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The Hubble constant tension problem is analysed in the framework of a class of modified gravity,
the so-called F(R) gravity. To do so, we explore two models: an exponential and a power-law F'(R)
gravities, which includes an early dark energy (EDE) term in the latter. These models can describe
both an early time inflationary epoch and the late time accelerating expansion of the universe. We
confront both models with recent observational data including the Pantheon Type la supernovae
sample, the latest measurements of the Hubble parameter H(z) from differential ages of galaxies
(cosmic chronometers) and separately from baryon acoustic oscillations. Standard rulers data set
from the Cosmic Microwave Background radiation are also included in our analysis. The estimations
of the Hubble constant appear to be essentially depending on the set of observational data and vary
in the range from 68 to 70.3 km /(s-Mpc). The fits of the other free parameters of the models are
also obtained, revealing interesting consequences.

PACS numbers: 04.50.Kd, 98.80.-k, 95.36.+x

I. INTRODUCTION

Among current problems in modern cosmology, the tension among estimations of the Hubble constant Hy is one
of the most striking and irritating for researchers. Over the last years such discrepancies among H, measurements
have been revealed through two different methods: by the Planck collaboration after collecting and analyzing data
from the cosmic microwave background radiation (CMB) over the last 7 years [1-3], which provides an estimation
of Hy = 67.4 + 0.5 kms !Mpc~! (Planckl8), and on the other hand by the SHOES group of Hubble Space
Telescope (HST) [4, 5] with the last estimate given by Hy = 74.03 4= 1.42 kms~'Mpc~! (SHOES19). The HST
method includes measurements of the local distance ladder by combining photometry from Cepheids (and their
period luminosity relation) with other local distance anchors, Milky Way parallaxes and calibration distances to
Cepheids in the nearest galaxies which are hosts of Type Ia Supernovae (SNe Ia). In particular, the above estima-
tion for the Hubble constant by the HST group includes observations of 70 Cepheids in the Large Magellanic Cloud [5].

Currently the mismatch among Hy estimations by Planck [3] and HST [5] collaborations exceeds 4o, as this
tension has grown over the last years, as shown in Table I. This problem may be dealt as the discrepancy between
observations at early and late cosmological time of our Universe [6], since HST group works with late time data
while Planck collaboration combines observations from redshifts in a wide range 0 < z < 1100 and uses the standard
ACDM model as fiducial model, but the issue may be approached through a theoretical way. For the former, some
researchers have suggested some different ways for solving the Hy tension problem. Several groups have analysed the
estimations of Hy by using several approaches independent of the Cepheid distance scale and CMB anisotropies (for
a review see [0, 7]). Among these methods with new observational results for Hy, the following approaches may be
highlighted: the tip of the red giant branch (TRGB) method used by the Carnegie-Chicago Hubble Program (CCHP)
[8, 9], lensing objects with strong time delays between multiple images (HOLICOW project and others) [10-12],
CMB-lensing data [13], maser (megamaser) hosting galaxies [14], oxygen-rich variable stars (Miras) [15]. Some other
researchers tried to explain the tension by assuming that Planck or HST measurements might suffer from systematic
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errors [16], but these analysis did not led to convincing solutions of the problem.

As shown in Table I, one can note that most of Hy estimations lie on the range among Planck18 and SHOES19 values,
while the local (late-time) Hjy measurements are close to the SHOES19 value, exceed the early-Universe estimations.
Only the CCHP estimation obtained by TRGB method violates the latter tendency, which have led to some discussions
[6, 9]. By comparing these facts, many cosmologists over the recent years have considered the Hy tension as a hint for
new physics beyond the standard ACDM model with different phenomena in early and/or late times of the universe
evolution [17]—[23] (see also the extended list of literature in Ref. [7]). These analysis suggest several ways for solving
the problem, which can be generally summarized as a mechanism that shifts the effective Hy value from early to late
time Universe under different factors. The best fit Hy appears to be essentially depending on the mentioned factors.
Following this idea, some scenarios have been studied:

e Dark energy models with a varying equation of state (EoS), via a varying EoS parameter w or via the dark
energy density ppg [17].

e Scenarios with an early dark energy (EDE) component, reproduced in different frameworks (scalar fields, axions),
which becomes important before the epoch of matter-radiation equality z ~ 3000 and then decays after faster
than radiation [18].

e Models with evolving or decaying dark matter into dark radiation or other species [19].
e Interacting dark energy and dark matter models [20)].
e Models with extra relativistic species that modifies the effective number N.g at the recombination era [21].

e Modified gravity models that emerge at an intermediate epoch, as scalar-tensor theories, F'(R) gravity, F(T)
and others [22-24].

| Project | Year[Ho (kms™"Mpc™')[Method |Refs]
Planck 2018 67.44+0.5 CMB power spectra+lensing |[3
SHOES (HST) 2019 74.03 £1.42 Cepheid distance ladder 5
CCHP 2020| 69.6 £0.8+1.7 |TRGB 9
HOLiCOW 2019 73.37 1% 6 strong lenses & ACDM 10

- 2020 75.375°0 7 strong lenses + SNe Ia 11

- 2020 7187358 8 strong lenses & ACDM 12

- 2020 73.5£5.3 CMB lensing + SNe Ia 13
Megamaser 2020 73.9+3.0 6 maser galaxies 14
HST 2019 72.7+4.6 6 Miras in SN Ia host galaxy|[15

TABLE I: Recent estimations of the Hubble constant Hy

In this sense, modified gravities have been widely studied in the literature in the framework of cosmology (for a
review see [25]). Particularly, F'(R) gravity is very well known by the scientific community, with an extensive literature
where many aspects of the theory have been analysed. This modification of GR assumes a generic function of the
Ricci scalar for the gravitational action instead of the linear term of the Hilbert-Einstein action. Such modification
leads to interesting properties and a rich phenomenology that can solve some of the most important problems in
cosmology, as the origin of dark energy. In this sense, F'(R) gravity can reproduce well the late-time acceleration with
no need of additional fields and alleviate the cosmological constant problem by compensating the large value for the
vacuum energy density predicted by quantum field theories (see [26-31]). In addition, the same type of modifications
of GR have been studied in the framework of inflation where as in the case of dark energy, F'(R) gravities can lead
to successful scenarios that fit perfectly well the constraints on the spectral index of perturbations as given by the
analysis of the CMB ([32]). With this in mind, models that unify the dark energy epoch and the inflationary paradigm
through the corrections introduced in the gravitational action have been proposed with a great success [33—40]. In
addition, some F(R) gravity models that reproduce late-time acceleration can also recover GR at local scales where
this one is very well tested, leading to the so-called viable F(R) gravity models [28, 29]. Hence, F(R) gravity is
particularly of great interest in cosmology.

Hence, supported on the the great knowledge of F'(R) gravity and its success on trying to solve some of the most
important problems in cosmology, the possibility of alleviating the Hy tension problem in this framework may be
promising, despite has not been studied yet exhaustively. Although some efforts are being done, as the analysis to
solve this tension by viable F(R) models, and particularly through the Hu-Sawicki F'(R) model [28] in Ref. [23],



where concluded that the Hu-Sawicki gravity cannot reduce the Hy tension. In the present paper, we analyse two
F(R) models and the possibility of alleviating the Hy tension. We confront the models with observational data
and estimate the Hubble constant Hy and other model parameters by using approaches developed in some previous
papers [34, 35, 41-44]. Here we include in our analysis the following observations: the Type Ia supernovae data
(SNe Ta) from the Pantheon sample survey [45], data connected with cosmic microwave background radiation (CMB)
and extracted from Planck 2018 observations [3, 46], and estimations of the Hubble parameter H(z) for different
redshifts z from two different sources: (a) measured from differential ages of galaxies (in other words, from cosmic
chronometers, these 31 data points are analyzed separately) and (b) H(z) obtained as observable effect of baryon
acoustic oscillations (BAO). We obtain the best fit parameters and compare to the ones from ACDM.

The paper is organized as follows. In section II, we introduce F(R) gravity and the two models we analyse along
the paper. Section I1T is devoted to SNe Ia, H(z) and CMB observational data. In section IV we analyze the results,
estimations for the Hubble constant Hy and other model parameters. Finally, section V gathers the conclusions of
the paper.

II. F(R) GRAVITY MODELS

We can start by reviewing the basics of what is called F(R) gravity, a generalization of the Einstein-Hilbert action
that assumes a more complex Lagrangian in terms of the Ricci scalar R:

1
S = 53 d*z/—g F(R) 4 Smatter (1)
K
Here 2 = 87G and S™2**" is the matter action. In the present paper, we are interested in analyzing the Hy tension
problem in the framework of F'(R) gravity with the following general form for the action [37]:

F(R) = R+ Fins + Fepe + FpE - (2)

The first term here is the Einstein-Hilbert action, Fj,¢ is assumed to describe the early-time inflation [37-39] becoming
negligible at late times z < 3000 (only this epoch is visible in our observational data), whereas Fpg plays the role
of dark energy, dominating at late times, and is the object under study in this paper. Finally, we have added an
extra term, Frpg, that behaves as an early dark energy (EDE) term, i.e. mimics an effective cosmological constant
at intermediate times but then dilutes along the expansion, helping to suppress some inadequate behaviors during
the intermediate phases between the matter-radiation equality and recombination [18]. The general field equations
for F'(R) gravity are obtained by varying the action (1) with respect to the metric g, leading to:

F «
FRRW/ - Eg;w + (g,uug ﬁvavﬁ - v,uvu)FR = H2T,uu )

where R, and T},, are the Ricci and energy-momentum tensors respectively. By assuming a spatially-flat Friedman-
Lemaitre-Robertson-Walker (FLRW) space-time

ds? = —dt?* + a*(t) dx*

with the scale factor a(t), the FLRW equations in F'(R) gravity are obtained:

dH R
= — —2H
dloga 6H ’
dR 1 K2p RFr — F
= —Fp+ —B 3
dloga  Frr (3H2 R 6 ) 3)
dp
= -3 . 4
dloga (p+p) (4)

The continuity equation (4) can be easily solved for dust matter p,, and radiation p, and yields
p=pma®+plat = pp(a” + Xoa™h) (5)

Here a = 1, p0, and p? are the present time values of the scale factor and the matter densities, while we assume the
following estimation for the ratio among densities as provided by Planck [1]:

o°
X, =~ =29656-10"" . (6)
Pm



The aim of this paper is to explore and compare two clases of F/(R) models of the type described by (2). In both
cases, we neglect the inflationary term given by Fj,y and assume some initial conditions that mimic ACDM model at
large redshifts, namely [34]:

a2 R QF
— O -3 X* —4 Q* — _9 m_ _—3 0. 7
g~ el X R gp =2 g A @)
Here the index * refers to parameters as given in the ACDM model. In particular, Q} = W and Hy is the Hubble

constant in the ACDM scenario as measured today. However, the late-time evolution for the F'(R) models deviates
from these initial conditions and consequently from ACDM model, such that the above parameters measured today
for our models will be different:

Ho# Hy, Q0 #9Q,
Nevertheless, these parameters are connected among themselves [28, 34]:

* * li2 * * A
Q?an =0, (Hg )2 = ?Pm(to), QAHg = QA(H0)2 = 3 (8)

It is also convenient as shown below, to redefine the Hubble parameter and the Ricci scalar as dimensionless functions:

H R

E:— = — .
HY’ R 2A ©)

The first model is given by the following exponential function [31, 34, 36, 40]:

F(R)—R+FDE_R—2A{1—exp(—ﬂ%)} . (10)
Note that this exponential model turns out ACDM model at the limit 8 — co. Moreover, at large redshifts, the model
also recovers ACDM as the curvature becomes large enough R >> A/fS. Hence, physical solutions for this F/(R) action
tend asymptotically to ACDM solutions at large redshifts, such that the above initial conditions (7) results convenient
for the equations. By using the dimensionless variables defined in (9), the corresponding system of equations (3) can
be rewritten as:

dF R
= Qil—= —2F
dloga AR ’
dR PR a3+ Xpa™t 1—(1+BR)e PR
= |0 —" 1 AR QO 11
dloga B '™ E2 + BT+ 0 E2 (11)
This system of equations can be solved by integrating over the independent variable z = loga = —log(z + 1)

and assuming the initial conditions (7) at the point z;, where e #%() ¢ (107°,1077) and our model mimics
ACDM (for more details see Ref. [31]). Then, we confront the model with the observational data by fitting the free
parameters and keeping in mind that H(z) = HjE(z) with the true value for the Hubble parameter today being
Hy = H;E(z = 0) and also the relation (8) for the matter density.

Following the same procedure, a second F(R) model with a power-law of the Ricci scalar is analysed, which is
described by the gravitational action [37-39]:

Rmfan

————— (12)
RGT™ 4 Rt+m

5
R
F(R)=R - 2A”Y(ﬁ) + FepE, Fepe = —a - 2AR

Note that here the so-called early dark energy (EDE) term Fgpg is included where «, ¢, m, n, Ry are constants, and
the curvature scale Ry corresponds to the Ricci scalar value for the epoch 1000 < z < 3000 (see Ref. [37]). This term
can generate a quasi-stable de Sitter stage at R = Ry as far as n is an odd integer, and ¢, m are large enough in
absence of matter. However, in the presence of matter, the limitations on the parameters ¢, m, n are connected with
the behavior of Frr in Eq. (12).

By considering the model (12) without the EDE term (a = 0), the model does not recover purely the ACDM model
at the limit R — oco. However, this power-law model may mimic the ACDM asymptotic behavior (7) at large curvature



10 < R < 10'°, whose solutions are free of divergences and singularities. In this approach we can numerically solve
the system of equations (3) by fixing the initial conditions (7) at large redshifts, corresponding to 1000 < z < 3000.
The system of equations (3) for this case (o = 0) yields:

dE R
= Q= —2E
dloga AR ’
dlogR R [Q5(a®+ Xa ") + Q361 - OR° A4+ 1 (13)
dloga — ~(1—90) E? 1-6°

By solving these equations, the corresponding solutions show an undesirable oscillatory behavior at large R (see
Refs. [37, 39]), especially in the most interesting limit § < 1. An example of these oscillations is depicted in Fig. 1.
Such behavior may be controlled via a choice of the initial conditions (they were optimized in the case shown in the
figure) but can not be completely suppressed in the framework of this model.
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FIG. 1: Power-law model (12) with o = 0 (dashed lines) and with a = 10 (solid lines): plots for RFrr(R) (top-left panel) and
solutions R(a) for y =1.5,6 =0.1, Ro =2-10", m =1, £ =n =0, Qo = 0.26.

Nevertheless, by including the EDE term, these oscillations can be effectively suppressed, that is with a regular
evolution for R and H. Nevertheless, one should note that for n > 1 and (or) £ > 1 the second derivative of Frpr(R)
changes its sign many times close to R = Ry, so Frr(R) in the denominator of Eq. (3) can lead to singularities if « is
not small enough. Due to this reason, if the numbers n, m or £ are large, the value for o should be small. In this case,
Fepg practically does not influence on describing observational data. Nevertheless, for the case m =1, £ =n = 0,
the corresponding EDE term becomes:

FEDE = —2A« r . (14)



And the denominator Frr(R) in Eq. (3) behaves well for such a case (see the top-left panel in Fig. 1) and we can use
this term with rather large o to suppress oscillations during the epoch when R ~ Ry and later. Figure 1 also depicts
the evolution of the Ricci scalar for this choice.

Thus, non-oscillating and non-diverging solutions of the model (12) with the EDE term (14) can be obtained and
confronted with the observational data.

III. OBSERVATIONAL DATA

Here we are interested to confront the models described in the previous section in order to obtain the best fit for
the free parameters and particularly the best fit for Hy when using different data sources. As mentioned above, these
observations include: (a) Type Ia supernovae (SNe Ia) data from Pantheon sample [15]; (b) estimates of the Hubble
parameter H(z) from cosmic chronometers and line-of-sight BAO and (¢) CMB data from Planck 2018 [3, 46].

For the SNe Ta we use the Pantheon sample database [45] with Ngx = 1048 points and compare the corresponding

SNe Ia distance moduli p%* at redshift z; from the catalog with their theoretical values by minimizing the x? function:

NN
Xéx(p1,-..) =min Z Api(Csn) ;. Apj, Api = p(zi,p1, ... ) — po (15)
Hy J

5,J=1

Here Cgy is the covariance matrix [45] and p; are the free model parameters, whereas the distance moduli is given
by:

z

DL (Z) dz
p'"(z) = 5logyg Tope Dp(z) = (14 2) D, Du(z) =c VG
In the expression (15) the Hubble constant Hy is considered as a nuisance parameter [34, 35, 41-13] for SNe Ia data,

so can be marginalized and estimations can not be obtained for Hy from X%N' However, this provides very important
information when fitting the other model parameters.

On the other hand, the Hubble parameter data H(z) are obtained by two different ways of estimation [34, 35, 41—
[4]. The first one is the cosmic chronometers (CC), i.e. estimations of H(z) by using galaxies of different ages At
located closely in terms of the redshift Az,

7 1 d 1 A

a 1+ zdt 142 At
Here we consider 31 CC H (z) data points given in Ref. [17]. In the second method H(z) values are estimated from the
baryon acoustic oscillation (BAO) data along the line-of-sight direction. In this paper we use 36 Hpao(z) data points
from Refs. [18, 49] that can be found in [50]. For a particular cosmological model with free parameters p1,pa, ..., we
calculate the x? function by using the CC H(z) data and the full set CC + Hpao separately, as follows: function

Mo 2 p1,...) — HO (2, 2
x?{(m,---)—Z{H(”p’ Ui B ) (16)

Note that Hgao data points are correlated with BAO angular distances, such that are not considered in other analy-
sis (see Refs. [34, 35, 41]). Nevertheless, here we do not use BAO angular distances, such that we avoid any correlation.

The last source used along the paper is the data from the cosmic microwave background radiation (CMB) that are
given by the following observational parameters [16]

x= (R, la,wp), R:MQ%%()’ KAZ%Z(*))’ wp = QA2 (17)

where z, = 1089.80 & 0.21 is the photon-decoupling redshift [3], while h = Hy/[100kms~'Mpc '], the radiation-
matter ratio X, = QY/QY is given in(6), and we consider the current baryon fraction ) as the nuisance parameter
to marginalize over. The corresponding x? function is:

X%MB = min Ax - 051\1413 (AX)T, Ax =x —xt . (18)
wp



where [406]
xP = (RP' 5 wlh) = (1.7428 £ 0.0053, 301.406 + 0.090, 0.02259 £ 0.00017) , (19)

with free amplitude for the lensing power spectrum, from Planck collaboration 2018 data [3]. The covariance matrix
Ccoms = ||Cij040/]|, the expression r5(z,) and other details are well described in Refs. [35, 41] and [46].

IV. RESULTS AND DISCUSSION

Let us now fit the corresponding models parameters through the x? functions as given in (15),(16) and (18) for
each F(R) model. We consider separately the SNe Ia and H(z) CC (or CC + Hpao) data,

Xénrm = Xén + XH (20)
and the same SNe Ia and H(z) data with the CMB contribution (18)

X§N+H+CMB = XN + XH + XéMB - (21)

We follow this procedure as the CMB data (18) with narrow priors (19) produce the most tight limitations on the
model parameters, particularly on the density matter parameter due to the factor /Q9 in Eq. (17) (see Fig. 2).
Thus, for the two F'(R) models we analyze four different sets of data:

SNe Ia + CC, SNe Ia + CC + Hpao; (22)
SNe Ia + CC + CMB, SNe Ia + CC + Hpao + CMB.

Following the way of maximizing the likelihood, we obtain the corresponding distributions and contour plots for the
free parameters for both F(R) models.

The exponential model (10) owns four free parameters: Hy, Q0,, Qa, B or equivalently Hg, Q7. Q4, 3. However,
A may be considered as a conditionally free parameter because the x? functions (20) and (21) have sharp minimums
along the line Q9 + Qx ~ £(B), where £(8) — 1 in the ACDM limit 3 — oo. Figure 2 depicts the contours at 1o
(68.27%), 20 (95.45%) and 30 (99.73%) for the four data sets given in (22) when considering the exponential model
(10). The planes Hy — Q% and Hy — 3 are obtained by maximizing the likelihood (minimizing the x?) over the other
parameters, while the absolute maximums are described by circles, stars etc. The right panels depict the same contour
plots but with additional details, in particular, the second one is re-scaled along the QY axis. The corresponding
one-parameter distributions shown in the top left panel corresponds to the likelihood function for Hy after maximizing
over the other parameters:

L;j(Ho) ~ exp(—x;(Ho)/2) - (23)

Following the same procedure, the fits of the free parameters for the power-law model (12) with the EDE term (14)
are obtained by the data sets (22). This model has the free parameters: Hy, Q2. Qx, v, §, a and Ry. Although the
EDE factor « is denoted by a* = loga in Table II. We fix Ry/(2A) = 1.2 - 10~7 corresponding to the epoch before
or near the recombination and work with the remaining 6 parameters. Here 25 can be considered as a conditionally
free parameter, because the functions x?(QA, ...) behave like in the previous exponential model. The 1o and 20

contour plots are shown in Fig. 3. In these contour plots and in the likelihood functions (23) we also minimize X?
over the other parameters.

Table II summarizes the results for both F(R) models together with ACDM model, where the minimum y?, the
best fits of the free parameters and their errors are shown for the different data sets considered here (22). We can
evaluate the three models in Table II from the point of view of information criteria depending on the number N,
of the free model parameters. In this sense, the Akaike information criterion [51] AIC = min x3,; + 2N,, provides a
way to compare the goodness of the fits. Then, ACDM model with IV, = 2 gives a better estimation in comparison
with the exponential F/(R) model with N, = 4 and the power-law model with N, = 6. On the other hand, the
minimum X? for the exponential model (10) shows a better fit than ACDM model for the four sets (22), with the
largest difference for the SNe Ia + CC + Hpao data, where additionally the 1o region for the § parameter does not
include ACDM model (recall that this is recovered for 5 — o00). The other three sets show similar fits, including
ACDM model within the errors for 5. The value of Hy for the best fit depends on the data set, with its maximum
given by Hy = 70.28 + 1.6 kms~'Mpc~! (SNe Ia + CC + CMB) and its minimum by Hy = 68.15%13) kms™'Mpc~!
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FIG. 2: Exponential model (10): 1, 20 and 30 CL contour plots for x*(Ho, %, ), x*(Ho, 8) and likelihood functions £ (Ho)
for the 4 sets of observational data.

(SNe Ia + CC + Hpao).

One can see that for the power-law model (12), which owns 6 free parameters, the absolute minimum min y? is
similar in comparison with the exponential F(R) and the ACDM models for all data sets (22), with a slightly better
fit for the case with for SNe Ia + CC + Hpao data. This may be explained as follows: only in this case the best fit
value for the parameter § = 0.171'8:3(};5 is large enough for an effective role of the dark energy F'(R) term in this model
(12). While the other data sets (22), especially for SNe Ia + CC + Hpao data, the best fit for ¢ is close to zero,

but as far as § — 0 the power-law model (12) tends to the ACDM model and the EDE term should be strongly limited.

Concerning the Hj tension problem, Table IT also gathers the estimations for the Hubble constant for both F(R)
models and ACDM model when confronting the models with the data sets given in (22). By a first look, the best
fit values for Hy are very similar for both the exponential model (10) as for the power-law model (12), such that
they are depicted together in the box plots of Fig. 4. Moreover, these estimations are very close to the ACDM model
predictions for three combinations of the observational data (22), whereas for the case SNe Ia + CC + Hpao, error
bars are larger for the F'(R) models and the best fit value is shifted to smaller values of Hy. As shown in Table II,
the case SNe Ia + CC + Hpao gives the most disparate results when compared to ACDM model, as the errors on
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the free parameters does not include ACDM model within the error bars in both F(R) models. The same applies
to the Q0 parameter, which is almost the same value for three of the data sets, and slightly different for the SNe
Ta + CC + Hpao set. In addition, the inclusion of CMB data implies much smaller errors on the matter density
parameter, as natural due to the factor appearing in (17).

Hence, the results draw an scenario that despite the Hy tension is not alleviated in the F(R) models, it gives an
interesting result when considering the SNe Ia + CC + Hpao data set, as excludes ACDM from the 1o region.

V. CONCLUSIONS

In this paper we have explored two F(R) gravity models, where the cosmological evolution is obtained by solving
a dynamical system of equations and then compare to observational data. The models explored along this paper
consist of an exponential correction to the Hilbert-Einstein action (10) and the power-law model (12) with the EDE
term (14). Keeping in mind their capabilities in alleviating the Hy tension between the Planck [3] and SHOES
[5] estimations of Hy, these models were confronted with observational data including SNe Ia, 2 types of H(z)
estimations and CMB data, and by combining this data in four different sets in order to analyze the differences and
the possible biased introduced by some of the sets on the parameter estimations.

The results are summarized in Table II, which shows the best fits for the Hubble constant Hy. As discussed
along the paper, the values obtained for each model are very similar, with no particular differences among the
F(R) models. In the box plot depicted in Fig. 4, the lo error for both F(R) gravities is the same, and in



Model |Data min x*/d.o.f Hyp Qv other parameters
Expon.|SN+CC 1072.78 /1076 |68.597155 | 0.30970-021% | 8 = 3.2075%,
F(R) |SN4+CC+Hpao |1081.33 /1112|68.157 121 10.2799739156 | 5 = 1.34+9-99

SN+CC+CMB  |1083.70 /1079[70.28%1:6910.2771%5:999% | 3 = 3.801%%,,

SN-+tall H+CMB|1091.88 /1115 [69.2270:550.276975-050% | 3 = 3.5215°,,
Power- | SN+CC 1072.78 /1074|68.627153 | 0.31170929° |5 = 0.02110:215, o* = 10.7819:93
law + [SN+CC+Hpao |1080.27 /1110|68.2011:5210.2635100152 |6 = 0.1750 045, o = 10.327752
EDE |SN4CC+CMB |1083.77 /1077 |70.29715 10.27707 50508 |5 = 0.00175:05%, o* < 4.6

SN+all H+CMB|1092.02 /1113]69.2370:5710.276810:000% |6 = 0.00170-007, o < 3.9
ACDM |SN+CC 1072.80 /1078 (68.607158110.30955-020L | Q) =1 -9,

SN+CC+HHpao |1083.06 /1114 |68.52+1:2010.288310-9172

SN+CC+CMB |1083.77 /1081 |70.28+1-6110.27713-9003

SN-+all H+CMB|1092.05 /1117]69.21707810.276910 5053
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TABLE II: The best fit values for Ho (in km sflMpcfl) and other parameters for the cosmological scenarios: the exponential
F(R) model (10) and the power-law model (12) in comparison with the ACDM model.

T T L
Exp & power—law F(R):
SN+CC —_—
SN+CC+H, —
SN+CC+CMB —_——
SN+CC+HBAO+CMB A
ACDM model:
SN+CC e
f———
SN+CC+Hy,
SN+CC+CMB ——
SN+CC+H,, ,+CMB . ]
Planck18 TRGB20 R19
Il Il Il Il
62 64 66 68 70 72 74 76
H

0

FIG. 4: Box plots for the exponential and power-law F'(R) models,together with the ACDM model in comparison with Planck18,
TRGB20 and SHOES (R19) Hy estimations.

comparison with the one from the ACDM model, are also very close for the all data sets (22). The H esti-
mations for the two F(R) models are close to the ACDM model. Moreover, the best fits for three of the data
sets are achieved within the range where the F'(R) models tend asymptotically to ACDM, ie. 8 — oo for the
exponential model (12) and § — 0 for the power-law model (12). Nevertheless, for the SNe Ia + CC + Hpao
data set, both F(R) models do not include ACDM model within the lo region, and the best fits in terms of the
minimum value of x? shows a goodness of the fits much better than ACDM model, and better than the other data sets.

In addition, as shown in Fig. 4, where the vertical bands refer to Hy estimations from Planck 2018 release [3],
SHOES (HST) group [5] and the intermediate recent value by CCHP group with the red giant branch (TRGB)
method [9], the Hy tension does not show a better behavior within these F(R) models but the tension problem
remains. In particular, while the data sets that excludes CMB data fit well the estimations for Hy from Planck 2018
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and TRGB, it does not when CMB rulers is included. The same applies to the ACDM model, as shown in Fig. 4.

Hence, we may conclude that the F'(R) models considered in the paper, described by the gravitational actions given
in (10) and (12), can not exhaustively explain the tension between the Planck [3] and SHOES [5] Hj estimations, but
they can alleviate this tension to some extent. The most interesting result lies on the analysis of both F(R) models
with SNe Ia + CC + Hpao data set, as excludes the ACDM limit from the best fit region, a possible signal of the
deviations from ACDM and/or of the issue of the data sets.
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