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Nonconservative dipole forces on an excited two-atom system
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We compute the nonconservative electric dipole forces between the atoms of a suddenly excited binary system.
These forces derive from the time variation of the longitudinal electromagnetic momentum. In contrast to the
conservative van der Waals forces, the nonconservative forces possess components orthogonal to the interatomic
axis. Thus, despite being several orders of magnitude smaller than van der Waals’, they might be accessible
experimentally. For the case of a binary system of identical atoms in Dicke states, these forces are reciprocal.
However, when only one of the atoms is initially excited, as with the van der Waals forces, the nonconservative
ones are nonreciprocal, which results in a net force on the two-atom system. We offer an estimate of the spatial
displacement caused by the nonconservative forces on a binary system of hydrogen atoms.
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I. INTRODUCTION

Nonconservative forces are usually identified with
velocity-dependent forces and with dissipative forces
mediated by incoherent processes. As for the former,
common examples are the Lorentz magnetic force and
friction forces generated by the relative motion between
charged bodies—e.g., magnetic friction and quantum friction
forces [1–3]. As for the latter, nonconservative forces involve
the coupling of the system under study to a reservoir. In
this respect, several proposals have been made to employ
nonconservative dissipative forces to bind, to pair, and to
stabilize the constituents of quantum systems [4–6].

The present paper deals with nonconservative fundamental
forces instead. Thus, we show that nonconservative forces are
exerted upon the constituents of a dynamical quantum sys-
tem whose internal interactions are mediated by gauge fields.
In particular, we prove this on a binary system of excited
atoms. In brief, the existence of fundamental nonconservative
forces has its origin in the difference between the canonical
conjugate momentum and the kinetic momentum. That is,
in quantum field theory a gauge interaction is incorporated
through the so-called minimal coupling, which consists of
the replacement of the ordinary derivative with the covari-
ant derivative in the free Lagrangian of the charged fields.
Ordinary and covariant derivatives differ in a term linear in
the gauge field and the coupling constant. Mathematically, the
gauge field is the connection of the fiber bundle associated
with the group of the gauge symmetry. Physically, that im-
plies the replacement of the four-canonical momentum with
four-energy-kinetic momentum vector of the charged particles
[7,8]. Hence, the difference between both momenta is a gauge
field term which, for the case of the electromagnetic interac-
tion, is referred to as longitudinal electromagnetic momentum
[9]. Note that the representation of the three-canonical mo-
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mentum in the position basis of quantum mechanics is the
ordinary gradient operator which, incidentally, enters the ex-
pression of the conservative forces as the gradient of a scalar
potential. However, the total force operator is the time deriva-
tive of the kinetic momentum operator. Hence, as we will
show later, it is the time derivative of the difference between
the canonical momentum and the kinetic momentum, i.e.,
of the longitudinal momentum in the electromagnetic case,
the one to be identified with (fundamental) nonconservative
forces. We emphasize that, in contrast to the aforementioned
nonconservative forces, the fundamental ones do not depend
on kinematics or effective dissipative effects. For simplicity,
we have computed these forces on an excited atomic system,
but analogous nonconservative forces are to be found, for in-
stance, in nuclear systems whose weak interaction is mediated
by W ± and Z bosons. Nonetheless, in the remainder of this
article we restrict ourselves to the electromagnetic forces of
atomic systems.

Dispersion forces between neutral atoms in the electric
dipole approximation are generally referred to as van der
Waals (vdW) forces [10–17]. They are the result of the cou-
pling of the quantum fluctuations of the electromagnetic (EM)
field in its vacuum state with the dipole fluctuations of the
atomic charges in stable or metastable states. For a system of
atoms in their ground states the vdW forces can be computed
applying the usual techniques of stationary quantum pertur-
bation theory. Those forces are conservative and reciprocal
and can be expressed in terms of the atomic polarizabilities
[12–17]. In contrast, when atoms are excited, it has been
proven in Refs. [18–26] that a fully stationary treatment
is insufficient to account for the incoherent dynamics of a
metastable system. In particular, for a system of two dissimilar
atoms with one of them initially excited, the time-dependent
approaches of Refs. [19,22,26], in the adiabatic limit, have
shown that whereas the resonant component of the vdW force
upon the excited atom oscillates in space, the resonant force
on the de-excited atom decreases monotonically with the
interatomic distance. The nonreciprocity of the vdW forces
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results in an apparent violation of the classical action-reaction
principle and the conservation of total momentum, which
would be in contradiction with the invariance of the system
under global spatial translation. This apparent contradiction
was solved in Ref. [27] where it was shown that the miss-
ing momentum was carried by the photons which mediate
the interaction which, ultimately, causes the directionality of
spontaneous emission when the system gets deexcited. The
vdW forces between dissimilar atoms either resonant or off-
resonant are all quasistationary for an adiabatic excitation and
can be expressed in terms of the gradients of the expectation
values of the interaction potentials [26,27], hence, reflecting
their conservative nature.

As for the case of a binary system of identical atoms, with
one of them initially excited, it has been shown in Ref. [28]
that the vdW forces are inherently time dependent and grow
linearly with time in the weak-interaction regime. This is so
because, on the one hand, the system is degenerate, and an
adiabatic excitation is not feasible. In fact, a sudden excitation
is generally a good approximation to model the preparation of
the initial state of the system. On the other hand, that excited
state is highly nonstationary since its dynamics comprises
both the coherent transfer of the excitation between the atoms
and its incoherent decay through spontaneous emission.

Besides, it was found in Ref. [28] that, still in the electric
dipole approximation, when the atomic interaction depends on
time, in addition to the conservative vdW forces, nonconserva-
tive forces arise from the time variation of the aforementioned
EM longitudinal momentum, which can be expressed, in
general, in terms of the EM vector potential or in terms of
electric and magnetic fields [9,29–33]. Since the interaction
between two atoms becomes time dependent when one of
them is excited nonadiabatically, so does the EM longitudinal
momentum of the system. Thus, nonconservative forces arise
in a binary system if excited nonadiabatically and, as for the
case of the conservative vdW forces, their strength is greater
for the case of identical atoms.

In this article we aim at computing the nonconservative
forces on a binary system of two-level atoms, paying special
attention to the case of identical atoms. We will show that they
contain components orthogonal to the interatomic axis which
might be accessible experimentally. We will estimate the spa-
tial displacement caused by the nonconservative dipole forces
on a binary system of hydrogen atoms. In addition, as for the
case of conservative vdW forces when the system is asymmet-
rically excited, say, for instance, when only one of the atoms
is initially excited, we will show that nonconservative forces
are nonreciprocal, which results in a net nonconservative force
upon the two-atom system—see Fig. 1.

The article is organized as follows. In Sec. II we ex-
plain the formalism of our Hamiltonian approach. In Sec. III
we perform the computation of the nonconservative forces
between two dissimilar two-level atoms, one of which is
suddenly excited. The identical atoms limit is considered in
Sec. IV in the weak-interaction regime. The case of Dicke
states is addressed too. In Sec. V we estimate the displace-
ment caused on an excited binary system of hydrogen atoms
by the orthogonal components of the nonconservative forces.
The conclusions are summarized in Sec. VI together with a
discussion.

FIG. 1. Pictorial representation of the action of the orthogonal
components of the nonconservative forces upon a binary atomic
system 〈Fnc

A,B〉⊥, which cause the displacements of the atoms in a di-
rection orthogonal to the interatomic axis S⊥

A,B. For an asymmetrically
excited system, a net force emerges 〈Fnc

A + Fnc
B 〉⊥.

II. FUNDAMENTALS OF THE APPROACH

Let us take a system of two two-level atoms A and B,
located a distance R apart. In the first place, let us consider
dissimilar atoms with resonance frequencies ωA and ωB, de-
tuning �AB = ωA − ωB, natural linewidths �A and �B with the
excited level of atom B being n-fold degenerate. Since we are
ultimately interested in the identical atoms limit, |�AB| � �A,
�A → �B, atoms are assumed to be suddenly excited with an
external field of strength � � |�AB|. Thus, when only one
of the atoms is excited, say atom A, the state of the system
at time 0 will be |�(0)〉 = |A+〉 ⊗ |B−〉 ⊗ |0γ 〉, where |A+〉 is
the excited state of atom A, |(A, B)−〉 denote the ground states
of the atoms A and B, respectively, |0γ 〉 is the EM vacuum
state, and the states of the n-fold degenerate excited state of
atom B will be denoted by {|b〉}. When the excitation is delo-
calized between the two atoms we will restrict ourselves to the
symmetric (+) and antisymmetric (−) Dicke states, in which
case |�(0)〉 takes the form |�±(0)〉 = [|A+〉 ⊗ |B−〉 ± |A−〉 ⊗
|B+〉] ⊗ |0γ 〉/√2, respectively. At time T > 0 the state of
the two-atom-EM field system reads |�(T )〉 = U (T )|�(0)〉,
where U (T ) denotes the time propagator in the Schrödinger
representation,

U (T ) = T − exp

{
−ih̄−1

∫ T

0
dt H

}
,

H = T + HA + HB + HEM + W. (1)

In this equation T = mA|ṘA|2/2 + mB|ṘB|2/2 is the kinetic
energy of the center of mass of the atomic system with mA,B

being the atomic masses and RA,B being the position vectors
of the centers of mass of each atom. HA + HB is the free
Hamiltonian of the internal atomic states, h̄ωA|A+〉〈A+| +∑

b h̄ωB|b〉〈b|, and the Hamiltonian of the free EM field is
HEM = ∑

k,p h̄ω(a†
k,pak,p + 1/2), where ω = ck is the photon

frequency, and the operators a†
k,p and ak,p are the creation

and annihilation operators of photons with momentum h̄k
and polarization index p, respectively. Finally, the interac-
tion Hamiltonian in the electric dipole approximation reads
W = WA + WB with

WA,B ≈ −dA,B · E(RA,B). (2)

In this equation the electric dipole operators are de-
noted by dA,B, and E(RA,B) and B(RA,B) are the quan-
tum electric and magnetic-field operators in Schrödinger’s
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representation, respectively. In terms of the EM vector po-
tential, in the Coulomb gauge ∇ · A(r, t ) = 0, the electric-
and magnetic-fields E(RA,B) = −∂t A(RA,B, t )|t=0, B(RA,B) =
∇A,B ∧ A(RA,B)|t=0 can be written as sums over normal
modes as [12,16]

E(RA,B) =
∑

k

[E(−)
k (RA,B) + E(+)

k (RA,B)]

= i
∑
k,p

√
h̄ck

2Vε0
[εpak,peik·RA,B − ε∗

pa†
k,pe−ik·RA,B ],

B(RA,B) =
∑

k

[B(−)
k (RA,B) + B(+)

k (RA,B)]

= i
∑
k,p

√
h̄

2ckVε0

× k ∧ [εpak,peik·RA,B − ε∗
pa†

k,pe−ik·RA,B ],

where V is a generic volume and E(∓)
k , B(∓)

k denote the
annihilation and creation electric- and magnetic-field oper-
ators of photons of momentum h̄k and polarization vector
εp, respectively. Strictly speaking, W includes and additional
term in the electric dipole approximation which is referred
to as a Röntgen term [32,33]. As argued in Ref. [3], that
term is negligible since its contribution to Eq. (1) con-
tains terms of orders ṘA,B/c and dA,B · E(RA,B)/mA,B smaller
than the contributions of that in Eq. (2) with mA,B being
the atomic masses [34]. Next, considering W as a per-
turbation to the free Hamiltonians, the unperturbed time
propagator for atom and free photon states is U0(t ) =
exp [−ih̄−1(T + HA + HB + HEM)t]. In terms of W and U0,
U (T ) admits an expansion in powers of W which can be
developed out of its time-ordered exponential expression,

U (T ) = U0(T )T − exp
∫ T

0
(−i/h̄)U†

0 (t )WU0(t )dt, (3)

which can be written as U (T ) = U0(T ) + ∑∞
n=1 δU (n)(T )

with δU (n) being the term of order W n. The system possesses
a conserved total momentum, K = PA + PB + Pγ

⊥—with PA,B

and Pγ

⊥ = ∑
k,p h̄k a†

k,pak,p being the canonical conjugate
momentum of each atom and the transverse EM momentum,
respectively, which satisfies [H, K] = 0 [9,29,31]. Further-
more, if the charges {qi} within the atoms are considered
individually at positions {ri}, the total canonical conjugate
momentum can be written as

PA + PB = mAṘA + mBṘB +
∑

i

qiA(ri ), (4)

where the first two terms are the kinetic momenta of the
centers of mass of each atom. As for the momentum within
the summation symbol, once the Coulomb gauge is taken and
A(r) becomes fully transverse A(r) = A⊥(r), it corresponds
to the longitudinal EM momentum [9,29] Pγ

‖ = ∑
i qiA⊥(ri ),

which is manifestly gauge invariant. Hence, it can be writ-
ten in terms of the Coulomb electric field and the magnetic
field generated by the internal motion of the atomic charges,
Pγ

‖ = ∫
d3r ECoul(r) ∧ B(r) [9,35]. Furthermore, a multipole

expansion allows to express Pγ

‖ in the electric dipole approxi-

mation as [32,33]

Pγ

‖ � −dA ∧ B(RA) − dB ∧ B(RB). (5)

Following Refs. [3,27], the electric dipole force on each
atom is computed applying the time derivative to the
expectation value of the kinetic momenta of the cen-
ters of mass of each atom. Writing the latter in terms
of the canonical conjugate momenta and the longitudinal
EM momentum, in the electric dipole approximation, we
arrive at

〈FA,B〉 = ∂T 〈mA,BṘA,B〉
= −ih̄∂T 〈�(0)|U†(T )∇A,BU (T )|�(0)〉

+ ∂T 〈�(0)|U†(T )dA,B ∧ B(RA,B)U (T )|�(0)〉
= −〈∇A,BWA,B〉 + ∂T 〈dA,B ∧ B(RA,B)〉. (6)

The first term on the right-hand side of the last equality corre-
sponds to the conservative vdW forces along the interatomic
axis, already computed in Ref. [28]. As advanced in the
Introduction, the second term corresponds to the nonconserva-
tive forces we are interested in 〈Fnc

A,B〉 = ∂T 〈dA,B ∧ B(RA,B)〉,
which equal the time derivatives of the components of the

FIG. 2. Diagrammatic representation of the dominant processes
which contribute to A(a) 〈Fnc

A,B〉 and B(a) 〈Fnc
A,B〉. Solid straight lines

stand for propagators of atomic states, whereas wavy lines stand for
photon propagators. Atomic and photon states are indicated explic-
itly. The atoms A and B are separated by a distance R along the
horizontal direction, whereas time runs along the vertical. The big
circles in black and gray stand for the insertion of the Schrödinger
operators dA,B ∧ B(RA,B), respectively, whose expectation values are
computed. Each diagram contributes with two terms, one from each
of the operators inserted. They are sandwiched between two time
propagators, U (T ) and U †(T ) (depicted by vertical arrows), which
evolve the initial-state |�(0)〉 towards the observation time at which
dA,B ∧ B(RA,B) apply.
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FIG. 3. Graphical representation of the spatial behavior of the
nonconservative forces in the identical-atom limit according to
Eq. (10). The solid line in red represents Tr{〈Fnc

A 〉 · α}, whereas the
dashed line in blue is for Tr{〈Fnc

B 〉 · α}. Both curves are normalized to

N = k6
0 |μ|4(1−�0T )e−�0T

80π2ε2
0 h̄c

, and transition dipole moments are considered

isotropic.

longitudinal EM momentum with opposite signs. It is worth
noting at this point that nonconservative forces associated to

the time variation of the longitudinal EM momentum have
been already found in chiral systems subject to the adiabatic
increasing of a uniform magnetic field [35,36].

III. NONCONSERVATIVE FORCES ON A BINARY SYSTEM
OF DISSIMILAR ATOMS

As explained in the previous section, let us consider that
one of the atoms, say A, is excited suddenly at the initial
time. A perturbative development of Eq. (6) shows that, up to
terms involving two-photon exchange processes, 12 diagrams
contribute to 〈Fnc

A 〉 and 〈Fnc
B 〉 for the interaction between two-

level atoms. These are depicted diagrammatically in Fig. 7 in
Appendix A. The contributions of each process to 〈Fnc

A 〉 and
〈Fnc

B 〉 are analogous to those of the vdW forces computed in
Ref. [28], but for the replacement of the operators −∇A,BWA,B

with ∂T dA,B ∧ B(RA,B) acting upon one of the exchanged
photons.

For |�AB| � ωA,B, diagrams A(a) and B(a) of Fig. 2 ren-
der the leading contribution to the forces. In Appendix A
we illustrate their calculation with the detailed reading of
the contribution of diagram A(a) to 〈Fnc

A 〉. Operating in an
analogous fashion with the term derived from the diagram
B(a) for 〈Fnc

B 〉, upon integration in the momenta of the virtual
photons k and k′ in the complex plane, we arrive at (see
Fig. 3).

〈
Fnc

A

〉 �
∑

b

{
2ω3

A�Ae−�AT

c4ε2
0 h̄�AB

[μA ∧ ∇ ∧ ReG(kAR) · μbμb · Im G(kAR) · μA + μA ∧ ∇ ∧ Im G(kAR) · μbμb · ReG(kAR) · μA]

− ω3
Be−(�A+�b)T/2

c4ε2
0 h̄

[
2 sin(�ABT ) + �A + �b

�AB
cos(�ABT )

]
[μA ∧ ∇ ∧ ReG(kBR) · μbμb · Im G(kBR) · μA

+μA ∧ ∇ ∧ Im G(kBR) · μbμb · ReG(kBR) · μA] + ω3
Be−(�A+�b)T/2

c4ε2
0 h̄

[
2 cos(�ABT ) − �A + �b

�AB
sin(�ABT )

]

× [μA ∧ ∇ ∧ ReG(kBR) · μbμb · ReG(kBR) · μA − μA ∧ ∇ ∧ Im G(kBR) · μbμb · Im G(kBR) · μA]

}
, (7)

〈
Fnc

B

〉 �
∑

b

{
2ω3

A�Ae−�AT

c4ε2
0 h̄�AB

[μb ∧ ∇ ∧ ReG(kAR) · μAμb · Im G(kAR) · μA − μb ∧ ∇ ∧ Im G(kAR) · μAμb · ReG(kAR) · μA]

− ωAω2
Be−(�A+�b)T/2

c4ε2
0 h̄

[
2 sin(�ABT ) + �A + �b

�AB
cos(�ABT )

]
× [μb ∧ ∇ ∧ ReG(kAR) · μAμb · Im G(kBR) · μA − μb ∧ ∇ ∧ Im G(kAR) · μAμb · ReG(kBR) · μA]

+ ωAω2
Be−(�A+�b)T/2

c4ε2
0 h̄

[
2 cos(�ABT ) − �A + �b

�AB
sin(�ABT )

]

× [μb ∧ ∇ ∧ ReG(kAR) · μAμb · ReG(kBR) · μA + μb ∧ ∇ ∧ Im G(kAR) · μAμb · Im G(kBR) · μA]

}
. (8)

In these equations R = RA − RB, μA = 〈A−|dA|A+〉, μb = 〈B−|dB|b〉, and G(kr) is the dyadic Green’s function of the electric
field induced at r by an electric dipole of frequency ck at the origin,

G(kr) = k eikr

−4π
[α/kr + iβ/(kr)2 − β/(kr)3], (9)

with α = I − r̂r̂, β = I − 3r̂r̂, and r̂ being a unitary vector along r. Higher-order contributions of the rest of the diagrams in
Fig. 7, which contain both fully resonant and semiresonant terms, are given in detail in Appendix A, Eqs. (A3) and (A4).
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IV. NONCONSERVATIVE FORCES ON IDENTICAL ATOMS

We proceed to take the identical-atom limit upon Eqs. (7)
and (8) obtained in the previous section considering �A →
�b ≡ �0, ωA → ωB ≡ ω0, and �AB/�0 → 0. In order for the
computations of Sec. III to remain valid in this limit, the ob-
servation time T must be small in comparison to the time that
it takes for the excitation to be transferred from atom A to atom
B, i.e.,

∑
b k2

0μA · ReG(k0R) · μb � h̄ε0/T [16,28]. This is
the weak-interaction regime, which implies that the original
atomic states are quasistationary despite the degeneracy of
the system. In addition, as mentioned in the Introduction, the
distinct feature of the nonconservative forces is the presence
of components which are orthogonal to the interatomic axis.
These components are indeed proportional to the components
of the transition dipole moments which are perpendicular to
the axial vector R. We will denote them with a superscript
⊥, whereas those along R will be denoted with a superscript
‖. That is, μ

‖
A,b = μA,b · R̂, μ⊥

A,b = α · μA,b, where α is the
projector tensor defined below Eq. (9).

All in all, taking the identical-atom limit on Eqs. (7) and
(8), the dominant contributions to the nonconservative forces
on each atom read

〈
Fnc

A

〉 = 2ω4
0(1 − �0T )e−�0T

−c5ε2
0 h̄

∑
b

[μ‖
Aμ⊥

b − μ⊥
A μ⊥

b R̂]

×μA · [ReG(k0R)Im G(k0R)

+ Im G(k0R)ReG(k0R)] · μb,

〈Fnc
B 〉 = 2ω4

0(1 − �0T )e−�0T

c5ε2
0 h̄

∑
b

[μ‖
bμ

⊥
A − μ⊥

A μ⊥
b R̂]

×μA · [ReG(k0R)Im G(k0R)

− Im G(k0R)ReG(k0R)] · μb, (10)

where G(kr)E · r̂ is the dyadic Green’s tensor of the magnetic
field induced at r by an electric dipole of frequency ck at
the origin [3] with ∇ × G(kR) = ikG(kR)E · R̂, E being the
three-dimensional Levi-Civita tensor, and

G(kr) = −keikr

4π

(
1

kr
+ i

(kr)2

)
. (11)

Higher-order terms in 〈Fnc
A,B〉 are �0/ω0 and R/cT times

smaller—see Appendix B, Eqs. (B1) and (B2).
Next, substituting Eqs. (9) and (11) into Eq. (10) one ob-

tains that as with the conservative vdW forces, 〈Fnc
A 〉 oscillates

in space with wavelength π/k0,

〈
Fnc

A

〉 = k6
0 (1 − �0T )e−�0T

−8π2ε2
0 h̄c

∑
b

[μ‖
Aμ⊥

b − μ⊥
A μ⊥

b R̂]

×μA ·
[

α

(k0R)2

(
sin(2k0R) + cos(2k0R)

k0R

)
+ β

(k0R)3

×
(

cos(2k0R) − 2 sin(2k0R)

k0R
− cos(2k0R)

(k0R)2

)]
· μb,

(12)

whereas 〈Fnc
B 〉 decreases monotonically with R,

〈
Fnc

B

〉 = k6
0 (1 − �0T )e−�0T

8π2ε2
0 h̄c

∑
b

[
μ

‖
bμ

⊥
A − μ⊥

A μ⊥
b R̂

]

×μA ·
[

β − α

(k0R)3
+ β

(k0R)5

]
· μb. (13)

As advanced, in contrast to the conservative vdW forces,
the most remarkable feature of the nonconservative forces is
the presence of components which are perpendicular to the
interatomic axis. Also, as with the vdW forces, nonconserva-
tive forces possess reciprocal and nonreciprocal components
[26–28]. The former, ±〈Fnc

A − Fnc
B 〉/2, satisfy the ordinary

action reaction principle; whereas the latter amount to a net
force on the two-atom system, 〈Fnc

A + Fnc
B 〉,

〈
Fnc

A + Fnc
B

〉 = 2ω4
0(1 − �0T )e−�0T

−c5ε2
0 h̄

∑
b

[μ‖
Aμ⊥

b + μ
‖
bμ

⊥
A

− 2μ⊥
A μ⊥

b R̂]μA · Im G(k0R)ReG(k0R) · μb

+ [μ‖
Aμ⊥

b − μ
‖
bμ

⊥
A ]μA · ReG(k0R)Im G(k0R)

·μb, (14)

which oscillates in space as ∼sin (2k0R)/(k0R)2 in the re-
tarded regime.

The strength of the nonconservative forces in the perturba-
tive regime is of an order �0/ω0 weaker than that of the vdW
forces [28]. Hence, the components along the interatomic axis
are hardly distinguishable experimentally. On the contrary,
their orthogonal components, absent in the vdW forces, might
be observed. The orthogonal components of the reciprocal
forces generate a torque around the center of mass, whereas
the net force of Eq. (14) displaces the center of mass as
illustrated in Fig. 1.

Nonconservative forces on Dicke states

For the sake of completeness, let us compute the noncon-
servative forces upon the atoms in Dicke states. Under the
perturbative condition k0R � 1, it is possible to excite the sys-
tem suddenly and delocalizing the excitation symmetrically
between both atoms. Thus, the symmetric (+) and antisym-
metric (−) Dicke states read

|�±(0)〉 = [|A+〉 ⊗ |B−〉 ± |A−〉 ⊗ |B+〉] ⊗ |0γ 〉/
√

2. (15)

The collective interaction of atomic systems in Dicke states
with the environment has been studied in a number of
articles—-cf. Refs. [37,38]. In the present case, we concen-
trate on the internal forces. The most important difference
with respect to our previous calculation on nonsymmetrically
excited atoms is the absence of nonreciprocal forces. This
is a direct consquence of the parity symmetry of the Dicke
states. As for the existence of nonconservative forces, despite
being stationary states, resonant photons fly continuously be-
tween the two atoms of Dicke states. This not only induces
an additional variation on the phase of the two-atom wave
function, but also a time variation on the longitudinal momen-
tum associated with the transfer of the resonant photons. The
computation of the forces in either Dicke state involves now
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two kinds of diagrams. The first kind is made of diagrams of
order W 4, which are common to the symmetric and antisym-
metric states, and are equivalent to the diagrams of Fig. 7 for
nonsymmetrically excited atoms. Using the nomenclature of

the precedent section and denoting the order of the interaction
with a superscript within parentheses, the contribution of dia-
grams of order W 4 to the forces on each atom in either Dicke
state is

〈
F(4)±

A,B

〉 = ±(〈
Fnc

A

〉 − 〈
Fnc

B

〉)/
2

= ∓ω4
0(1 − �0T )e−�0T

c5ε2
0 h̄

∑
b

[
μ

‖
Aμ⊥

b + μ
‖
bμ

⊥
A − 2μ⊥

A μ⊥
b R̂

]
μA · ReG(k0R)Im G(k0R) · μb

+ [
μ

‖
Aμ⊥

b − μ
‖
bμ

⊥
A

]
μA · Im G(k0R)ReG(k0R) · μb, (16)

where the + sign on the right-hand side of the first equality applies to the force on atom A whereas the − sign applies to B,
respectively.

As for the contribution of the diagrams of the second kind, of order W 2, they are depicted in Fig. 4, and their contribution to
the nonconservative forces presents opposite signs for symmetric and antisymmetric states,

〈
F(2)±

A,B

〉 = (±) × (±)
ω2

0�0e−�0T

c3ε0

[
μ

‖
Aμ⊥

A − (μ⊥
A )2R̂

]
ReG(k0R). (17)

In this equation the first ± signs on the right-hand side of the equality correspond to symmetric and antisymmetric states, whereas
the second ± signs refer to atoms A and B, respectively. The same as for the forces of order W 4, the forces of order W 2 are also
reciprocal. Putting all the contributions together, we end up with the expressions,

〈F±
A 〉 = −〈F±

B 〉

= ∓k6
0 (1 − �0T )e−�0T

8π2ε2
0 h̄c

∑
b

{
μ

‖
Aμ⊥

b μA ·
[

α

(k0R)2

(
sin(2k0R) + cos(2k0R)

k0R

)

+ β

(k0R)3

(
cos(2k0R) − 2 sin(2k0R)

k0R
− cos(2k0R)

(k0R)2

)]
· μb + μ

‖
bμ

⊥
A μA ·

[
β − α

(k0R)3
+ β

(k0R)5

]
· μb − μ⊥

A μ⊥
b R̂μA

·
[

α

(k0R)2

(
sin(2k0R) + cos(2k0R) − 1

k0R

)
+ β

(k0R)3

(
1 + cos(2k0R) − 2 sin(2k0R)

k0R
− cos(2k0R) − 1

(k0R)2

)]
· μb

}

∓k3
0�0e−�0T

ε0c
[μ‖

Aμ⊥
A − (μ⊥

A )2R̂]

[
cos(k0R)

k0R
− sin(k0R)

(k0R)2

]
. (18)

For the sake of comparison, we represent in Fig. 5 the
strength of the nonconservative forces of order W 4 and order

FIG. 4. Diagrammatic representation of the two processes which
contribute to 〈F(2)±

A,B 〉. The big circles in black and gray stand for the
insertion of the Schrödinger operators dA,B ∧ B(RA,B), respectively,
whose expectation values are computed.

W 2 in terms of the interatomic distance. We observe that
whereas the forces of order W 2 are dominant in the far field,
those of order W 4 tend to diverge at short distances.

V. TRANSVERSE DISPLACEMENT OF A BINARY SYSTEM
OF HYDROGEN ATOMS

We finalize with the estimate of the displacement caused on
an excited binary system of hydrogen atoms by the orthogonal
components of the nonconservative forces. Without loss of
generality, let us consider that initially one of the atoms, say
atom A, is excited to the energy-level n = 2, l = 1 in state
|A+〉 = |2pz − i2py〉/

√
2, whereas atom B is in the ground-

state |1S〉. The atoms are placed a distance R apart along the ẑ
axis with R being large enough to be considered as constant all
along the observation time, in the weak interaction regime—
see Fig. 1. We are interested in the transverse displacement
of each atom, S⊥

A,B, say along the x̂ axis, in a time interval
slightly longer than a lifetime, �−1

0 � 1.6 ns. In the first place,
it is straightforward to integrate the time-dependent factors
of the accelerations induced by the nonconservative forces of
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FIG. 5. Graphical representation of the spatial behavior of the
components of nonconservative forces for identical atoms in Dicke
states. The solid line in red represents Tr{〈Fnc

A 〉 · α}, whereas the
dashed line in blue is for Tr{〈Fnc

B 〉 · α}, and the dotted line in green

is for Tr{〈F(2)+
A 〉 · α}. The curves are normalized to N = k6

0 |μ|4
80π2ε2

0 h̄c
for

�0T � 1, and transition dipole moments are considered isotropic.
The vertical dotted line signals the limit of the perturbative regime
k0R ∼ 1.

Eqs. (10)–(13) in a time-interval T � �−1
0 ,

∫ T
0 dt

∫ t
0 dt ′(1 −

�0t ′)e−�0t ′ ≈ �−2
0 . This leads to

S⊥
A = −2ω4

0

c5ε2
0 mH h̄�2

0

∑
b

μ
‖
Aμ⊥

b μA · [ReG(k0R)Im G(k0R)

+ Im G(k0R)ReG(k0R)] · μb, (19)

S⊥
B = 2ω4

0

c5ε2
0 mH h̄�2

0

∑
b

μ
‖
bμ

⊥
A μA · [ReG(k0R)Im G(k0R)

− Im G(k0R)ReG(k0R)] · μb, (20)

where mH is the mass of a hydrogen atom. Next, taking into
account the transition electric dipole moments,

μA = 〈1S|dA|2pz − i2py〉/
√

2

= e a027

35
(ẑ − x̂),∑

b

μb = 〈1S|dB|2px + 2py + 2pz〉

= e a0215/2

35
(ẑ − x̂ − ŷ), (21)

where a0 is Bohr’s radius and e is the electronic charge, and
replacing their numerical values in Eqs. (19) and (20), we end
up with

S⊥
A � 0.15 fm

(2v2 − 1) cos 2v − (2v − v3) sin 2v

v5
x̂,

S⊥
B � 0.3 fm

1 + v2

v5
x̂, v ≡ 2πR/λ0 (22)

for λ0 � 121.6 nm. In order for our computation to remain
perturbative, v � 1, meaning that the maximum values of the

FIG. 6. Graphical representation of the perpendicular displace-
ments along the x axis caused by the nonconservative dipole forces
on a binary system of Hydrogen atoms, with one of them, A, initially
excited to state |2pz − i2py〉/

√
2, as a function of the interatomic

distance R along the z axis. The solid line in red represents S⊥
A ,

whereas the dashed line in blue is for S⊥
B , according to Eq. (22).

perpendicular displacements are on the order of 1 fm in the
weak-interaction regime—see Fig. 6. Note also that for R �
50 nm both atoms move in the same direction, meaning that
the nonreciprocal components of the forces dominate there.

VI. CONCLUSIONS AND OUTLOOK

We have computed the nonconservative dipole forces be-
tween the two-level atoms of a suddenly excited binary
system. We have particularized to the identical-atom limit,
and we have considered the case of an only atom excited
and the case of the atoms in Dicke states. We have found
that the nonconservative forces are of an order �0/ω0 weaker
than the conservative vdW forces. Nonetheless, they possess
components orthogonal to the interatomic axis that might be
experimentally accessible. Our perturbative computation on a
binary system of hydrogen atoms with one of them initially
excited, in the weak-interaction regime, shows that the or-
thogonal displacement of the atoms is on the order of a Fermi
for interatomic distances in the middle-far field. Nevertheless,
the displacements are expected to be much greater for shorter
interatomic distances. In this respect, in order to facilitate
its observation, Rydberg atoms present themselves as good
candidates due to their strong resonant interactions at a short
distance [39–45]. To this end, it will be necessary to extend the
present calculations to the nonperturbative regime to account
for the multiple transfer of the excitation between the atoms.

As with the vdW forces, the leading terms of the non-
conservative forces are fully resonant. Whereas for atoms
symmetrically excited (e.g., those in Dicke states) forces are
reciprocal, when only one of the atoms is initially excited non-
reciprocal forces show up which generate a net displacement
of the two-atom system. On physical grounds, this can be
interpreted as a result of the breaking of parity symmetry. In
contrast to the net vdW force, the net nonconservative force is
not related to the directionality of spontaneous emission. This
is so because the net nonconservative force is not compen-
sated by the time variation of the momentum carried by the
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FIG. 7. Diagrammatic representation of the 12 processes which contribute to 〈Fnc
A 〉 and 〈Fnc

B 〉. The big circles in black and gray stand for
the insertion of the Schrödinger operators dA,B ∧ B(RA,B) whose expectation values are computed.

transverse photons which mediate the interaction [27], but by
the time variation of the longitudinal EM momentum which is
a function of the longitudinal electric field.
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APPENDIX A: COMPLETE EXPRESSION OF THE NONCONSERVIATIVE FORCES BETWEEN DISSIMILAR ATOMS

In this Appendix we write the complete expressions for 〈Fnc
A,B〉 for dissimilar atoms. The diagrammatic representation of the

processes contributing to these forces is given in Fig. 7.
In the first place, we illustrate the calculation with the detailed reading of the contribution of diagram A(a) to 〈Fnc

A 〉. It is

1

h̄3

∂

∂T

∫ ∞

0

Vk2 dk

(2π )3

∫ ∞

0

Vk′2 dk′

(2π )3

∫ 4π

0
d�

∫ 4π

0
d�′

{[
i〈A+, B−, 0γ |ei�∗

aT |A+, B−, 0γ 〉
∫ T

0
dt

∫ t

0
dt ′

∫ t ′

0
dt ′′

×
∑

b

〈A+, B−, 0γ |dA ∧ B(−)
k (RA)|A−, B−, γk〉e−iω(T −t )〈A−, B−, γk|dB · E(+)

k (RB)|A−, b, 0γ 〉e−i�b(t−t ′ )〈A−, b, 0γ |dB

· E(−)
k′ (RB)|A−, B−, γk′ 〉e−iω′(t ′−t ′′ )〈A−, B−, γk′ |dA · E(+)

k′ (RA)|A+, B−, 0γ 〉e−i�at ′′
]

+ [k ↔ k′]†

}
, (A1)

where |A+, B−, 0γ 〉 is the initial two-atom-EM-vacuum state, |γk〉 is a one-photon state of momentum k and frequency ω = ck,
V is the volume of quantization to be taken eventually to infinity, � and �′ are the solid angle variables and the complex time
exponentials are the result of the application of the free time-evolution operator U0(t ) between the interaction vertices with
�a = ωA − i�A/2 and �b = ωB − i�b/2 where the dissipative imaginary terms account for radiative emission in the Weisskopf-
Wigner approximation.

Integrating in time and solid angles the expression of Eq. (A1), one obtains

−c

h̄π2ε2
0

∂

∂T

∑
b

Re
∫ ∞

0
ik dk μA ∧ ∇ ∧ Im G(kR) · μb

∫ ∞

0
dk′k′2μB · Im G(k′R) · μA ei�∗

aT

[
e−i�aT − e−iωT

(ω′ − �a)(�b − �a)(ω − �a)

− e−i�bT − e−iωT

(ω′ − �a)(�b − �a)(ω − �b)
+ e−iω′T − e−iωT

(ω′ − �a)(ω′ − �b)(ω − ω′)
− e−i�bT − e−iωT

(ω′ − �a)(ω′ − �b)(ω − �b)

]
, (A2)
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where R = RA − RB, μA = 〈A−|dA|A+〉, μb = 〈B−|dB|b〉, and we have used the identities,

∫
d�k〈0γ |E(−)

k (r) E(+)
k (0)|0γ 〉 = −8π2h̄c

ε0
Im G(kr),

∫
d�k〈0γ |B(−)

k (r)E(+)
k (0)|0γ 〉 = −8π2ih̄

ε0k
∇ ∧ Im G(kr).

Operating in a similar manner with the rest of the diagrams, upon integration in the momenta of the virtual photons k and k′
on the complex plane, we arrive at

〈Fnc
A 〉 =

∑
b

{
2ω3

A�Ae−�AT

c4ε2
0 h̄�AB

[μA ∧ ∇ ∧ ReG(kAR) · μbμb · Im G(kAR) · μA + μA ∧ ∇ ∧ Im G(kAR) · μbμb · ReG(kAR) · μA]

− ω3
Be−(�A+�b)T/2

c4ε2
0 h̄

[
2 sin(�ABT ) + �A + �b

�AB
cos(�ABT )

]
[μA ∧ ∇ ∧ ReG(kBR) · μbμb · Im G(kBR) · μA

+μA ∧ ∇ ∧ Im G(kBR) · μbμb · ReG(kBR) · μA] + ω3
Be−(�A+�b)T/2

c4ε2
0 h̄

[
2 cos(�ABT ) − �A + �b

�AB
sin(�ABT )

]
× [μA ∧ ∇ ∧ ReG(kBR) · μbμb · ReG(kBR) · μA − μA ∧ ∇ ∧ Im G(kBR) · μbμb · Im G(kBR) · μA]

+ ωB(�A + �b)e−(�A+�b)T/2

c3ε2
0 h̄

[μA ∧ ∇ ∧ Im G(kBR) · μb cos(�ABT ) + μA ∧ ∇ ∧ ReG(kBR) · μb sin(�ABT )]

×
∫ ∞

0

dq

π

(q2 − kAkB)q2μA · G(iqR) · μb(
q2 + k2

A

)(
q2 + k2

B

) + 2ωB�ABe−(�A+�b)T/2

c3ε2
0 h̄

[μA ∧ ∇ ∧ Im G(kBR) · μb sin(�ABT )

−μA ∧ ∇ ∧ ReG(kBR) · μb cos(�ABT )]
∫ ∞

0

dq

π

(q2 − kAkB)q2μA · G(iqR) · μb

(q2 + k2
A)(q2 + k2

B)

}
, (A3)

〈
Fnc

B

〉 =
∑

b

{
2ω3

A�Ae−�AT

c4ε2
0 h̄�AB

[μb ∧ ∇ ∧ ReG(kAR) · μAμb · Im G(kAR) · μA − μb ∧ ∇ ∧ Im G(kAR) · μAμb · ReG(kAR) · μA]

− ωAω2
Be−(�A+�b)T/2

c4ε2
0 h̄

[
2 sin(�ABT ) + �A + �b

�AB
cos(�ABT )

]
[μb ∧ ∇ ∧ ReG(kAR) · μAμb · Im G(kBR) · μA

−μb ∧ ∇ ∧ Im G(kAR) · μAμb · ReG(kBR) · μA] + ωAω2
Be−(�A+�b)T/2

c4ε2
0 h̄

[
2 cos(�ABT ) − �A + �b

�AB
sin(�ABT )

]
× [μb ∧ ∇ ∧ ReG(kAR) · μAμb · ReG(kBR) · μA + μb ∧ ∇ ∧ Im G(kAR) · μAμb · Im G(kBR) · μA]

− 2ω3
A�Ae−�AT

c4ε2
0 h̄(ωA + ωB)

[μb ∧ ∇ ∧ ReG(kAR) · μAμb · (kAR) · μA − μb ∧ ∇ ∧ Im G(kAR) · μAμb · ReG(kAR) · μA]

− ωA(�A + �b)e−(�A+�b)T/2

c3ε2
0 h̄

[μb ∧ ∇ ∧ Im G(kAR) · μA cos(�ABT ) − μb ∧ ∇ ∧ ReG(kAR) · μA sin(�ABT )]

×
∫ ∞

0

dq

π

(q2 − kAkB)q2μA · G(iqR) · μb

(q2 + k2
A)(q2 + k2

B)
− 2ωA�ABe−(�A+�b)T/2

c3ε2
0 h̄

[μb ∧ ∇ ∧ Im G(kAR) · μA sin(�ABT )

+μb ∧ ∇ ∧ ReG(kAR) · μA cos(�ABT )]
∫ ∞

0

dq

π

(q2 − kAkB)q2μA · G(iqR) · μb

(q2 + k2
A)(q2 + k2

B)

}
. (A4)

The time oscillating terms of frequency �AB arise from diagrams A(a) and B(a). As mentioned in Sec. III, they contain the
dominant contribution for |�AB| � ωA,B together with terms of an order �A,b/�AB smaller. In addition, the quasistationary
terms, of an order �A,b/ωA,B less, come from diagrams A(g) and B(g), and semiresonant terms arise from diagrams A(c) and
B(c) and A(d) and B(d). Fast oscillating spurious terms of frequency (ωA + ωB) which arise from diagrams A(k) and B(k) and
A(l) and B(l) are neglected. Note that, in contrast to the conservative vdW forces, there are no fully off-resonant components.

032805-9



J. SÁNCHEZ-CÁNOVAS AND M. DONAIRE PHYSICAL REVIEW A 106, 032805 (2022)

APPENDIX B: COMPLETE EXPRESSION OF THE NONCONSERVATIVE FORCES BETWEEN IDENTICAL ATOMS

In this Appendix we write the complete expressions for 〈Fnc
A,B〉 for identical atoms, i.e., taking the limit �A → �b ≡ �0,

ωA → ωB ≡ ω0, and �AB/�0 → 0 upon Eqs. (A3) and (A4),

〈
Fnc

A

〉 =
∑

b

{
2�0e−�0T

c4ε2
0 h̄

∂

∂ω
[ω3[μA ∧ ∇ ∧ ReG(kR) · μbμb · Im G(kR) · μA + μA ∧ ∇ ∧ Im G(kR) · μb

×μb · ReG(kR) · μA]]ω=ω0 + 2ω3
0(1 − �0T )e−�0T

c4ε2
0 h̄

[μA ∧ ∇ ∧ ReG(k0R) · μbμb · ReG(k0R) · μA − μA

∧∇ ∧ Im G(k0R) · μbμb · Im G(k0R) · μA] − 2ω2
0�0e−�0T

c4ε2
0 h̄

[μA ∧ ∇ ∧ ReG(k0R) · μbμb · Im G(k0R) · μA + μA ∧ ∇

∧ Im G(k0R) · μbμb · ReG(k0R) · μA]+2ω0�0e−�0T

c3ε2
0 h̄

μA ∧ ∇ ∧ Im G(k0R) · μb

∫ ∞

0

dq

π

(
q2−k2

0

)
q2μA · G(iqR) · μb(
q2 + k2

0

)2

}
,

(B1)

〈Fnc
B 〉 =

∑
b

{
2�0ω0e−�0T

c4ε2
0 h̄

[μb ∧ ∇ ∧ ReG(k0R) · μA
∂

∂ω
[ω2μb · Im G(kR) · μA]ω=ω0 + μb ∧ ∇ ∧ Im G(k0R)

·μA
∂

∂ω
[ω2μb · ReG(kR) · μA]ω=ω0 ] + 2ω3

0(1 − �0T )e−�0T

c4ε2
0 h̄

[μb ∧ ∇ ∧ ReG(k0R) · μAμb · ReG(k0R) · μA + μb

∧∇ ∧ Im G(k0R) · μAμb · Im G(k0R) · μA] − 2ω2
0�0e−�0T

c4ε2
0 h̄

[μb ∧ ∇ ∧ ReG(k0R) · μAμb · Im G(k0R) · μA − μb ∧ ∇

∧Im G(k0R) · μAμb · ReG(k0R) · μA] − 2ω0�0e−�0T

c3ε2
0 h̄

μb ∧ ∇ ∧ Im G(k0R) · μA

∫ ∞

0

dq

π

(q2−k2
0 )q2μA · G(iqR)·μb(

q2 + k2
0

)2

}
.

(B2)
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