ε0y′dydy′

=

(∫ ∞

0
e−y2−2(

√
n+
√

ε0/2)ydy
)(∫ 0

−∞
e−y′2−2(

√
n+
√

ε0/2)|y′ |dy′
)

(27)

=

(∫ ∞

0
e−y2−2(

√
n+
√

ε0/2)ydy
)2

=
π

4
e2(
√

n+
√

ε0/2)
2
erfc2

(√
n +

√
ε0/2

)
.

By means of simple symmetry arguments, it is immediate to infer that the contribution
from the second quadrant I2 is identical to I4, so that the double integral inside the sum on
the right-hand side of (16) is equal to:

2
√

π e2n+ε0

∫ ∞
√

ε0/2
e−(y−

√
n)2

erfc
(
y +
√

n
)
dy +

π

2
e2(
√

n+
√

ε0/2)
2
erfc2

(√
n +

√
ε0/2

)
. (28)

Hence, from the first series in (16), we obtain the following result:

(
f (0)ε0 , N0 f (0)ε0

)
=

π

2

∞

∑
n=1

φ2
2n(0)

22n√n
e2n+ε0

∫ ∞
√

ε0/2
e−(y−

√
n)2

erfc
(
y +
√

n
)
dy (29)

+

(√
π

2

)3 ∞

∑
n=1

φ2
2n(0)

22n√n
e2(
√

n+
√

ε0/2)
2
erfc2(

√
n +

√
ε0/2) .

Let us consider the first summand in the above Expression (29). In order to make the
function of ε0 defined as the sum up to infinity more tractable, it might be convenient to
replace it by its truncation up to n = 10, that is to say:

F1(ε0, 10) :=
π

2

10

∑
n=1

φ2
2n(0)

22n√n
e2n+ε0

∫ ∞
√

ε0/2
e−(y−

√
n)2

erfc
(
y +
√

n
)
dy . (30)

In Figure 1, we provide the plot of F1(ε0, 10) as a function of ε0 for any ε0 ∈ (0, 1).

0 0.25 0.5 0.75 1
0

0.01

0.02

ϵ0

F
1
(ϵ
0
,1
0
)

Figure 1. Plot of the function F1(ε0, 10) in (30).

Needless to say, we have to estimate the remainder, namely:

R1(ε0, 11) :=
π

2

∞

∑
n=11

φ2
2n(0)

22n√n
e2n+ε0

∫ ∞
√

ε0/2
e−(y−

√
n)2

erfc
(
y +
√

n
)
dy . (31)
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Note that the right-hand side of (31) is always positive with ε0 ∈ (0, 1), so that we
have the following inequality:

R1(ε0, 11) ≤ πe
2

∞

∑
n=11

φ2
2n(0)

22n√n
e2n

∫ ∞

0
e−(y−

√
n)2

erfc
(
y +
√

n
)
dy

=
πe
2

∞

∑
n=11

φ2
2n(0)

22n√n
en
∫ ∞

0
e−y2+2

√
ny erfc

(
y +
√

n
)
dy (32)

=
πe
2

∞

∑
n=11

φ2
2n(0)√

n

( e
4

)n ∫ ∞

0
e−y2

[
e2
√

ny erfc
(
y +
√

n
)]

dy.

Observe that for any y ≥ 0, we have that

d
dy

e2
√

ny erfc
(
y +
√

n
)
=

2e2
√

ny
√

π

[√
πn erfc

(
y +
√

n
)
− e−(y+

√
n)2
]
< 0 . (33)

From here, it follows that the second factor inside each integrand is a decreasing
function for any y ≥ 0. Then, the last series in (32) is bounded from above by

πe
2

∞

∑
n=11

φ2
2n(0)√

n

( e
4

)n
erfc

(√
n
) ∫ ∞

0
e−y2

dy (34)

=
π3/2e

4

∞

∑
n=11

φ2
2n(0)√

n

( e
4

)n
erfc

(√
n
)
≈ 8.05813 × 10−10 ,

so that
R1(ε0, 11) ≤ 8.05813 × 10−10 . (35)

The convergence of the Series (34) is faster than the convergence of the geometric
series. This is a consequence of the fact that φ2

2n(0)/
√

n decays like 1
n (see [23–29]), and

that erfc
(√

n
)

decays like e−n/
√

π n, as shown in [2].
Once we have estimated the first series in (29), we turn our attention to the evaluation

of the second series. We split this series by truncating it up to n = 20. This obviously gives

F2(ε0, 20) :=
(√

π

2

)3 20

∑
n=1

φ2
2n(0)

22n√n
e2(
√

n+
√

ε0/2)
2
erfc2

(√
n +

√
ε0/2

)
. (36)

In Figure 2, we plot F2(ε0, 20) as a function of ε0 ∈ (0, 1).

0 0.25 0.5 0.75 1
0

0.005

0.01

ϵ0

F
2
(ϵ
0
,2
0
)

Figure 2. Plot of the function F2(ε0, 20) in (36).
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The remainder of this series, denoted by R2(ε0, 21), can be estimated as follows:

R2(ε0, 21) ≤
(√

π

2

)3 ∞

∑
n=21

φ2
2n(0)

22n√n
e2(
√

n+
√

1/2)
2
erfc2(

√
n) (37)

=

(√
π

2

)3

e
∞

∑
n=21

φ2
2n(0)

22n√n
e2n+4

√
n/2erfc2(

√
n) ≈ 5.78891× 10−11 ,

as a consequence of the above considerations on the decay of φ2
2n(0)/

√
n and erfc

(√
n
)

for
large values of n, one concludes that

e2n+4
√

n/2erfc2(
√

n)
22n <

1
π n

( e
4

)n
(38)

for any n > 21. Thus, the desired approximation is(
f (0)ε0 , N0 f (0)ε0

)
≈ F1(ε0, 10) + F2(ε0, 20) . (39)

We plot this approximation in terms of ε0 in Figure 3.

0 0.25 0.5 0.75 1
0

0.01

0.02

0.03

ϵ0

F
1
(ϵ
0
,1
0
)+
F
2
(ϵ
0
,2
0
)

0 0.25 0.5 0.75 1
0

0.01

0.02

0.03

ϵ0

Figure 3. On the left is a plot of the chosen approximation (39) of
(

f (0)ε0 , N0 f (0)ε0

)
as a function of ε0;

on the right, a plot of the three results F1(ε0, 10) (red), F2(ε0, 20) (blue), and F1(ε0, 10) + F2(ε0, 20)
(green).

Note that, by using (35) and (37), the estimation of the total error with the truncations
used above is

R1(ε0, 11) + R2(ε0, 21) < 8.637021× 10−10 . (40)

Finally, (
f (0)0 , N0 f (0)0

)
= lim

ε0→0

(
f (0)ε0 , N0 f (0)ε0

)
. (41)

We conclude our discussion with this result.

3. Concluding Remarks

Quantum quasi-solvable models are important since they serve as approximations
of realistic situations. In addition, two-dimensional quantum models describe properties
of new materials such as graphene or any kind of thin films. Two-dimensional models
are far more challenging from the mathematical point of view than their one or three-
dimensional analogues. As is well known, the main reason for these difficulties is the
logarithmic singularity at the origin of the integral kernel of the resolvent operator of the
free Hamiltonian, known as Green’s function in the mathematical physics literature. This
singular behaviour obviously affects the associated Birman–Schwinger operator, that is to
say the integral operator enabling us to investigate the eigenvalues as well as the resonances
of the Hamiltonian with the interaction under consideration.
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As attested by our recent analysis of a two-dimensional model with the free Hamil-
tonian endowed with the harmonic confinement in one direction and the interaction
represented by an isotropic Gaussian potential, the detailed study of the integral kernel
of the related Birman–Schwinger operator relies crucially on the decay properties of the
eigenfunctions of the harmonic oscillator. In some recent papers of ours, it was shown that
such an operator is Hilbert–Schmidt, so that the functional-analytic tool known as modified
Fredholm determinant is required in order to evaluate the two lowest energy eigenvalues
of such a model.

One term of the modified Fredholm determinant is given by the scalar product in-
vestigated in detail in this note. Despite its challenging complexity, we have achieved
to determine a rather manageable expression for it in terms of two series involving the
complementary error function. Furthermore, after establishing the fast convergence of both
series, we have obtained a highly accurate approximation by means of a suitable truncation
of both series.
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