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Constant roll inflation in multifield models
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Constant roll inflation is analyzed in the presence of multi scalar fields which are assumed to
be described by a constant roll rate each. The different cases are studied and the corresponding
potentials are reconstructed. The exact solutions are obtained, which show a similar behaviour to
the single scalar field model. For one of the cases analyzed in the paper, the so-called adiabatic
field also constant rolls while entropy perturbations become null, while the second case may lead to
non-adiabatic perturbations. Both cases can fit well the Planck data by assuming the appropriate
values for the free parameters of the models.

I. INTRODUCTION

Since cosmic inflation was proposed in order to sort out some of the problems inherent to the Big Bang model, a lot
of literature has been published about this paradigm, with many theoretical models that are capable of reproducing a
super-accelerating phase just after the Big Bang singularity that solve the initial conditions problem in the standard
cosmological model [1]. In addition, the release of data by the missions WMAP first, and Planck later, made possible
to test some features of inflation through the imprints on the anisotropies in the Cosmic Microwave Background
(CMB) [2–4]. This is due to the fact that inflation not only can solve the initial conditions problem of the Big Bang
model, but also the quantum fluctuations produced during this early period yield the anisotropies in the CMB which
are the seeds causing the variations on the matter distribution that later formed the galaxies and clusters of galaxies
[5].
Most of the inflationary models are constructed by means of a single scalar field, the so-called inflaton, whose

potential is chosen in such a way that inflation is produced on a plateau of the potential leading to a quasi de Sitter
expansion, and then the field goes down up to a minimum, where inflation ends. Such models typically assume
that the scalar field slow rolls down the slope of the potential, during which fluctuations of the scalar field produce
scalar and tensor perturbations, that can be related to the potential of the inflaton. This yields a value for the
spectral index for curvature fluctuations and the ratio between tensor and scalar perturbations, magnitudes that can
be compared to the data from CMB, leading to constraints on the shape of the scalar potential [6, 7]. Nevertheless,
inflation can be also well produced with other frameworks different than a scalar field leading to the same accurate
predictions. Particularly, inflation have been widely analyzed in the context of some extensions of General Relativity,
as in the so-called f(R) gravities [8], with the Starobinsky model as the most promising one for its good predictions
at all levels [9]. However, such modified gravity models can be reduced to a single field model, what implies at least
a mathematical equivalence among them. Nevertheless, when more than a scalar field is considered, the presence
of at least a second field may produce non-adiabatic (isocurvature) perturbations, which contribute as a source for
the adiabatic ones, also at super-horizon scales, and consequently to modifications on the predictions from inflation
[10–13], although such deviations may be small or null when the fields behave similarly in the field space or when the
initial non-adiabatic perturbations are small [14].
However, in all the above scenarios the slow roll condition on the scalar field(s) is assumed in general, which

basically means to consider a negligible acceleration for the field(s). Nevertheless, inflationary models beyond the
slow roll condition have been considered in the literature, as in the ultra slow roll inflation [15–17], where curvature
perturbations are not kept frozen at super Hubble scales, inducing non-gaussianities in the power spectrum. All
these models have been generalized under the so-called constant roll inflation, which assumes that the rate between
the acceleration and velocity of the inflaton remains constant, being the other scenarios just particular cases of
this one [18]. In addition, some exact solutions have been obtained and the corresponding potentials for the scalar
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field reconstructed, showing that one of these potentials does not induce evolution of the curvature perturbations at
superhorizon scales, leading to a viable model for inflation that also satisfies the last constraints from Planck [19, 20].
Moreover, constant roll inflation has been also analyzed in contexts beyond the single scalar field model, as in Brans-
Dicke like theories [21], modified gravities, as f(R) and f(T ) gravity [22], or with couplings to gauge fields [23]. In
addition, some generalizations of the constant roll condition have been studied in [24] as well as transitions between
slow and constant roll scenarios [25]. Also more accurate methods for calculating the power spectrum of scalar and
tensor perturbations in constant roll inflation have been proposed [26, 27].
The main aim of the present paper is to extend the analysis of constant roll inflation to the presence of more than

one scalar field, applying the previous knowledge on multifield inflationary models to the case of two scalar fields
that both hold the constant roll condition. In Ref. [28], a two scalar fields model has been studied by considering
the constant roll condition on the Hubble parameter and its derivatives and then reconstructing the corresponding
solutions for the scalar fields and its potential. Here we assume two separate constant roll conditions, one for each
scalar field, and analyze the solutions and possible potentials for the different cases that arise in the model. We
shall show that in the case where both fields have similar constant roll rates, the so-called adiabatic field constant
rolls too, a result that is obtained also in [28] by a different approach, and the non-adiabatic perturbations are null.
Then, the corresponding potential is reconstructed and the model is confronted with the data from Planck. Also
the general scenario where both fields constant roll differently is studied and its predictions confronted to the Planck
data, showing that in both cases the predictions of the models can be compatible with such data by assuming suitable
values for the free parameters of the models.
The paper is organized as follows: in section II, we review constant roll inflation with the presence of a single

scalar field. Section III is devoted to show the main general features and tools used in multifield inflation, while in
section IV we study a two constant roll scalar fields model and reconstruct the solutions and potentials for different
scenarios. Also its predictions and comparison to Planck data is carried out. Finally, section V gathers the results
and conclusions of the paper.

II. CONSTANT ROLL INFLATION IN SINGLE FIELD MODELS

Let us start by reviewing the main features of constant roll inflation with a single scalar field. The gravitational
action of a scalar field minimally coupled to gravity reads as:

S =

∫

d4x
√−g

(

M2
Pl

2
R− 1

2
∂µφ∂

µφ− V (φ)

)

, (1)

where M2
Pl = (8πG)−1 is the Planck mass, g is the determinant of the space-time metric gµν , R ≡ gµνR

µν is
the Ricci scalar, and V (φ) is the vector potential. The corresponding FLRW equations in a spatially flat universe
ds2 = −dt2 + a(t)2dx2i , where a(t) is the scale factor, are given by:

3M2
PlH

2 =
1

2
φ̇+ V (φ) , −2M2

PlḢ = φ̇2 . (2)

Here H = ȧ
a is the Hubble parameter and dots refer to derivatives with respect to the cosmic time. In addition, by

varying the action with respect to the scalar field φ, its equation in a FLRW metric yields:

φ̈+ 3Hφ̇+
∂V

∂φ
= 0 . (3)

In slow roll inflation, the universe expansion becomes quasi de Sitter as the scalar field behaves as an effective
cosmological constant or, in other words:

φ̈ << φ̇ , φ̇2 << V (φ) . (4)

Then, the accelerating expansion should last a large enough number of e-foldings, usually N = 50 − 65, after which
the scalar field rolls down the potential slope to a minimum. Hence, the corresponding scalar potential has to be a
monotonically decreasing function with a plateau at the top (for an analysis and reconstruction of slow roll inflation
potentials, see e.g. [6, 7]). Moreover, the above conditions can be more conveniently expressed in terms of the so-called
slow roll parameters:

ǫ =
M2

Pl

2

(

V ′

V

)2

, η =M2
Pl

V ′′

V
. (5)
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As inflation occurs, ǫ << 1 and η << 1, while at the end of inflation ǫ ∼ 1. In addition, during inflation fluctuations
on the scalar field grow with the expansion leading to the fluctuations on the metric and, consequently, on the matter
density that forms the seeds of the large scale structure of the universe as well as the anisotropies in the CMB. The
relation between the curvature perturbations and the slow roll parameters are given by the so-called spectral index
that describe the growth of such perturbations, ns, as well as by the tensor to scalar perturbations ratio, r, as

ns − 1 = −6ǫ+ 2η , r = 16ǫ , (6)

respectively. The data by Planck provides strong constraints on these magnitudes, such that any inflationary model
can be tested at least through the type of curvature and tensor perturbations that produces, which has led to rule
out some models [3, 4].
Instead of assuming the slow roll conditions (4), one may consider a type of potential that leads to a constant rate

of roll for the scalar field, which in terms of its derivatives can be expressed as follows:

φ̈

φ̇
= βH . (7)

This is the constant roll condition that imprints an alternative dynamic to the scalar field [18], where the constant β
determines the deviation from a flat potential. When β ≃ 0, slow roll inflation is recovered, whereas β = 0 corresponds
to “ultra slow roll” inflation [15–17]. In order to reconstruct the appropriate scalar potential that holds the constant
roll condition (7), the second FLRW equation in (2) is expressed as:

φ̇ = −2M2
Pl

∂H

∂φ
. (8)

Together with the condition (7), the following equation for H as a function of the scalar field φ is obtained:

∂2H

∂φ2
+

β

2M2
Pl

H = 0 , (9)

which can be easily solved to obtain the Hubble factor as

H(φ) = C1e
√

−β
2

φ
MPl + C2e

−
√

−β
2

φ
MPl . (10)

where C1,2 are integration constants. Finally, by using the first FLRW equation (2), the potential is reconstructed as
[18]

V (φ) = C2
1M

2
Pl(β + 3)e

√
−2β φ

MPl + C2
2M

2
Pl(β + 3)e

−
√
−2β φ

MPl + 2C1C2M
2
Pl(3− β) . (11)

Depending on the value of β and C1,2, the potential will be characterized by trigonometric or hyperbolic functions,
each possibility leading to a different type of inflation. In particular, for −1 < β < 0, the potential can be identified
with power law inflation which is excluded from observations, since it predicts a too large tensor to scalar ratio. For
the general case β < 0 and choosing a hyperbolic cosine in (10), the potential leads to a type of inflation that behaves
as pressureless matter with a cosmological constant, i.e., the ΛCDM model, which requires additional assumptions
for ending inflation. Hence, the only possibility left that provides a viable model for inflation is β > 0, and in such a
case the Hubble parameter (10) turns out:

H(φ) =M cos

(

√

β

2

φ

MPl

)

, (12)

being M a combination of C1,2. The scalar potential becomes in this case:

V (φ) = 3M2M2
pl

[

1− 3 + β

6

{

1− cos

(

√

2β
φ

Mpl

)}]

. (13)

As for the scalar field, substituting (12) in (8) one finds

φ = 2

√

2

β
Mpl arctan(e

βMt) , (14)
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and plugging it back again into (12) one can obtain the expression

H(t) = −M tanh(βMt) , (15)

which implies that the scale factor behaves as

a ∝ cosh−1/β(βMt) . (16)

It should be noted that the condition β > 0 guarantees that in order to produce inflation the potential (13) will get
to a minimum. Indeed, there is a critical value of the field for which V (φc) = 0, which corresponds to

φc =
Mpl√
2β

arccos

(

1− 6

3 + β

)

. (17)

In order to cut the potential before getting to negative values, we set the cut-off field φ0 as φ0 < φc in such a way that
depending on how small this cut-off is as compared to the critical value (17) we find different inflationary behaviours.
For instance, if φ0 ≪ φc then the model is similar to a quadratic hilltop inflation with a cut-off, while if φ0 . φc then
the model resembles natural inflation with an additional negative cosmological constant, Λ =M2(3 + α).
To compute the slow roll parameters we define a field position, φi, as the one which is 55 e-folds back from φc.

Next, we substitute Eq.(13) into (5) to find

ǫ ≡ 1

2

(

V ′

V

)2

=
β(3 + β)2 sin2(

√
2β/Mpl)

[−6− α+ α cos(
√
2β/Mpl)]2

(18)

η ≡ V ′′

V
=

2β(3 + β) cos(
√
2β/Mpl)

−3 + β − (3 + β) cos(
√
2β/Mpl)

. (19)

For the slow roll approximation to hold, we must constrain the largest values these parameters can take to be of order
O(10−2) for 0, 005 < β < 0, 025 and 0 < φ < φi. Therefore, choosing different values for β one gets different values
for the slow roll parameters that can be substituted in the spectral parameters (6) and compared to observational
data.

III. INFLATION IN MULTIFIELD MODELS

Let us start by analyzing the main general features in inflation when considering more than one scalar field to
produce the accelerating expansion. The general minimally coupled multifield scenario is described by action

SE =

∫

d4x
√−g

[

M2
pl

2
R− 1

2
GIJ g

µν ∂µ ϕ
I∂ν ϕ

J − V (ϕI)

]

, (20)

where the I, J indices run from 1 to n, while the n × n metric GIJ determines the kinetic terms in the fields space,
which in the most general case may include non-canonical and crossed kinetic terms. In multifield scenarios, it is
usual to define a new field usually known as the adiabatic field, that represents the path length along the classical
trajectory, as [12]

σ̇2 = GIJ ϕ̇
I ϕ̇J . (21)

Then, the corresponding background FLRW equations are given by:

H2 =
1

3M2
pl

[

1

2
σ̇2 + V

]

, Ḣ = − 1

2M2
pl

σ̇2 , (22)

while the equation for the adiabatic field σ is given by:

σ̈ + 3Hσ̇ + Vσ = 0 . (23)

where Vσ = σ̂I dV

dϕ̇I
with σ̂I ≡ ϕ̇I

0

σ̇
, being ϕI

0 the background value. Now the background dynamics looks like a

single field model with canonical kinetic terms, but one has to take care of the potential, since it depends on all
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the independent fields. For simplicity, we are considering here two scalar fields {φ, χ}, although this analysis can be
easily generalized to n scalar fields, and furthermore we shall consider canonical kinetic terms (minimal couplings
GIJ = δIJ ), so that the time derivative of the adiabatic field is:

σ̇2 = φ̇2 + χ̇2 . (24)

This expression can be rewritten in the following form:

σ̇ = cos θ φ̇+ sin θ χ̇ , (25)

where cos θ =
φ̇

√

φ̇2 + χ̇2

and sin θ =
χ̇

√

φ̇2 + χ̇2

. For the appropriate potential V (σ), an accelerating expansion can

be easily achieved similarly as in single field models. Nevertheless, the field trajectories play a fundamental role in
the generation of non-adiabatic perturbations.
Let us consider perturbations of the scalar fields as δφ and δχ, and consider the fluctuation on the entropy field, s,

defined as

δs = cos θ δχ− sin θ δφ . (26)

Whenever both fields have equal trajectories in the background, the entropy field is null, δs = 0. Here we consider
scalar perturbations on the metric,

ds2 = −(1 + 2A)dt2 + 2aBidx
idt+ a2[(1− 2ψ)δij + 2Eij ]dx

idxj . (27)

Then, working in the spatially flat gauge, the gauge-invariant Mukhanov-Sasaki variable is given by:

Qσ ≡ σ̂IQ
I = δσ +

σ̇

H
ψ , (28)

which accounts for the non-adiabatic fluctuation δσ. We may define the gauge-invariant curvature perturbation, R,
as:

R ≡ ψ − H

ρ+ P
δq = ψ +

H

σ̇
σ̂Iδφ

I =
H

σ̇
Qσ , (29)

where we have used the total momentum perturbation or the energy density flux of the perturbed fluid, δq, which is
given by:

δq = −σ̇σ̂JδϕJ = −σ̇Qσ , (30)

while the total energy density, ρ, and pressure, P , are written as

ρ =
1

2
σ̇2 + V , P =

1

2
σ̇2 − V . (31)

Then, by using the perturbed FLRW equations and the scalar fluctuation field equation, the evolution equation for
the field perturbations can be expressed as [12]

Q̈σ + 3HQ̇σ +

[

k2

a2
+ Vσσ − θ̇2 − 1

M2
pla

3

d

dt

(

a3σ̇2

H

)

]

Qσ = 2
d

dt
(θ̇δs)− 2

(

Vσ
σ̇

+
Ḣ

H

)

θ̇δs , (32)

and

δ̈s+ 3Hδ̇s+

(

k2

a2
+ Vss + 3θ̇2

)

δs =
4M2

plk
2θ̇

σ̇a2
Ψ , (33)

where Ψ is the gauge-invariant Bardeen potential Ψ ≡ ψ + a2H

(

Ė − B

a

)

, θ̇ = −Vs
σ̇

with Vs being the potential

gradient perpendicular to the trajectory in the field space:

Vs = cos θ Vχ − sin θ Vφ . (34)
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As shown in (32), the entropy perturbation δs works as a source term for adiabatic perturbations. Taking the time
derivative of the curvature perturbation (29) one finds

Ṙ =
H

Ḣ

k2

a2
Ψ+

2H

σ̇
θ̇δs . (35)

We can see that R is not conserved even in the large-scale limit whenever δs 6= 0 and a non-straight trajectory in the
field space (θ̇ 6= 0) occurs [13]. The dimensionless power spectrum is given by:

PR(k) =
k2

2π2
|R|2 , (36)

whereas the spectral index is defined as follows:

ns = 1 +
∂ lnPR
∂ ln k

. (37)

Hence, the non-adiabatic perturbations might induce deviations on the spectral index in such a way that when
assuming the presence of more than a scalar field in inflation the corresponding trajectories in the field space play a
fundamental role, since such corrections may provide wrong predictions on the spectral index (and on the tensor to
scalar ratio as well) when comparing to the Planck data. In the next section, we analyze a two scalar field model
when both fields constant roll.

IV. CONTANT ROLL INFLATION WITH TWO SCALAR FIELDS

Here we consider a two scalar field inflation model, whose field equations (22) are written as

3M2
Pl =

1

2
(φ̇2 + χ̇2) + V (φ, χ) ,

−2M2
PlḢ = φ̇2 + χ̇2 , (38)

together with the respective equations for each field, that is,

φ̈+ 3Hφ̇+ Vφ = 0 and χ̈+ 3Hχ̇+ Vχ = 0 . (39)

As in the case of single field model, we impose constant roll conditions on the two fields, which are written as:

φ̈

φ̇
= βφH ,

χ̈

χ̇
= βχH , (40)

where βφ and βχ are constants. In order to carry out our analysis, we must distinguish the cases in which these two
constants are equal or different.

A. βφ = βχ

Let us start by considering βφ = βχ = β. In such a case, by the constant roll conditions (40) one has:

βH =
φ̈

φ̇
=
χ̈

χ̇
. (41)

The second part of this equation can be integrated in such a way that both fields become related as

φ̇ = k1χ̇ → φ = k1χ+ k0 , (42)

with k0, k1 integration constants. Then, by the scalar field equation for φ in (39), the following extra relation is
obtained:

φ̈+ 3Hφ̇+
∂V

∂φ
= k1χ̈+ 3k1Hχ̇+

1

k1

∂V

∂χ
= 0 , (43)
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By comparing the last part of this expression with the field equation for χ in (39), a constraint on k1 is obtained:

k1 = ±1 . (44)

Our aim now is to reconstruct the most general potential V (φ, χ) that holds the constant roll condition (40). From

the second FLRW equation (38) and using (42), one can compute the left-hand side as −2M2
PlḢ = −4M2

Pl
∂H
∂φ , so

that by comparing both sides of Eq.(38) we find

φ̇ = − 4MPl

1 + k−2
1

∂H

∂φ
, (45)

By applying the time derivative here, the following relation is obtained:

φ̈

φ̇
= − 8MPl

1 + k−2
1

∂2H

∂φ2
. (46)

Therefore, by the constant roll condition (40), an equation for H in terms of the scalar field φ is obtained:

∂2H

∂φ2
+

β

8M2
Pl

(

1 + k−2
1

)

H = 0 , (47)

which is the natural generalization of (9). By solving (47) one obtains:

H(φ) = C1 exp
(

1
2

√

−β(1+k2

1
)

2k2

1

φ
MPl

)

+ C2 exp
(

− 1
2

√

−β(1+k2

1
)

2k2

1

φ
MPl

)

. (48)

The potential V (φ, χ) = V (φ, φ/k1−k0) = V (φ) can be reconstructed by using this result in the first FLRW equation
(38), leading to

V (φ) =M2
Pl

[

C2
1 (3 + β) exp

(

√

−β(1 + k21)

2k21

φ

MPl

)

+ C2
2 (3 + β) exp

(

−
√

−β(1 + k21)

2k21

φ

MPl

)

− 2C1C2(β − 3)

]

.

(49)

Now, from the relation between the scalar fields (42) and the integrability condition on the potential ∂2V
∂φ∂χ = ∂2V

∂χ∂φ ,

one gets k0 = 0 and the full potential in terms of both scalar fields becomes

V (φ, χ) =M2
Pl

[

C2
1 (3 + β) exp

(

√

−β(φ2 + χ2)

MPl

)

+ C2
2 (3 + β) exp

(

−
√

−β(φ2 + χ2)

MPl

)

− 2C1C2(β − 3)

]

. (50)

Depending on the value of β, the nature of the potential will be different and, consequently, so will be the way inflation
occurs. Nevertheless, it is more convenient to work with the adiabatic field σ and the entropic field s as defined in the
above section. For this purpose, let us start by analyzing the behaviour of the adiabatic field (24) under the constant
roll conditions (41):

σ̈ =
φ̇φ̈+ χ̇χ̈
√

φ̇2 + χ̇2

= βH

√

φ̇2 + χ̇2 = βHσ̇ → σ̈

σ̇
= βH . (51)

Therefore the adiabatic field also constant rolls. We can use the FLRW equations (22) and the scalar field equation
(23) to write the analog equation (47) for H as a function of the adiabatic field as

∂2H

∂σ2
+

β

2M2
Pl

H = 0 , (52)

whose solution is

H(σ) = C1 exp

(

√

−β
2

σ

MPl

)

+ C2 exp

(

−
√

−β
2

σ

MPl

)

, (53)

while the constant roll potential leads to

V (σ) =M2
Pl

[

C2
1 (3 + β) exp

(

√

−2β
σ

MPl

)

+ C2
2 (3 + β) exp

(

−
√

−2β
σ

MPl

)

− 2C1C2(β − 3)

]

. (54)
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FIG. 1: The potential V (σ) in Eq.(55) in units of C2

1M
2

Pl for β = 0.02. The corresponding critical value V (σc) = 0 is given by
σc/MPl = 14.9.

Hence, we get the potential that describes the constant roll adiabatic field σ. As pointed out in Ref. [18], the only
viable potential for inflation corresponds to values β > 0, leading to:

V (σ) =
1

2
M2

PlC
2
1

[

3− β + (3 + β) cos

(

√

2β
σ

MPl

)]

, (55)

which is depicted in Fig.1 for β = 0.02. The corresponding solutions for the Hubble parameter and the scalar field
can be obtained from the FLRW equations (22) as

H(t) = −C1 tanh (C1βt) , σ(t) = 2

√

2

β
MPl arctan

(

eC1βt
)

. (56)

Nevertheless, it is more convenient to write the solutions in terms of the number of e-foldings, which can be obtained
from the second FLRW equation (22) expressed as follows

H
∂σ

∂N
2M2

Pl +
∂H

∂σ
= 0 . (57)

Using the scalar potential (55) and the first FLRW equation in (22), the following solutions for H and σ as functions
of the number of e-foldings are obtained

H(N) = C1

√

1− exp
(

2βN +m
√

2β
)

, σ(N) =

√

2

β
MPl arcsin

(

βN +m

√

β

2

)

. (58)

Here m is a constant that can be fixed with the number of e-foldings that inflation lasts, as shown below. As in the
case of a single field model, the potential (55) should be cut off prior to a critical value where V (σc) = 0, that is

σc =
MPl√
2β

arccos

(

β − 3

β + 3

)

. (59)

As we are interested in evaluating the perturbations at a field point σi < σc, this can be fixed a number of e-foldings
Nc before σc, which in general amounts to 50− 65. Then, using (58) and (59), the constant m is expressed as:

m =
1√
2β

[

−2βNc + log

(

3

3 + β

)]

. (60)

As shown in Fig. 1, inflation occurs prior to the critical value φc. Before analyzing the perturbations, we should study
the non-adiabatic perturbations in order to compute the possible contributions to the spectral index. Nevertheless,
as the first derivative for both fields are proportional φ̇ = k1χ̇, the fluctuation δs becomes null:

δs = cos θδχ− sin θδφ = (cos θ − sin θ)δχ =

(

k1
√

1 + k21
− k1
√

1 + k21

)

δχ = 0 . (61)
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FIG. 2: Spectral index ns and tensor to scalar ratio r for the case βφ = βχ = β as a function of the number of e-foldings
N = 50− 65 and of β = 0− 0.10.

0.94 0.96 0.98 1.00
0.00

0.02

0.04

0.06

0.08

0.10

ns

r

FIG. 3: Parametric plot for the spectral index ns versus the tensor to scalar ratio r.

Hence, the spectral index ns and the tensor to scalar ratio r can be computed through (6), where the slow roll
parameters are now given by:

ǫ =
M2

Pl

2

(

Vσ
V

)2

, η =M2
Pl

Vσσ
V

. (62)

In Fig. 2, the spectral index ns and the tensor to scalar ratio r are depicted as functions of the parameter β and
the number of e-foldings that σi is located back from the critical value σc. On the other hand, Fig. 3 shows the
parametric plot for both quantities, where the allowed values region is depicted. One should bear in mind that the
last constraints on both parameters provided by Planck [3, 4] are:

ns = 0.9659± 0.0041 , r < 0.11 . (63)

Hence, as shown in Figs. 2 and 3, the constant roll model with two fields that rolls down at the same rate (41), but
may not in the same way, predicts an spectral index and tensor to scalar ratio that can fit the Planck constraints,
although the value of r may excess the upper constraint (63) in the confidence region for ns.
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B. βφ 6= βχ

Let us now consider the case where both fields constant roll at different rates, i.e., βφ 6= βχ. As in the case above,
by the constant roll conditions (40), we can relate both fields as follows:

1

βφ

φ̈

φ̇
=

1

βχ

χ̈

χ̇
→ φ̇ ∝ (χ̇)βφ/βχ . (64)

It is clear that for very different constant roll parameters, for instance βχ >> βφ, the problem reduces to one single
field, similarly to the case analyzed above. For the general case, it is not possible to reconstruct the corresponding
potential V (φ, χ) analytically, but it can be computed in terms of the number of e-foldings. Indeed, by integrating
independently the constant roll conditions (40), one obtains:

φ̇ =MPlφ̇0

(

a

a0

)βφ

=MPle
βφN+mφ ,

χ̇ =MPlχ̇0

(

a

a0

)βχ

=MPle
βχN+mχ , (65)

where mφ and mχ are integration constants that determine the initial velocities of the scalar fields φ̇0 and χ̇0. The
second FLRW equation (38) can be expressed in terms of the number of e-foldings as follows:

− 2HH ′ = e2βφN+2mφ + e2βχN+2mχ , (66)

whose solution is given by:

H(N) =

√

2C1 −
e2βφN+2mφ

2βφ
− e2βχN+2mχ

2βχ
, (67)

with C1 an integration constant. A glance to this expression allows to realize that the Hubble parameter seems to
behave similarly as in the case of equal constant roll, as given by Eq.(58). The corresponding potential V (φ, χ) = V (N)
can be obtained from the first FLRW equation (38) as

V (N) =
M2

Pl

2

(

3 + β2
φ

βφ
e2βφN+2mφ +

3 + β2
χ

βχ
e2βχN+2mχ − 12C1

)

. (68)

The corresponding φ(N) and χ(N) fields could then be obtained by integrating (65), but this path would not provide
an exact expression, and therefore the potential cannot be obtained for this general case. Nevertheless, similarly as in
the previous case, we can analyze the behaviour of the adiabatic field σ and the entropy perturbations δs to extract
information on how the fluctuations are generated when βφ 6= βχ. Let us start by analyzing the behaviour of σ as
defined in (24), which in the present case reads explicitly

σ̇ =

√

φ̇2 + χ̇2 = χ̇

√

1 + k21χ̇
2
(

βφ
βχ

−1
)

,

σ̈ =
1

√

φ̇2 + χ̇2

(

βφHφ̇
2 + βχHχ̇

2
)

=
βχHχ̇

√

1 + k21χ̇
2
(

βφ
βχ

−1
)

(

1 + k21
βφ
βχ
χ̇
2
(

βφ
βχ

−1
)
)

, (69)

where k1 is a proportional constant between the first derivatives of the scalar fields. As pointed above, from here we
can see that unless both constant parameters are similar, or one very large in comparison to the other, the adiabatic
field σ will not constant roll. In addition, the entropy fluctuations field for the general case yields here:

δs =
φ̇δχ− χ̇δφ
√

φ̇2 + χ̇2

≃ k1
√

1 + k21χ̇
2
(

βφ
βχ

−1
)

(

χ̇
2
(

βφ
βχ

−1
)

δχ−
∫

dt
βφ
βχ
χ̇

βφ
βχ

−1 ˙δχ

)

. (70)

Then, non-adiabatic perturbations will arise in the general case, as occurs in slow roll inflation with multifields.
Nevertheless, we can consider such perturbations small outside the horizon [14]. Hence, we can compute the spectral
index and the tensor to scalar ratio through the slow roll parameters as given in (62) by using the potential (68). As
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FIG. 4: Spectral index ns and tensor to scalar ratio r for the case βφ 6= βχ = β. Top panels show the variation of both
magnitudes with respect to the constant roll parameters, while in bottom panels the same magnitudes are depicted as functions
of the initial velocities for the scalar fields. Both cases are considered for a 55 e-foldings inflation.

in the above case, we should impose also a cut-off in the potential, which can be taken as V (φc, χc) = V (Nc) = 0,
where Nc is the number of e-foldings complete along the inflationary period, which allowed us to fix the integration
constant C1. In Fig. 4, the spectral index ns and the tensor to scalar ratio r are depicted as functions of the constant
roll parameters {βφ, βχ} (top panels) and the initial conditions for the velocities of the scalar fields {mφ,mχ} (bottom
panels). We have considered for both cases a inflationary expansion of 55 e-foldings, but we point out that other
durations provide similar results. Note also that in this case we have allowed the constant roll parameters {βφ, βχ}
to take negative values. Hence, the corresponding predictions for ns and r can fit well the values provided by Planck
(63).

V. CONCLUSION

In the present work we have analyzed a two field inflationary model when both fields constant roll, extending
previous analysis of this class of inflationary scenarios to the multifield case. As is done in multifield inflation, we
have used the approach of redefining the scalar fields by using the so-called adiabatic field and the entropy field, which
gather the adiabatic perturbations and the entropy ones, respectively. Then, we have separately analyzed two cases,
one when both scalar fields have the same constant roll parameter and the other one when they are different. In both
cases, we obtain the spectral index and the tensor to scalar ratio and compared them to the latest data from Planck.
For the first case, where the constant roll ratio is the same for both fields, we show that the adiabatic field also
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constant rolls while non-adiabatic fluctuations are null. The corresponding potential for the adiabatic field is obtained,
as well as its expression in terms of both scalar fields, which showed the same behaviour as in the single field scenario
studied in [18, 19]. The exact solution for the Hubble parameter is also obtained in terms of the cosmic time and the
number of e-foldings. Then, the spectral index and the tensor to scalar ratio are obtained, which remain as functions
of the number of e-foldings that inflation lasts and the constant roll parameter. As shown in Figs. 2 and 3, the
constraints provided by the Planck mission can be well satisfied.
The second case leads to a more complex approach, as the differences between the constant roll parameters of both

fields do not lead to an adiabatic field that also constant rolls, while the entropy fluctuations are in general not null.
Nevertheless, for large differences of both constant roll parameters, the problem can be reduced to the one of a single
field. In the general case, we have indeed obtained the exact solution for the Hubble parameter as a function of the
number of e-foldings and the corresponding potential is also obtained in terms of this independent variable. That
allowed us to compute the spectral index and the tensor to scalar ratio as functions of the constant roll parameters,
the initial velocities of each field and the number of e-foldings. By considering negligible entropy perturbations the
results were also compared to the Planck data and depicted in Fig. 4, which can be satisfied for some values of the
free parameters, as in the case above.
Hence, the paper has presented an extension of multifield scenarios when considering two constant roll scalar fields.

Results fit well the observational constraints and keep the entropy fluctuations small for some of the cases, leading to
a healthy generalization of constant roll inflation to multifield models.
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