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A B S T R A C T

In this work we investigate the confining properties of charged particles of a Dirac material in the plane subject
to an electrostatic potential well, that is, in an electric quantum dot. Our study focuses on the effect of mass
and angular momenta on such confining properties. To have a global picture of confinement, both bound and
resonance states are considered. The resonances will be examined by means of the Wigner time delay of the
scattering states, as well as through the complex eigenvalues of outgoing states in order to show that they are
physically meaningful. By tuning the potential intensity of the well, electron captures and atomic collapses are
observed for critical values. In these processes, the bound states of the discrete spectrum become resonances
of the continuous spectrum or vice versa. For massive charges, the atomic collapse phenomenon keeps the
number of bound levels in the quantum dot below a maximum value. In the massless case, the bound states
have zero energy and occur only for some discrete values of the potential depth, as is known. We also show
that although the intensity of the resonances for massive particles is not significantly influenced by angular
momenta, on the contrary, for massless particles they are quite sensitive to angular momenta, as it is the case
of graphene.
1. Introduction

It is well known that electric fields constitute a good tool for
confining relativistic massive charged particles in two or more spatial
dimensions (see a detailed discussion by R. Hall et al. [1] for three
dimensions), although in the case of two-dimensional massless particles
they are not so useful due to the strong Klein tunneling effect [2,3].
For this reason, to confine massless Dirac electrons in graphene, it
is much better to appeal to magnetic fields [4–8]. However, due to
its potential importance in technological applications, the electrical
confinement of massless particles has also been investigated in a recent
series of papers [9–18]. Note that since the origin of the transparency
of potentials for zero-mass particles in general comes from transverse
momenta, electric fields could still be useful, for example, in the study
of quantum wires, where the momentum is parallel to the wall of
the confining potential. Another case in which electric fields could
produce confinement is when the quantum dot has a symmetry, for
example radial, which allow for a well-defined angular momentum
quantum number corresponding to a motion parallel to the quan-
tum dot (there is a close connection between classical non-chaotic
trajectories, superintegrability and transparent potentials [10]).

∗ Corresponding author.
E-mail addresses: sengul.kuru@science.ankara.edu.tr (Ş. Kuru), jnegro@fta.uva.es (J. Negro), luismiguel.nieto.calzada@uva.es (L.M. Nieto),

sourrou@df.uba.ar (L. Sourrouille).

On the other hand, it is also worth considering massive particles
in two dimensions due to the introduction of new materials similar to
graphene, such as silicene, germanene, stanene, and phosphorene, quite
attractive from the point of view of topological insulators (see [19]
and references quoted therein), where the charges acquire an effective
mass from the spin–orbit interaction and the perpendicular electric
fields [20]. An important consequence of the confinement of massive
particles is that it allows to observe the phenomenon of atomic collapse,
which is possible but very difficult to experience in relativistic quantum
mechanics. However, inside Dirac materials this is more accessible (as
well as other relativistic effects, such as the above mentioned Klein
tunneling) due to the much lower Fermi velocity 𝑣𝐹 relative to the
speed of light 𝑐 [21]. This effect is shown in experiments that have
recently been designed under different configurations [22–25]. Atomic
collapses consist of the decay of states from the discrete spectrum of the
quantum dot to the negative energy continuum when the depth of the
well (or the charge of the atom) increases sufficiently. These relativistic
effects confirm the Dirac behavior of quasi-particles in two-dimensional
Dirac materials.
vailable online 26 May 2022
386-9477/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.physe.2022.115312
Received 29 September 2021; Received in revised form 22 April 2022; Accepted 11
 May 2022

http://www.elsevier.com/locate/physe
http://www.elsevier.com/locate/physe
mailto:sengul.kuru@science.ankara.edu.tr
mailto:jnegro@fta.uva.es
mailto:luismiguel.nieto.calzada@uva.es
mailto:sourrou@df.uba.ar
https://doi.org/10.1016/j.physe.2022.115312
https://doi.org/10.1016/j.physe.2022.115312
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physe.2022.115312&domain=pdf


Physica E: Low-dimensional Systems and Nanostructures 142 (2022) 115312Ş. Kuru et al.

d
i
l
r
t
b
c
c
w
a
s
a
i
o
a
R
p
s
a
t
g
c
h
c
s
F
a

s
w
a
r
W
W
r
t
q
t
t
s

𝐻

I
t

𝛷

g

An important issue closely related to that of confinement is the
search for resonances, and indeed, the confinement problem in Dirac
materials must necessarily include both bound and resonance states. In
fact, we will show here how the bound states give rise to resonances
at each atomic collapse. However, so far only a few number of articles
have considered resonances or quasi-bound states in this context. For
instance, the works [9,11] are very close to our point of view when
trying to describe the relationship between resonances and bound states
in graphene, although both papers are limited to the massless case,
missing the genuine atomic collapse of massive charges. Throughout
this work, resonances will be reexamined in detail, for example by
showing the wave functions of the critical and supercritical states that
make the transition from resonance to bound states. The boundary
conditions of the complex eigenvalue problem will also be handled
very carefully, as well as the associated phase shift of scattering states
according to Levinson’s theorem [26].

In this context, it is worth to mention Refs. [23,27–31] which deal
with different aspects of the atomic collapse caused by some types of
impurities in graphene, which essentially consist either in a Coulomb
potential, the so called Dirac–Coulomb problem, or a constant potential
well obtained by a configuration of gate electrodes, as in the case of the
present article. The minimum charge or coupling constant 𝑔 which pro-
uce atomic collapse, is called ‘critical coupling’, 𝑔𝑐 , and its potential
s referred to as ‘critical potential’, 𝑉𝑐 . In this framework, in [27] the
ocal density of states (LDOS) is calculated, which is closely related to
esonances, showing the difference when the coupling is greater or less
han the critical value, while [28] focuses on the polarization produced
y the Dirac–Coulomb impurity and the drastic difference when the
oupling constant passes the critical value 𝑔𝑐 , the polarization being
alculated with the help of the phase shifts of analytic solutions. Other
orks [29,30] discuss the instability due to a Coulomb impurity center
nd calculate formulas for the critical potential values where collapses
tart. In particular, [30] is a wide work that includes a study of massive
nd massless fermions in cylindrical wells (as in the present work) and
n Coulomb potentials too. The influence of a constant magnetic field
n the atomic collapse is also considered in [30] (see also [23]), where
wide variety of applications related to the critical coupling are given.
emark that in the present work we have focused our attention on very
articular aspects: the evolution of bound into resonance states and
ome properties involved in this process. For example, we will provide
series of graphs that show the behavior of a set of bound states that

ransform into resonances as the depth of the well is changing, for
apped and gapless fermions, which give us a global view of charge
onfinement in a two-dimensional (2D) Dirac material. Resonances
ave been characterized in two ways: by means of outgoing boundary
onditions and by the Wigner time delays. The phase shift for scattering
tates has been computed showing how they fit to the resonances.
inally, in relation to Coulomb impurities, wee should mention the
rticle [31] where the singularity of the potential of 1∕𝑟 is analyzed

and the scattering of gapped and gapless fermions is studied, applying
it to transport in graphene.

From a certain point of view, resonances are characterized by com-
plex energy values 𝐸 = 𝐸𝑅 + 𝑖𝐸𝐼 , where the imaginary part 𝐸𝐼 is very
mall. Then, if the energy of a wave packet incident on the potential
ell (or barrier) is close from 𝐸𝑅, the outgoing wave packet can have
prolonged stay in the region where the potential is significant, giving

ise to a quasi-bound state [11]. The delay time can be calculated using
igner’s formula for the phase change in scattering states [32–34].
e should mention that the phase change in a scattering resonance is

elated to the bound states in each angular momentum channel, due
o an extension of Levinson’s theorem to the domain of relativistic
uantum mechanics on the plane [1,26]. Therefore, in this way the
ight link of resonances and bound states is also shown. In fact, when
he imaginary part 𝐸𝐼 is zero, the value 𝐸𝑅 can correspond to a bound
2

tate (sometimes it may be associated with what is called antibound
state [33]). In the massless case, the bound states are characterized by
𝐸𝑅 = 𝐸𝐼 = 0.

The main objective of this work is to draw a number of conclu-
sions about the role of mass and angular momenta in the problem of
confinement in electric dots. We will change the intensity in the dot
(this can be done by varying the potential of the gates that produce
the potential (or using the tip of an STM microscope [22])) and show
its effect on resonances and bound states. As we will see, resonances
manifest a relativistic behavior, particularly at the critical values of the
potential depth they will lead to collapses and the associated scattering
phases will satisfy Levinson’s theorem near the capture of a bound state.
The most striking difference that we will find between the massive
and massless cases is that increasing the depth of the well for massless
particles is very sensitive to angular momentum, while for the massive
case, the value of the angular momenta affects the intensity of the
resonances very slightly.

The structure of the paper is as follows. Section 2 begins with
the study of the bound states, resonance and dispersion of massive
particles, showing the effect that increasing the depth of the well has
on these states. Section 3 addresses the same problems for massless
particles, while the final section is dedicated to presenting the main
conclusions.

2. Bound states and resonances for massive two-dimensional
Dirac particles

We will start with the 2D Dirac Hamiltonian on a Dirac planar
material which describes the interaction of particles of mass 𝑚 and
charge 𝑒 with an external electrostatic potential 𝑉 (𝐱):

𝐻 = 𝑣𝐹 𝝈 ⋅ 𝐩 + 𝑚𝑣2𝐹 𝜎𝑧 + 𝑒 𝑉 (𝐱), 𝐱 = (𝑥, 𝑦) ∈ R2. (2.1)

Here, 𝝈 = (𝜎𝑥, 𝜎𝑦) and 𝜎𝑧 are Pauli matrices, 𝐩 = (𝑝𝑥, 𝑝𝑦) = −𝑖ℏ(𝜕𝑥, 𝜕𝑦)
the momentum operators, and 𝑣𝐹 is the Fermi velocity of the material.
To be more specific, we will consider a potential with radial symmetry
𝑉 (𝐱) = 𝑉 (𝑟), so naturally from now on we will use polar coordinates
(𝑟, 𝜃) to separate variables in the time-independent Dirac equation. We
assume that the dynamics takes place on a much larger scale than the
graphene lattice constant, therefore we will not consider inter-valley
scattering between the Dirac points and will restrict ourselves to a
single Dirac point, 𝐾 [11,35].

In the case we are dealing with, the Hamiltonian commutes with
the total angular momentum operator defined as

𝐽𝑧 = 𝐿𝑧 + 𝛴, with 𝐿𝑧 = −𝑖ℏ𝜕𝜃 and 𝛴 = 1
2
ℏ𝜎𝑧. (2.2)

Thus, we can look for the eigenfunctions 𝛷(𝑟, 𝜃) of 𝐻 that at the same
time are eigenfunctions of 𝐽𝑧,

𝛷(𝑟, 𝜃) = 𝐸𝛷(𝑟, 𝜃), 𝐽𝑧𝛷(𝑟, 𝜃) = 𝑗ℏ𝛷(𝑟, 𝜃). (2.3)

t is quite easy to show that the second of the equations in (2.3) leads
o eigenfunctions with the following spinor form

(𝑟, 𝜃) =

(

𝜙1(𝑟)𝑒
𝑖(𝑗− 1

2 )𝜃

𝑖𝜙2(𝑟)𝑒
𝑖(𝑗+ 1

2 )𝜃

)

, 𝑗 = 𝓁 + 1
2
, 𝓁 = 0,±1,… (2.4)

where 𝓁 = 𝑗 − 1∕2 and 𝓁 + 1 = 𝑗 + 1∕2 are, respectively, the integer
orbital angular momentum of the upper and lower component of the
spinor, and the imaginary unit in the second component is introduced
for convenience.

After replacing (2.4) in the eigenvalue equation for 𝐻 in (2.3), we
et a reduced equation in the variable 𝑟:
(

0 −𝑖𝐴−

𝑖𝐴+ 0

)(

𝜙1(𝑟)
𝑖𝜙2(𝑟)

)

=
(

𝐸−𝑒𝑉 (𝑟)−𝑚𝑣2𝐹 0
0 𝐸−𝑒𝑉 (𝑟)+𝑚𝑣2𝐹

)(

𝜙1(𝑟)
𝑖𝜙2(𝑟)

)

, (2.5)
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where the operators 𝐴± are given by

− = ℏ𝑣𝐹

(

𝜕𝑟 +
𝓁 + 1
𝑟

)

, 𝐴+ = ℏ𝑣𝐹

(

−𝜕𝑟 +
𝓁
𝑟

)

, 𝓁 ∈ Z. (2.6)

In this work we will choose the electric potential to be a typical
two-dimensional radial well of the form

𝑉 (𝑟) =
{

𝑉0, 𝑟 < 𝑅,
0, 𝑟 > 𝑅.

(2.7)

We redefine variables in natural units for this problem as

𝜌 = 𝑟
𝑅
, 𝜀 = 𝐸𝑅

ℏ𝑣𝐹
, 𝑣 =

𝑒𝑉0𝑅
ℏ𝑣𝐹

< 0, 𝜇 =
𝑚𝑣𝐹𝑅
ℏ

, (2.8)

where we will assume that the effective potential inside the dot (𝑣)
s constant and negative unless otherwise stated (for 𝑣 > 0 we would
ave the problem of a potential barrier instead of a well), and the
otential outside the dot is zero. We could have used another shape
or the potential well, but we preferred the option mentioned above
o be able to compare the results here obtained with other relevant
eferences available in the literature [9–11,16].

With the new notation introduced in (2.8), Eqs. (2.5)–(2.6) become
he following coupled differential system

⎧

⎪

⎨

⎪

⎩

𝜙′
2,𝛼(𝜌) +

𝓁 + 1
𝜌

𝜙2,𝛼(𝜌) = 𝜀−𝛼 𝜙1,𝛼(𝜌),

−𝜙′
1,𝛼(𝜌) +

𝓁
𝜌
𝜙1,𝛼(𝜌) = 𝜀+𝛼 𝜙2,𝛼(𝜌),

(2.9)

where the subindex 𝛼 can be either 𝛼 = i in the inner region of the dot
(0 ≤ 𝜌 < 1), or 𝛼 = o in the outer region of the dot (𝜌 > 1), being

𝜀±i = 𝜀 − 𝑣 ± 𝜇, 0 ≤ 𝜌 < 1, 𝜀±o = 𝜀 ± 𝜇, 𝜌 > 1. (2.10)

Next, we will solve this set of equations in these two regions. Note
that both the potential 𝑣 and the energy parameters 𝜀±𝛼 are constant,
although different, in each of these two intervals. The connection be-
tween the solutions for each of the two regions is obtained by imposing
the continuity of the components 𝜙1,𝛼 and 𝜙2,𝛼 at the point 𝜌 = 1. The
equation for 𝜙1,𝛼 , obtained from (2.9), is

𝜌2𝜙′′
1,𝛼(𝜌) + 𝜌𝜙

′
1,𝛼(𝜌) + (𝑝2𝛼 𝜌

2 − 𝓁2)𝜙1,𝛼(𝜌) = 0, (2.11)

where the ‘momentum’ 𝑝 in each interval 𝛼 = i, o is

𝑝i =
√

(𝜀 − 𝑣)2 − 𝜇2, 0 ≤ 𝜌 < 1, 𝑝o =
√

𝜀2 − 𝜇2, 𝜌 > 1, (2.12)

where 𝑝i and 𝑝o are valid, respectively, in the inner and outer regions.
This means that, as long as 𝑝i and 𝑝o are nonzero (later we will
discuss what happens when one of them is zero), the general solution
within each interval can be expressed either as a linear combination
of Bessel functions of the first and second kind (𝐽𝓁 , 𝑌𝓁) [36], or as a
linear combination of Hankel functions of the first and second kind
(𝐻 (1)

𝓁 ,𝐻 (2)
𝓁 ), in the form

𝜙1,𝛼(𝜌) = 𝑎𝛼 𝐽𝓁(𝑝𝛼𝜌)+𝑏𝛼 𝑌𝓁(𝑝𝛼𝜌) = �̃�𝛼𝐻
(1)
𝓁 (𝑝𝛼𝜌)+�̃�𝛼𝐻

(2)
𝓁 (𝑝𝛼𝜌), 𝛼 = i, o.

(2.13)

The arbitrary constant coefficients 𝑎i, 𝑏i … are used for the inner region,
while 𝑎o, 𝑏o,… are used for the outer region. The second radial function
𝜙2,𝛼 of the spinor can be obtained from the previous expression for 𝜙1,𝛼
and the second equation of (2.9). Using well-known properties of the
Bessel and Hankel functions [36], we get

𝜙2,𝛼(𝜌) =
𝑝𝛼
𝜀+𝛼

[

𝑎𝛼 𝐽𝓁+1(𝑝𝛼𝜌) + 𝑏𝛼 𝑌𝓁+1(𝑝𝛼𝜌)
]

=
𝑝𝛼
𝜀+𝛼

[

�̃�𝛼𝐻
(1)
𝓁+1(𝑝𝛼𝜌) + �̃�𝛼𝐻

(2)
𝓁+1(𝑝𝛼𝜌)

]

, 𝛼 = i, o. (2.14)

Now, we are going to use this equation in several situations of physical
interest: when there are bound states, resonances or the so-called critical
states. We will assume below that 𝓁 ≥ 0, since for negative values,
although it is not an equivalent situation, the results are similar.
3

a

2.1. Bound states

To characterize the bound states in the problem we are analyz-
ing, the correct solutions are chosen using the appropriate boundary
conditions at the origin 𝜌 = 0, at the junction point 𝜌 = 1, and at 𝜌→ ∞.

• In the inner region, 0 ≤ 𝜌 < 1, the Bessel functions that are
bounded at the origin are only those of the first kind (even in
the case where 𝑝i be a complex number), so, according to (2.4),
in this interval the solutions must have the form

𝛷i(𝜌, 𝜃) = 𝑎i
⎛

⎜

⎜

⎝

𝐽𝓁(𝑝i𝜌) 𝑒𝑖𝓁𝜃

𝑖
𝑝i
𝜀+i
𝐽𝓁+1(𝑝i𝜌) 𝑒𝑖(𝓁+1)𝜃

⎞

⎟

⎟

⎠

, 𝓁 ∈ Z. (2.15)

The special value 𝑝i = 0 ⟹ 𝜀 − 𝑣 = ±𝜇, gives no additional
solution.

• In the outer region, 𝜌 > 1, the appropriate solution to study bound
states is the Hankel function of the first kind, since its asymptotic
behavior when 𝜌→ ∞ is

𝐻 (1)
𝓁 (𝑝o𝜌) ∼

√

2
𝜋𝑝o𝜌

𝑒𝑖(𝑝o𝜌−𝓁𝜋∕2−𝜋∕4). (2.16)

Therefore, from (2.16) it is clear that bound states will appear only if
𝑝o =

√

𝜀2 − 𝜇2 is an imaginary number, 𝑝o = 𝑖 Im(𝑝o), with Im(𝑝o) > 0
or possibly zero, see below), that is
2 < 𝜇2 ⟹ −𝜇 < 𝜀 < 𝜇, (2.17)

here 𝜀 and 𝜇 are the energy and the mass in the units defined in
(2.8). In other words, relativistic bound states in electric fields can only
take place for a range of energy which is bounded from below/above
by minus/plus the particle mass. The special cases 𝜀 = ±𝜇 where
𝑝o = 0 are called critical points and will be studied separately in the next
subsection. Thus, the wave function of the bound states in the outer
region must take the form

𝛷o(𝜌, 𝜃) = �̃�o
⎛

⎜

⎜

⎝

𝐻 (1)
𝓁 (𝑝o𝜌) 𝑒𝑖𝓁𝜃

𝑖
𝑝o
𝜀+o
𝐻 (1)

𝓁+1(𝑝o𝜌) 𝑒
𝑖(𝓁+1)𝜃

⎞

⎟

⎟

⎠

, 𝓁 ∈ Z. (2.18)

Finally, the eigenvalues of the bound states are obtained by imposing
the condition of continuity of the two spinor functions (2.15) and (2.18)
at the point 𝜌 = 1, obtaining the following secular equation:

𝜀+i 𝐽𝓁(𝑝i) 𝑝o𝐻
(1)
𝓁+1(𝑝o) − 𝜀

+
o 𝐻

(1)
𝓁 (𝑝o) 𝑝i 𝐽𝓁+1(𝑝i) = 0. (2.19)

nce fixed 𝑣 and 𝜇, the solutions corresponding to the discrete values
f the energy 𝜀 that arise from the secular Eq. (2.19) will have their
orresponding eigenfunctions 𝛷(𝜌, 𝜃) constructed from the matching of
2.15) and (2.18).

.2. Critical and supercritical states

The critical points are the eigenvalues corresponding to bound (or
uasi-bound) states such that 𝑝o = 0 or 𝜀2 = 𝜇2, that is, they correspond
o the maximum 𝜀 = 𝜇 or minimum 𝜀 = −𝜇 possible eigenvalues of the
nergy (the latter case is often called supercritical). Critical eigenvalues
an only be reached for some special values of the potential depth 𝑣.
he associated eigenstates are called critical and supercritical states. In
ther words, we must look for the possible values of the potential depth
, so that there are states with eigenvalue 𝜀 = 𝜇 or 𝜀 = −𝜇 and with a
ounded behavior such as 𝜌→ 0 and 𝜌→ ∞, corresponding to a square
ntegrable function (or at least bounded for quasi-bound states).

.2.1. Critical states: 𝜀 = 𝜇
Inside the potential well those states are described by Bessel func-

ions, as in (2.15), with the following values of the parameters that
+

√

𝑣2 − 2𝑣𝜇 > 0.
ppear there: 𝜀i = 2𝜇 − 𝑣 > 0 and 𝑝i =
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In the outer region, taking into account that 𝜀+o = 2𝜇 and 𝜀−o = 0, the
omponents 𝜙1,o(𝜌) and 𝜙2,o(𝜌) satisfy this particular form of Eqs. (2.9)

⎧

⎪

⎨

⎪

⎩

𝜙′
2,o(𝜌) +

𝓁 + 1
𝜌

𝜙2,o(𝜌) = 0,

−𝜙′
1,o(𝜌) +

𝓁
𝜌
𝜙1,o(𝜌) = 2𝜇𝜙2,o(𝜌) .

(2.20)

Then, 𝜙1,o satisfies an Euler equation (see the limit 𝑝o → 0 of (2.11))
hose acceptable solutions give the outer spinor

o(𝜌, 𝜃) = 𝑎o
⎛

⎜

⎜

⎝

𝜌−𝓁 𝑒𝑖𝓁𝜃

𝑖𝓁
𝜇
𝜌−(𝓁+1) 𝑒𝑖(𝓁+1)𝜃

⎞

⎟

⎟

⎠

, 𝓁 = 1, 2,… (2.21)

Note that in the case 𝓁 = 0 the critical state is not really a bound
state, but simply a quasi-bound state: the wave function is not square
integrable, although it is bounded. For 𝓁 = 1 the wave function tends
to zero but it is not yet square integrable. For the following values
𝓁 = 2,… , the critical state wave functions, according to (2.21), satisfy
all the conditions to represent true bound states. These types of critical
state solutions will also be discussed in detail for the massless case of
the next section.

The matching condition of the solutions of the critical wave func-
tions (2.15) and (2.21) at 𝜌 = 1 produce the following secular equations:

𝓁
(

𝜇 +
√

𝜇2 + 𝑝2i

)

𝐽𝓁(𝑝i) = 𝜇𝑝i𝐽1+𝓁(𝑝i), 𝓁 = 0, 1, 2… (2.22)

Remember that the solutions 𝑝i(𝓁, 𝜇) of these transcendental equations
allow us to determine the well depth 𝑣, which will depend on the
parameters 𝓁 and 𝜇, as in the present case 𝑣 = 𝜇 −

√

𝜇2 + 𝑝2i .

2.2.2. Supercritical states: 𝜀 = −𝜇
Again, the eigenfunctions in the inner interval 0 ≤ 𝜌 < 1 are

Bessel functions of the first kind (2.15), with the following values of
the parameters that appear there: 𝜀+i = −𝑣 > 0 and 𝑝i =

√

𝑣2 + 2𝑣𝜇 > 0,
hile outside, for 𝜌 > 1, the components satisfy this particular form of
qs. (2.9)

⎧

⎪

⎨

⎪

⎩

𝜙′
2,o(𝜌) +

𝓁 + 1
𝜌

𝜙2,o(𝜌) = −2𝜇 𝜙1,o(𝜌),

−𝜙′
1,o(𝜌) +

𝓁
𝜌
𝜙1,o(𝜌) = 0.

(2.23)

Then, the solutions bounded in the region 𝜌 > 1 are

𝛷o(𝜌, 𝜃) = 𝑎o

(

0
𝑖𝜌−(𝓁+1)𝑒𝑖(𝓁+1)𝜃

)

, 𝓁 = 0, 1, 2,… (2.24)

Except the value 𝓁 = 0, which correspond to a quasi-bound state, the
rest, i.e. 𝓁 ≥ 1, lead to square-integrable wave functions. The matching
condition in the present situation gives rise to the following secular
equations:

𝐽𝓁(𝑝i) = 0, 𝓁 = 0, 1, 2,… (2.25)

which allow to determine the values of 𝑝i(𝓁, 𝜇), and therefore those of
𝑣 for each 𝓁, taking into account that in this case 𝑣 = −𝜇 −

√

𝜇2 + 𝑝2i .
Some examples of bound energy levels are given in Fig. 1 along with
critical and supercritical values. In these graphs we can see that for
𝓁 = 0 bound states appear for any (negative) value of the well depth
𝑣, however, for instance, the case 𝓁 = 2 bound states will only appear
or negative values of 𝑣 lower than 𝑣 = 𝜇 −

√

𝜇2 + 𝑝2i,1, where 𝑝i,1 is the
first strictly positive root of the transcendental Eq. (2.25) (𝑣 = −2.7558
in the case shown in Fig. 1). This fact is due to the centrifugal potential
caused by the orbital momentum 𝓁.

Note that from Fig. 1 we can see that for this particular value
of mass and for any negative value of 𝑣 there will be no more than
two bound states for each 𝓁. These two energy levels 𝜀𝑛, 𝜀𝑛+1 will
always keep in the range [−𝜇, 𝜇] determined by the mass, however the
corresponding wave functions 𝜓𝓁

𝑛 , 𝜓
𝓁
𝑛+1 will have as many zeros as the

corresponding to the excitation number 𝑛. Thus, the maximum number
4

of bound states is finite and it depends on the value of 𝜇, but they are
the highest excited levels.

The depth 𝑣 of the dot modulates the energy of these bound states
that belong to the interval [−𝜇, 𝜇]. If the potential depth 𝑣 is more
negative enough, the lowest bound state may plunge into the continu-
ous spectrum of antiparticles, giving rise to the phenomenon of atomic
collapse. This result is quite different from non-relativistic wells, which
can have any number of bound states simply by taking more negative
depths 𝑣 without any risk of leaking into the ‘negative sea’.

Another important remark is the almost linear dependence between
the energy 𝜀𝑛 of each bound level in the interval [−𝜇, 𝜇] and the depth
𝑣 of the well: 𝜀𝑛(𝑣) ≈ 𝛼𝑛𝑣 + 𝛽𝑛, where 𝛼𝑛, 𝛽𝑛 are constants for each
evel. This linear dependence is more pronounced for higher angular
omenta 𝓁, as shown in Fig. 1. In the asymptotic region |𝑣|≫ 𝜇, due to

he behavior of the Bessel functions, the slope 𝛼𝑛 of the levels becomes
ndependent of 𝑛, while the term 𝛽𝑛 will be proportional to 𝑛.

.3. Resonances and pure outgoing states

In a scattering process, a resonance occurs for a real energy 𝐸𝑟 > 𝜇
f an incoming wave packet state takes longer time to exit than it should
ithout the presence of the potential. That is, if it suffers a delay time
ithin the significant range of the potential. One way to measure these

esonances is by computing the phase shift 𝛿𝓁 of incoming and outgoing
aves [1,26], as will be done in the next subsection. The derivative of

his phase shift with respect to energy gives the so-called ‘‘Wigner time
elay’’ 𝜏𝓁 [32,33], indeed

𝓁 = 2
𝑑𝛿𝓁
𝑑𝐸

. (2.26)

he presence of a maximum in this function (specially if it is sharp) is
clear resonance signal.

There is another approach also used to calculate the resonances
f a potential well (or barrier) which consists in finding the complex
nergies 𝐸 = 𝐸𝑅 + 𝑖𝐸𝐼 , where the stationary states satisfy purely
utgoing boundary conditions. In fact, when these energies are real, in
he interval (−𝜇,+𝜇), they can belong to the discrete spectrum or, in

other cases, they can be interpreted as anti-bound states [33,34,37].
These characteristics are best appreciated in momentum space, but we
will limit ourselves here to the energy picture for simplicity. The real
part 𝐸𝑅 of the resonant energy is then identified with the energy of the
incident wave, while the imaginary part 𝐸𝐼 is related to the resonance
delay time as follows: 𝐸𝑅 ≈ 𝐸𝑟, while 𝜏𝓁 ∝ 1∕𝐸𝐼 . The consistency of
these two criteria (Wigner time delay and complex energies) to detect
resonances will be checked in the next two subsections.

2.3.1. Scattering states, phase shifts, and resonances
In order to study the scattering states and their phase shifts, it is

better to use in the outer region the basis {𝐽𝓁 , 𝑌𝓁}. The asymptotic
behavior of these functions for large values of 𝜌 is the following [36]:

𝐽𝓁(𝑝o 𝜌) ∼

√

2
𝜋𝑝o 𝜌

cos(𝑝o 𝜌 − 𝓁𝜋∕2 − 𝜋∕4),

𝑌𝓁(𝑝o 𝜌) ∼

√

2
𝜋𝑝o 𝜌

sin(𝑝o 𝜌 − 𝓁𝜋∕2 − 𝜋∕4).

Then, the spinors of the scattering states take the form (2.15) in the
inner region (0 ≤ 𝜌 < 1), and the following one in the outer region
(𝜌 > 1)

𝛷o(𝜌, 𝜃) =
⎛

⎜

⎜

⎝

[

𝐴𝐽𝓁(𝑝o 𝜌) + 𝐵 𝑌𝓁(𝑝o 𝜌)
]

𝑒𝑖𝓁𝜃

𝑖
𝑝o
𝜀+o

[

𝐴𝐽𝓁+1(𝑝o𝜌) + 𝐵 𝑌𝓁+1(𝑝o𝜌)
]

𝑒𝑖(𝓁+1)𝜃
⎞

⎟

⎟

⎠

.

If for convenience we choose the form of the arbitrary constants 𝐴 and
𝐵 as 𝐴 = 𝑎 cos 𝛿𝓁 , 𝐵 = −𝑎 sin 𝛿𝓁 , the asymptotic behavior of the spinor
when 𝜌→ ∞ is

𝛷o(𝜌, 𝜃) ∼

√

2
(

cos(𝑝o𝜌 − 𝓁𝜋∕2 − 𝜋∕4 + 𝛿𝓁) 𝑒𝑖𝓁𝜃

𝑖 𝑝o sin(𝑝 𝜌 − 𝓁𝜋∕2 − 𝜋∕4 + 𝛿 ) 𝑒𝑖(𝓁+1)𝜃

)

.

𝜋𝑝o𝜌 𝜀+o o 𝓁



Physica E: Low-dimensional Systems and Nanostructures 142 (2022) 115312Ş. Kuru et al.

c
t
c

b
o
t
(
f

T
n
f

𝛷

Fig. 1. For a particle of mass 𝜇 = 2: plots of the bound state energy levels obtained from (2.19) when −2 < 𝜀(𝑣) < 2 for 𝓁 = 0 (green curves on the left plot) and 𝓁 = 2 (blue
urves on the right plot). They are given as functions of the potential depth in the range −14 < 𝑣 < 0. The critical states of (2.22) are represented by the dots on the right and
he supercritical states of (2.25) by dots on the left sides of the curves. The vertical dashing lines are the limits of the bound state energies, while the horizontal dashing lines
orrespond to the values of the well depths 𝑣 selected for Fig. 3.
Fig. 2. On the left, a graph of the phase shift 𝛿𝓁 (𝜀) for the scattering of a particle with 𝜇 = 2, 𝓁 = 2, and three values of the potential depth: (a) 𝑣 = −3.5, just after trapping a
ound state (blue dashed line), (b) 𝑣 = −2.75, the trapping value (black solid line), and (c) 𝑣 = −2, before trapping a bound state (red dotted line). Note that due to the capture
f a bound state taken from the continuum, there is a phase jump (see the phases of 𝑣 = −2.75 and 𝑣 = −3.5 with respect to that of 𝑣 = −2). The horizontal lines are the limits of
he phases when 𝜀 → ∞ from (2.28). Remark that hereafter the critical or supercritical values of the potential will be given with two decimals in order to simplify the notation
as it is the case of 𝑣 = −2.75). On the right, a plot of the corresponding Wigner time delays for the same values of 𝑣. The maxima of the curves show the existence of resonances
or particular values of the scattering energy.
he quantity 𝛿𝓁 is the phase shift due to the presence of the potential
ear the origin of coordinates, and it appears in the outer spinor wave
unction:

o(𝜌, 𝜃) = 𝐴
⎛

⎜

⎜

⎝

[

𝐽𝓁(𝑝o𝜌) − tan 𝛿𝓁𝑌𝓁(𝑝o𝜌)
]

𝑒𝑖𝓁𝜃

𝑖
𝑝o
𝜀+o

[

𝐽𝓁+1(𝑝o𝜌) − tan 𝛿𝓁𝑌𝓁+1(𝑝o𝜌)
]

𝑒𝑖(𝓁+1)𝜃
⎞

⎟

⎟

⎠

.

The continuity condition of the spinor 𝛷(𝜌, 𝜃) at 𝜌 = 1 leads to

𝜀+i 𝐽𝓁(𝑝i)
𝑝i 𝐽𝓁+1(𝑝i)

=
𝜀+o (𝐽𝓁(𝑝o) − tan 𝛿𝓁 𝑌𝓁(𝑝o))

𝑝o(𝐽𝓁+1(𝑝o) − tan 𝛿𝓁 𝑌𝓁+1(𝑝o))
,

from where we obtain the explicit value of the phase 𝛿𝓁 :

tan 𝛿𝓁(𝜀) =
𝜀+i 𝑝o 𝐽𝓁(𝑝i)𝐽𝓁+1(𝑝o) − 𝜀

+
o 𝑝i 𝐽𝓁+1(𝑝i)𝐽𝓁(𝑝o)

𝜀+i 𝑝o 𝐽𝓁(𝑝i)𝑌𝓁+1(𝑝o) − 𝜀
+
o 𝑝i 𝐽𝓁+1(𝑝i)𝑌𝓁(𝑝o)

. (2.27)

Once the potential depth 𝑣 is set, the phase shift 𝛿𝓁 will depend on the
energy 𝜀, taking into account (2.10) and (2.12). Also, for a potential
well with depth 𝑣 it is easy to show that at the high energy limit (note
that the constraint (2.17) is no longer valid now) the phase shift is

lim
𝜀→∞

tan 𝛿𝓁(𝜀) = − tan 𝑣. (2.28)

The values for which the derivative with respect to the energy of (2.27)
is maximum correspond to resonances, since this will mean that with
this energy the time that a wave packet spends inside the well (2.26)
will be greater than it should. It also turns out that as we increase the
depth of the well we trap bound states that leave the continuum. In
this process, when a value of 𝑣 is reached so that a new bound state is
5

captured, the corresponding phase shift undergoes an abrupt change,
increasing by 𝜋 (which is the content of Levinson’s theorem adapted to
the relativistic plane [1,26]). These features are shown in Fig. 2.

2.3.2. Complex resonances and outgoing states
In the scattering process discussed in the previous subsection, we

had an incoming wave and an outgoing wave, and we calculated the
phase shift of these waves due to the potential near the origin. Next, we
will look for energy values 𝜀 such that we have a pure outgoing wave.
This situation may not have a physical realization, but it will provide
us with useful information. In fact, this condition in general will be
satisfied for complex energies: 𝜀 = 𝜀𝑅 + 𝑖𝜀𝐼 . Therefore, states with pure
outgoing boundary conditions must satisfy the following conditions:

(i) when 𝜌→ 0 the spinor 𝛷i(𝜌, 𝜃) must be kept bounded,
(ii) when 𝜌 → ∞ each component must behave as the first Hankel

function (2.16), and the spinor 𝛷o(𝜌, 𝜃) as in (2.18).

In other words, the purely outgoing wave conditions are the same as
the bound state conditions (2.19), except that now what we want to
find are the complex solutions 𝜀 = 𝜀𝑅+ 𝑖𝜀𝐼 of this secular equation, and
therefore the corresponding eigenfunctions may diverge when 𝜌→ ∞.

Obviously, the resonances depend on the depth 𝑣, in the same way
that the energies of the bound states also depend on 𝑣, as shown
in Fig. 1. As the results must necessarily be obtained numerically or
graphically from (2.19), we will choose, as an example, a particle with
mass 𝜇 = 2 and follow its trajectory 𝜀(𝑣) = 𝜀𝑅(𝑣) + 𝑖𝜀𝐼 (𝑣) as a function

of 𝑣. We start from a resonance such that 𝜀𝑅(𝑣0) > 𝜇 = 2, 𝜀𝐼 (𝑣0) ≠ 0,
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Fig. 3. Resonances in the complex plane 𝜀 = 𝜀𝑅 + 𝑖𝜀𝐼 for particles with mass 𝜇 = 2, angular momenta 𝓁 = 2 (blue dots) and 𝓁 = 0 (green dots), are represented as functions of
the well depth 𝑣. There are six plots for six values of 𝑣 (indicated in each graphic). The thick red interval (−2, 2) on the real axis represents the possible bound energies. The
evolution of the resonances as the depth of the potential well goes from the initial value 𝑣 = −1 up to the final one 𝑣 = −14 is clearly observed by the change of position of the
resonances drawn as circles (green for 𝓁 = 0, blue for 𝓁 = 2). At 𝑣 = −2.75,−5.86,−8.99 the potential well captures a new bound state, with 𝓁 = 2, of energy 𝜀 = 2 (recall that we
use two decimals for numerical values of critical potentials). In general, as 𝑣 becomes more negative, the set of resonances moves from energies with positive values of 𝜀𝑅 towards
energies with negative values 𝜀𝑅. The complex resonance energies for 𝓁 = 2 are slightly closer to the real axis (therefore stronger) than those for 𝓁 = 0.
Fig. 4. The left graphic in green is for 𝑚 = 2,𝓁 = 0, the right in blue for 𝑚 = 2,𝓁 = 2, in both plots the potential depth is 𝑣 = −2.75 (see Fig. 3). The dots represent complex
esonances with coordinates (𝜀𝑅 , 𝜀𝐼 ). The continuous curves are for the Wigner time delay as a function of the real part of the energy. The maxima of the Wigner time delay take
lace at energies which have a good agreement with the real part of the resonance energies 𝜀𝑅 as shown in both graphics by the dashing vertical lines. However, in the left one
for 𝓁 = 0) the coincidence is not so good (this may be due to the fact that for 𝓁 = 0 the critical ‘bound state’ is not square integrable). The resonances for 𝓁 = 2 are stronger
han for 𝓁 = 0, but both have the same order of magnitude.
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nd little by little we decrease the depth of the potential well until we
each the value 𝑣1 for which we have precisely the first bound state:
(𝑣1) = 𝜀𝑅(𝑣1) = 𝜇, 𝜀𝐼 (𝑣1) = 0. As we continue to decrease the value
f 𝑣, the bound energy decreases to the minimum bound eigenvalue
(𝑣2) = 𝜀𝑅(𝑣2) = −𝜇 = −2. Below this value 𝑣2, the bound energy
ill again change into a complex resonance 𝜀(𝑣3) = 𝜀𝑅(𝑣3) + 𝑖𝜀𝐼 (𝑣3),

with 𝜀𝑅(𝑣3) < −2 and 𝜀𝐼 (𝑣3) ≠ 0. The whole process can be followed in
Fig. 3. We observe that, as shown in that figure, the resonances for the
non-zero momentum, 𝓁 = 2, are higher but of the same order as those
with zero momentum 𝓁 = 0. This is shown in greater detail in Fig. 3,
as explained below.

The relation between the Wigner time delay 𝜏𝓁 and the complex
energies is shown in Fig. 4: the dots correspond to resonances in the
energy representation and the curves represent the Wigner time delay
as a function of energy. For 𝓁 > 0, we see that the real part of the
resonances perfectly coincides with the peak of the time delay, but
for 𝓁 = 0 this correspondence is not so good due to the quasi-bound
character of the critical state if 𝓁 = 0, as already mentioned in (2.21).

3. Massless two-dimensional Dirac particles: Bound states and
resonances

In this section we will analyze the bound states and resonances of
the problem under study when the particles are assumed to be massless,
something that can be seen as a limit of the treatment given in the
previous section for massive particles. However, we will see that the
behavior in massive and massless cases has important differences that
6

we will highlight below.
3.1. Bound states

The potential well has the same shape as in the case of non-zero
masses (2.7). The equations for the components 𝜙1, 𝜙2 also have the
same form as their massive analogs (2.9), although now the mass
disappears from the equations as 𝜇 = 0. Consequently, the energy
constants given in (2.10) and (2.12) become

𝜀±i = 𝜀 − 𝑣, 0 ≤ 𝜌 < 1 , 𝜀±o = 𝜀, 𝜌 > 1, (3.29)

and

𝑝i = ±(𝜀 − 𝑣), 0 ≤ 𝜌 < 1 , 𝑝o = ±𝜀, 𝜌 > 1, (3.30)

here the appropriate sign in (3.30) must be chosen in each of the
wo cases (interior and exterior) in order to obtain correct boundary
onditions for the solutions.

By the same arguments about the asymptotic behavior of the wave
unctions of the massive case (2.17), in the current situation the bound
tates must have zero energy 𝜀 = 0, that is, they coincide with the
ritical and supercritical states. To find them we concentrate on the
uter region 𝜌 > 1, because in the inner region the solutions are the
ame as in the case 𝜇 ≠ 0. In the outer region, since 𝜀±o = 0, the
qs. (2.9) become

′
2 +

𝓁 + 1
𝜌

𝜙2 = 0 , −𝜙′
1 +

𝓁
𝜌
𝜙1 = 0 . (3.31)

otice that in these two equations there is the symmetry 𝓁 → −(𝓁 + 1)
nd changing the components 𝜙1 → 𝜙2, due to the fact that 𝜇 = 0. The
olutions to these equations are (see also [16])

o(𝜌, 𝜃) =

(

𝑐1 𝜌𝓁 𝑒𝑖𝓁𝜃

−(𝓁+1) 𝑖(𝓁+1)𝜃

)

, 𝓁 = 0,±1,±2,…

𝑖 𝑐2 𝜌 𝑒
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Fig. 5. The red dots are the well depth 𝑣 values for which there are bound states with
energy 𝜀 = 0 for massless particles (𝜇 = 0) from (3.32): on the left the case with 𝓁 = 0,
n the right the case with 𝓁 = 2. These two graphs correspond to the limit 𝜇 → 0 of

the massive cases, like the ones in Fig. 1 for 𝜇 = 2.

where 𝑐1, 𝑐2 are arbitrary integration constants. Thus, if either 𝓁 > 0 or
𝓁 < −1, the physically acceptable bound states are described by

𝛷o(𝜌, 𝜃) =

(

0

𝑖 𝑐2 𝜌−(𝓁+1) 𝑒𝑖(𝓁+1)𝜃

)

, 𝓁 > 0,

𝛷o(𝜌, 𝜃) =

(

𝑐1 𝜌𝓁 𝑒𝑖𝓁𝜃

0

)

, 𝓁 < −1,

which go to zero as 𝜌 → ∞ and are square integrable. For the cases
𝓁 = 0,−1 the corresponding solutions, although also vanish at infinity,
are not square integrable, and thus they do not correspond to ‘true’
bound states.

The formula for the potential depth 𝑣 is the same as (2.25) taking
the limit 𝜇 → 0,

𝐽𝓁(𝑝i) = 0, 𝓁 ≥ 0, 𝐽1+𝓁(𝑝i) = 0, 𝓁 < 0, 𝑝i = |𝑣|. (3.32)

Then, the roots of 𝐽𝓁(𝑝i) = 0, give us the values for 𝑣 corresponding the
bound states. In Fig. 5 two graphics represent the first of these values
corresponding to the angular momenta 𝓁 = 0 and 𝓁 = 2.

It is worth to mention a useful method to investigate the spectrum
of some systems reduced to one dimension in graphene called variable
phase [17]. It supplies a new insight on some problems not clearly
explained with standard methods.

3.2. Scattering states and resonances

With respect to scattering states with positive energy 𝜀 > 0, the
situation is completely similar to Section 2.3.1 for massive particles.
The phase shift of the scattering states is calculated using (2.27), whose
limit value when 𝜀 → ∞ is (2.28). In Fig. 6, some examples of phase
shift of scattering states and their derivatives with respect to energy
(interpreted as Wigner time delays) are shown. The resonances are the
𝜀𝑟(𝑣) values for which the Wigner time delay reaches a maximum. We
have verified numerically that even for 𝓁 = 0 there are time delays and
resonances. However, for 𝓁 > 0 they become quite strong, especially
for energies close to capturing a bound state.

On the left of Fig. 6 we have represented the phase shifts for a
massless charge with angular momentum 𝓁 = 2 for three values of
7

𝑣: −4, −5.13, and −6. The special value 𝑣 = −5.13 corresponds to the
capture of a bound state with 𝜀 = 0. For the value 𝑣 = −4 (which is
a bit above 𝑣 = −5.13) the phase shifts undergo a strong change at a
certain value 𝜀 near 𝜀 = 0 (dotted curve). However, for the capture
value 𝑣 = −5.13 (solid curve) or for a slightly lower value (𝑣 = −6,
dashed curve), the phase shifts are smoother and start with a jump of
𝜋 in 𝜀 = 0 (according to Levinson’s theorem for massless particles [26]).
Furthermore, in the limit 𝜀 → ∞, it is seen that these phase shifts tend to
the corresponding value |𝑣|. To the right of Fig. 6 we have represented
the derivatives of these three phase shifts, which are identified with
Wigner time delays. The potential 𝑣 = −4 (a little above the capture
value 𝑣 = −5.13) has a very high maximum of the time delay 𝜏, reached
at a certain value 𝜀𝑟 that we identify with a strong resonance. However,
for the capture potential 𝑣 = −5.13 or slightly lower values (𝑣 = −6),
the maxima of time delays are much lower, corresponding to weak
resonances. In summary, the behavior of scattering states is reasonable
according to the non-relativistic nonzero mass theory on phase shift and
Wigner time delay.

As we have already mentioned, another way to define (complex)
resonances is through complex eigenvalues of energy corresponding to
eigenfunctions that satisfy purely outgoing boundary conditions. Then,
we must look for complex solutions 𝜀(𝑣) = 𝜀𝑅 + 𝑖 𝜀𝐼 of Eqs. (2.19),
but now having in mind that the mass vanishes and therefore also the
simplifications (3.29)–(3.30) apply. According to (2.16) the asymptotic
behavior of the Hankel function, which concern us, is

𝐻 (1)
𝓁 (𝑝o𝜌) ∼ 𝑒𝑖(𝑝o𝜌−𝓁𝜋∕2−𝜋∕4). (3.33)

In our case, from (3.30), 𝑝o = ±𝜀 = ±𝜀𝑅 ± 𝑖𝜀𝐼 . The wave will be
outgoing as far as ±𝜀𝑅 > 0. This condition is fulfilled if we choose
the positive sign for 𝜀𝑅 > 0 (for the resonances in the right hand
complex plane); and the negative sign for 𝜀𝑅 < 0 (for the resonances
in the left hand complex plane). In conclusion, we obtain the following
secular equation, depending on the sign of the real part of the complex
energy 𝜀,

𝐽𝓁(𝜀𝑅 + 𝑖 𝜀𝐼 − 𝑣)𝐻
(1)
𝓁+1

(

|𝜀𝑅| + 𝑖 𝜀𝐼 sign(𝜀𝑅)
)

− sign(𝜀𝑅) 𝐽𝓁+1(𝜀𝑅 + 𝑖 𝜀𝐼 − 𝑣)𝐻
(1)
𝓁

(

|𝜀𝑅| + 𝑖 𝜀𝐼 sign(𝜀𝑅)
)

= 0. (3.34)

ome solutions of this equation are shown in Fig. 7 for six values of 𝑣.
As we have already shown in the previous subsection, the bound

states, with 𝜀 = 0, appear only for some special values of the well
depth and are critical states. In Fig. 7, such bound states occur for
𝑣 = −5.13 and for 𝑣 = −8.65 (following our convention of two decimals).
The resonances shown in Fig. 6 correspond to the well depth values
𝑣 = −4,−5.13,−6, which are part of Fig. 7. For the value 𝑣 = −4, the
resonance is closest to the origin, as shown in Fig. 7 with a blue circle,
and is represented by the maximum of the dotted curve in Fig. 6 (right);
this is a strong resonance. For the next value 𝑣 = −5.13, that resonance
becomes a bound state with zero energy and the next resonance is
represented at 𝜀𝑅 ∼ 2.50 by the maximum of the solid black curve in
Fig. 6; in this case the resonance is much weaker. Finally, for the value
𝑣 = −6, the first resonance is closer to the origin, 𝜀 ∼ 1.90, and becomes
slightly stronger than the previous one, as seen by the maximum of the
dashed curve in Fig. 6.

If both approaches to resonance phenomena correspond to the same
physical concept, described by different properties, then we should
have 𝜀𝑟(𝑣) ≈ 𝜀𝑅(𝑣), where 𝜀𝑟(𝑣) is the real energy of the scattering
state and 𝜀𝑅(𝑣) is the real part of a complex resonance. The imaginary
part 𝜀𝐼 is inversely proportional to the time delay. From Fig. 8, we can
see the close relationship between the complex resonances of Fig. 7
(represented by green dots for 𝓁 = 0 and blue dots for 𝓁 = 2) with
coordinates (𝜀𝑅, 𝜀𝐼 ) and the Wigner time delay (represented by a green
curve for 𝓁 = 0, or a blue one for 𝓁 = 2). We observe that the first
coordinate 𝜀𝑅 of the dots (representing complex resonances) is very
close to the values of the maxima 𝜀𝑟 of the Wigner time delays (this

is shown by the dashed vertical lines), specially for the value 𝑣 = −4
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Fig. 6. For massless particles and 𝓁 = 2, the graph on the left represents the phase shift depending on the incident energy for three values of potential depth 𝑣 = −4 (dotted),
= −5.13 (solid), and 𝑣 = −6 (dashed); in the graph to the right, the corresponding Wigner time delay is plotted as a function of energy for the same three potential depth values.
he highest resonances (the red dashed in the graphics, 𝑣 = −4) are obtained for depths slightly less than a critical value, in this case 𝑣 = −5.13.
Fig. 7. Resonances for a massless particle with angular momenta 𝓁 = 0 (green dots) and 𝓁 = 2 (blue dots). For higher value 𝓁 = 2 they are much closer to the real axis than the
ones with null angular momentum 𝓁 = 0. As a consequence, the corresponding blue resonances are much larger (an order of magnitude) than the green ones. This is a differential
ehavior with massive Dirac particles.
Fig. 8. On the left, in green, plot of Wigner time delay as a function of energy (solid curve) and complex resonances 𝜀 = 𝜀𝑅 + 𝑖𝜀𝐼 (represented by dots at points (𝜀𝑅 , 𝜀𝐼 )) for
assless particles with 𝓁 = 0. The shape of time delay fails close to 𝜀 ∼ 0 due to the bad behavior of the bound state at 𝜀 = 0. On the right, in blue, the same plots for 𝑚 = 0 and
= 2. The depth of the well for both cases is 𝑣 = −5.13 (capture value of a bound state for 𝓁 = 2, see Fig. 7).
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hich is close (from above) to the value 𝑣 = −5.13 corresponding to the
apture of a bound state, as shown in Fig. 7. If we compare Fig. 8 and
ig. 4, we can see that angular momenta affect much more to massless
esonances than to massive ones.

We must point out the differences in the evolution of the resonances
f the massive particles in Fig. 3 and those of the massless case in Fig. 7.
t is clear that for deeper wells, both the resonances and the bound
tates move towards deeper values of (the real part of) the energy.
his is true for both massive and massless Dirac particles. However,
ngular momentum has little influence on massive particles but, on the
ontrary, it is quite important for massless particles. In fact, for 𝓁 = 0,
he resonances are very weak while for 𝓁 = 2 they are quite strong for
8

= 0, as we saw in detail in Figs. 4–8. o
. Conclusions

The aim of this article was the search of specific confining properties
f both massive and massless Dirac particles in the so-called Dirac ma-
erials, including graphene, under the influence of cylindrical electric
uantum dots. We have paid attention to the role of angular momentum
nd mainly to the resonance states in the confinement process. Next, we
ill briefly comment on the main novelties as well as the differences

ound with respect to previous treatments of similar problems.
The spectrum of bound states of a massive Dirac fermion, 𝜇 ≠ 0,

ith zero and non-zero angular momentum, is plotted on appropriate
lobal plots in Fig. 1, where the energy levels are represented in terms

f the depth 𝑣 of the potential well on the vertical axis and the energy
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values on the horizontal axis. The most outstanding characteristics
shown in the graphs of Fig. 1 are the following:

(i) The range of bound energies for any value 𝑣 of the potential is
−𝜇 ≤ 𝜀 ≤ 𝜇. Then, we have represented the capture of bound
levels through the critical points and the collapse of levels at the
supercritical points of 𝑣. These two key points were determined
and their associated eigenfunctions were calculated.

(ii) Due to the phenomenon of atomic collapse, the number of dis-
crete energy levels as a function of potential height does not
increase monotonically (as in the non relativistic case) but this
number remains bounded (new levels captured from the positive
continuous spectrum are compensated for the lost levels in the
negative continuous spectrum through collapses). This is verified
by counting the number of cuts of horizontal dashing lines at
different values of 𝑣 with the discrete energy level curves in Fig. 1.

(iii) Angular momentum affects these discrete levels: the higher angu-
lar momentum, the deeper wells are needed to capture the bound
states of the continuum, which is reasonable since the effective
centrifugal terms that increase with 𝓁.

(iv) Our plots of discrete energy curves plus critical points, which are
quite useful in understanding the global behavior of bound states,
are not provided in most of the previous references dealing with
this problem, nor in articles discussing confinement in a Coulomb
impurity [27,28].

The spectrum of a massless Dirac fermion is shown in Fig. 5, which
can be viewed as a limit of Fig. 1 when 𝜇 → 0. Since 𝜇 = 0, the bound
states take place at zero energy 𝜀 = 0, so they are both critical and
a supercritical points (other examples of zero energy confinement in
different electric fields are given in [18]). They cannot be considered
as stable bound points since they represent a transition of resonance
points from positive to negative in the continuous spectrum, as we will
see next.

Resonance states for massive and massless Dirac particles, with
different angular momenta, were also studied in detail. We define
the concept of resonance wave functions by means of an eigenvalue
problem with outgoing boundary conditions leading to complex eigen-
values, 𝜀 = 𝜀𝑅 + 𝑖𝜀𝐼 , and recall the meaning of the real and imaginary
parts in terms of scattering states and Wigner delay time. In Fig. 3 a list
of graphs is presented, for different heights of the potential well 𝑣, with
eigenvalues of complex resonances and angular momentum 𝓁 = 0, 2,
which give a complete image of the atomic collapse together with Fig. 1
above on discrete energies (restricted to the interval −𝜇 ≤ 𝜀 ≤ 𝜇).
From this point of view, the bound states do not disappear, but sink
into the continuous spectrum in the form of resonances. These plots
display some important features:

(i) The number of resonances (including bound states) is conserved,
as a function of 𝑣.

(ii) All of them (at least those with a smaller imaginary part, which
are the most physically important) flow in the same direction,
from positive to negative 𝜀𝑅.

(iii) For higher angular momenta, the imaginary part 𝜀𝐼 (𝑣) is closer to
the real axis, so these states are ‘more bounded’.

Analogous considerations can be applied to the massless case of Fig. 7.
We have a special situation since for 𝜇 = 0, the bound states necessarily
take place at zero energy 𝜀 = 0, which is both a critical and a
supercritical point (see other examples of electric fields in [18]). If
we study the evolution of complex resonances 𝜀(𝑣) = 𝜀𝑅(𝑣) + 𝑖𝜀𝐼 (𝑣) as
we did with massive particles, we observe that they are very sensitive
to the value of the angular momentum. For zero angular momentum
(𝓁 = 0) the resonances are very weak (in fact, as we saw before,
the critical wave function is not a good bound state). However, the
behavior at 𝓁 = 0 is a relativistic effect, because in non-relativistic
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quantum mechanics, 𝓁 = 0 gives no centrifugal term. It should be
noted that a similar figure for the massless case appears in [11] (also
in [9] for 𝜇 = 0 and some values of angular momentum), but instead
of complex values a broadening is given of the real values depending
on the imaginary part. In none of the works on this problem have we
found graphs like Fig. 3 or similar in the massive case.

To better understand the resonances, we have calculated the phase
shifts and the Wigner delay time of scattering states. For a massive case
we plot Fig. 2 and for a massless case Fig. 6, showing that the phase
change is large for depth 𝑣 near a critical point, and that there is a jump
of 𝜋 at the origin for values of 𝑣 after capturing a bound energy level.
This is in agreement with a relativistic version of Levinson’s theorem.
The Wigner time delays are shown in Fig. 4 (massive case) and in
Fig. 8 (massless case). In both figures the concordance of the complex
eigenvalues of the outgoing states and the highest values of time delays
is shown. There are some minor differences for the 𝓁 = 0 cases due to
the special half-bound critical state. All these results show consistency
between resonances, critical values of collapses and time.

Most of the properties that have been shown in this work are
based on numerical calculations on sharp potentials. In the near future,
we plan to delve into these properties but especially using smoother
potentials and analytical models.
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