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a b s t r a c t

The dynamical algebras of the trigonometric and hyperbolic sym-
metric Pöschl–Teller Hamiltonian hierarchies are obtained. A kind
of discrete–differential realizations of these algebras are found
which are isomorphic to so(3,2) Lie algebras. In order to get them,
first the relation between ladder and factor operators is investigated.
In particular, the action of the ladder operators on normalized
eigenfunctions is found explicitly. Then, the whole dynamical alge-
bras are generated in a straightforward way.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

An important class of solvable one-dimensional quantum systems is obtained by means of the fac-
torization method. Indeed, Dirac [1] and Schrödinger [2] already applied it at the beginning of quan-
tum mechanics. The basics of the method and the factorization types can be found for instance in [3],
or for a deeper insight in the classical paper by Infeld and Hull [4]. A feature of the method is that the
discrete spectrum and eigenfunctions of the factorizable Hamiltonians can be obtained algebraically in
terms of the operators (here called ‘‘factor operators”) that enter in the factorization of such Hamilto-
nians. However, these factor operators that link different Hamiltonians, giving rise to a hierarchy, are
not the only ones. In some cases one can define lowering and raising operators (called ‘‘ladder oper-
ators”) for each Hamiltonian in the hierarchy. These ladder operators are used in many contexts: to
construct coherent states [5–7], to find matrix elements of some operators [8], to describe the spec-
trum of many physical systems like neutrons and anyons in magnetic fields [9–11], or simply to
understand the underlying algebra of the full Hamiltonian hierarchy [12]. The factor operators close
the so called potential algebra, and the ladder operators generate the spectrum generating algebra.
If we combine both types of operators we can get a larger algebra that we call the dynamical algebra
of the hierarchy (another dynamical algebras have been considered, see for instance in [13]).
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a r t i c l e i n f o a b s t r a c t

We present a theoretical discussion showing that, although some dissipative systems may
have a sectorial Hamiltonian description, this description does not allow for canonical
quantization. However, a quantum Liouville counterpart of these systems is possible,
although it is not unique.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In a recent paper [1], we have shown that on phase space, one-dimensional systems satisfying an equation of
motion of the form €xþ Fðx; _xÞ ¼ 0 is sectorially Hamiltonian. This means that the phase space can be divided into
disjoint sectors such that the behavior of this dissipative system can be obtained from a Hamiltonian function de-
fined in each sector. These sectors may change with a change of variables, but this fact is not essential in our dis-
cussion. The methods we presented in [1] were valid for one-dimensional systems on the configuration space, or
two-dimensional on phase space. However, these methods could not be extended in general for more dimensions
because they were based on the existence of integrating factors for some Pfaffian equations. This investigation
had its origin in a previous paper of our group in which the existence of local constants of motion for the Sinai bil-
liard was investigated [2].

The next step in our research should be double. On one side, we should investigate if these results can be extended to
arbitrary dimensions without making use of integrating factor, which restricts the number of cases in which our results
can be valid.

On the other side, we should investigate when these type of systems admit quantization. This paper is one step in this
direction. Previous studies have been dealt with the quantization of the one-dimensional oscillator with friction [3,4]. More
recently, the problem of quantizing dissipative systems have been studied in [5,6].

A rather recent work [7] shows that the proper framework for canonical quantization of dissipative systems could be the
Liouvillian formulation of quantum mechanics. In the present paper, we show that this idea is initially correct, although
quantization in the Liouville space should not be unique.

This paper is organized as follows: In Section 2, we show that sectorially defined Hamiltonians do not admit in general
canonical quantization, since this eventual quantization does not lead to self adjoint Hamiltonians. In Section 3, we give a
rigorous argument on why this quantization should be possible on the Liouville formulation of quantum mechanics and
why we do not expect uniqueness.

0960-0779/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.chaos.2008.10.034

* Corresponding author. Address: Instituto de Física de Rosario, 2000 Rosario, Argentina.
E-mail address: manuelgadella@yahoo.com.ar (M. Gadella).

Chaos, Solitons and Fractals 42 (2009) 94–100

Contents lists available at ScienceDirect

Chaos, Solitons and Fractals

journal homepage: www.elsevier .com/locate /chaos

mailto:manuelgadella@yahoo.com.ar
http://www.sciencedirect.com/science/journal/09600779
http://www.elsevier.com/locate/chaos


Quantum infinite square well with an oscillating wall

M.L. Glasser a, J. Mateo b, J. Negro b, L.M. Nieto b,*

a Center for Quantum Device Technology, Clarkson University, Potsdam, NY 13699-5820, USA
b Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47071 Valladolid, Spain

a r t i c l e i n f o

Article history:
Accepted 16 July 2008

Communicated by Prof. G. Iovane

a b s t r a c t

A linear matrix equation is considered for determining the time dependent wave function
for a particle in a one-dimensional infinite square well having one moving wall. By a trun-
cation approximation, whose validity is checked in the exactly solvable case of a linearly
contracting wall, we examine the cases of a simple harmonically oscillating wall and a
non-harmonically oscillating wall for which the defining parameters can be varied. For
the latter case, we examine in closer detail the dependence on the frequency changes,
and we find three regimes: an adiabatic behabiour for low frequencies, a periodic one
for high frequencies, and a chaotic behaviour for an intermediate range of frequencies.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Solution of the Schrödinger equation subject to moving boundary conditions has been studied for many years and a small
number of exactly solvable cases, in one spatial dimension, are known [1–11]. The simplest of these describes a particle in an
infinite square well with one wall moving at constant speed. For the most part, the other solved cases are found by starting
from the Schrödinger equation for a harmonic oscillator with a time-dependent ‘‘frequency”. By transforming the spatial
coordinate to eliminate the wall motion, new time-dependent terms are introduced into the potential. By selecting the wall
motion suitably, one can cancel inconvenient terms and end up with a solvable problem. A supersymmetry approach has
recently been proposed to extend the list of solvable cases [12].

One situation which apparently cannot be studied in this way is the so-called quantum Fermi accelerator: an infinite
square well with one oscillating wall. In 1949, Fermi [13] suggested that cosmic ray protons might have been accelerated
to high energy by colliding with moving galactic magnetic fields. He proposed no specific model, but merely provided some
estimates based on contemporary data. It appears to have been Ulam [14] who modeled this as a classical particle in a square
well with a moving wall. His numerical studies displayed both regular and stochastic motion and the model has been pop-
ular in chaos studies. The quantum mechanical version soon emerged in the area of quantum chaos. In 1986, José and
Cordery [15] formulated the solution to the Schrödinger equation for sawtooth motion of the moving wall and examined
the statistical features of the energy spectrum. This was followed in 1990 by Seba’s work [16] on the absolute continuity
of the spectrum. In these papers, dealing with a saw-tooth profile, the particle is subject to a periodic sequence of force
discontinuities and subsequently this version of the model was shown to be equivalent to the periodically kicked rotator
and many aspects of its dynamics have been investigated (several references are provided in [17]).

Our aim in this article is to examine features of the wave function and the variation of the energy when the particle is
initially in a given instantaneous eigenstate. We assume that the wall oscillates smoothly. The paper is organized as follows:
in Section 2 the theoretical foundations are presented, in Section 3 some examples are developed, paying especial attention
to the change in the frequency of the oscillations of the wall, and finally, Section 4 ends the paper with some conclusions.
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b Departamento de Fı́sica Teórica, Atómica y Óptica, Universidad de Valladolid, 47071 Valladolid, Spain

c Department of Physics, Faculty of Science, Ankara University, 06100 Ankara, Turkey

Accepted 19 September 2007

Abstract

A class of particular travelling wave solutions of the generalized Benjamin–Bona–Mahony equation is studied sys-
tematically using the factorization technique. Then, the general travelling wave solutions of Benjamin–Bona–Mahony
equation, and of its modified version, are also recovered.
� 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The generalized Benjamin–Bona–Mahony (BBM) equation has a higher order nonlinearity of the form

ut þ ux þ aunux þ uxxt ¼ 0; n P 1; ð1Þ

where a is constant. The case n = 1 corresponds to the BBM equation, which was first proposed in 1972 by Benjamin
et al. [1]. This equation is an alternative to the Korteweg–de Vries (KdV) equation, and describes the unidirectional
propagation of small-amplitude long waves on the surface of water in a channel. The BBM equation is not only
convenient for shallow water waves but also for hydromagnetic and acoustic waves, and therefore it has some advan-
tages compared with the KdV equation. When n = 2, Eq. (1) is called the modified BBM equation. When looking for
travelling wave solutions, the BBM and modified BBM equations can be reduced to ordinary differential equations that
possess the Painlevé property and which are integrable in terms of elliptic functions [2,3]. The generalized BBM
equation is also integrable in terms of elliptic functions, provided that some restrictions on the parameters are imposed.
Recently many methods have been presented to obtain the travelling wave solutions of the generalized BBM equation:
the tanh–sech [4,5] and the sine–cosine methods [4–6], an approach based on balancing principle to obtain some explicit
solutions in terms of elliptic function [7], and an extended algebraic method with symbolic computation [8]. These
techniques are presently very popular in the analysis of other related equations, like the KP-BBM and the ZK-BBM
equations [9–11].
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Abstract: We consider a D = 4 two-twistor lagrangian for a massive particle that incor-

porates the mass-shell condition in an algebraic way, and extend it to a two-supertwistor

model with N = 2 supersymmetry and central charge identified with the mass. In the

purely supertwistorial picture the two D = 4 supertwistors are coupled through a Wess-

Zumino term in their fermionic sector. We demonstrate how the κ-gauge symmetry appears

in the purely supertwistorial formulation and reduces by half the fermionic degrees of free-

dom of the two supertwistors; a formulation of the model in terms of κ-invariant degrees

of freedom is also obtained. We show that the κ-invariant supertwistor coordinates can be

obtained by dimensional (D=6→D=4) reduction from a D = 6 supertwistor. We derive

as well by 6→4 reduction the N = 2, D=4 massive superparticle model with Wess-Zumino

term introduced in 1982. Finally, we comment on general superparticle models constructed

with more than two supertwistors.
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Especially in atomic systems, it is now well established that exchange energy generally dominates correla-
tion effects. Therefore we focus here on the exchange energy density �x�r� as given in terms of the idempotent
Dirac density matrix. This is then brought into contact with the one-parameter form of Becke’s functional,
which corrects the local-density-approximation form −cx�n�r��4/3 with n�r� as the ground-state electron density,
cx= �3 /4�e2�3 /��1/3, by terms involving the dimensionless gradient ratio ��n�r�� /n4/3�r�. A particular nonrela-
tivistic model of the 10-electron Ne-like atomic ions, with large atomic number Z, is then compared to Becke’s
approximation to �x�r�.

DOI: 10.1103/PhysRevA.79.042506 PACS number�s�: 31.15.E�, 03.75.Ss, 05.30.Fk, 73.21.La

I. BACKGROUND

It is now well established for neutral atoms that the ex-
change energy generally dominates, numerically, the correla-
tion contribution �1�. Therefore there has been lately a resur-
gence of interest in the exchange energy Ex and the
corresponding exchange potential Vx�r� in density-functional
theory �DFT�.

A notable contribution in the above context is that of
Della Sala and Görling �2�, referred to here as DG who, on
the basis of the somewhat drastic assumption that the
Hartree-Fock determinant equaled its Kohn-Sham counter-
part, derived an integral equation for the exchange potential
Vx�r�. Howard and March �3� subsequently gave a formally
exact generalization of the DG result, but it involved a func-
tion they denoted by P�r�, for which only the sum rule

� P�r�dr = 0 �1�

is known.

II. EXCHANGE ENERGY IN TERMS OF THE
IDEMPOTENT DIRAC DENSITY MATRIX

In terms of the Slater-Kohn-Sham �SKS� �4,5� orbitals
�i�r� of DFT, one defines the ground-state Dirac density ma-
trix ��r ,r�� as �6�

��r,r�� = �
occ

�i
��r��i�r�� , �2�

which is clearly related to the �formally exact� ground-state
electron density n�r� by

n�r� = ��r,r���r=r�. �3�

Then, as was first written by Dirac �6�, the total exchange
energy, Ex say, is given by

Ex = −
e2

4
� ���r,r���2

�r − r��
drdr�. �4�

Below, we shall focus most attention on the exchange
energy density, denoted by �x�r�. Although its definition is
not unique, all choices must clearly satisfy the relation

Ex =� �x�r�dr . �5�

The most natural choice for exchange energy density is then,
from Eqs. �4� and �5�, given by

�x�r� = − �e2/4�� ���r,r���2

�r − r��
dr�, �6�

which Slater �4� adopted �also see Kleinman �7��. We will
mainly use this in the present paper; however, in Appendix A
an alternative form is given which can be shown to be a
functional of the electron density n�r�.

Let us consider now a 10-electron “atomic ion” model in
the nonrelativistic limit of large nuclear charge. The ex-
change energy density �x�r� in exact analytical form for an
atomic model studied by Howard et al. �8� will be exten-
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2 Departimento di Fisica, Università di Firenze and INFN–Sezione di Firenze I50019 Sesto
Fiorentino, Firenze, Italy
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Abstract
The Poisson–Hopf analogue of an arbitrary quantum algebra Uz(g) is
constructed by introducing a one-parameter family of quantizations Uz,h̄(g)

depending explicitly on h̄ and by taking the appropriate h̄ → 0 limit. The
q-Poisson analogues of the su(2) algebra are discussed and the novel suP

q (3)

case is introduced. The q–Serre relations are also extended to the Poisson limit.
This approach opens the perspective for possible applications of higher rank
q-deformed Hopf algebras in semiclassical contexts.

PACS numbers: 02.20.Uw, 03.65.Sq
Mathematics Subject Classification: 17B63, 17B37, 81R50

1. Introduction

Quantum groups were initially introduced as quantizations of Poisson–Lie groups associated
with certain solutions of the classical Yang–Baxter equation. In this context, the deformation
parameters were taken as q = ez, where z is the constant that governs the noncommutativity
of the algebra of observables given by the quantum group entries, and quantum algebras were
obtained as the Hopf algebra dual of quantum groups (for a detailed discussion, see [1–5] and
references therein). In the case of the transition from classical to quantum physical models,
the deformation parameter z was interpreted as the Planck constant h̄.

However, in more general contexts z is a parameter whose geometric/physical meaning
has to be elucidated for each particular case. In fact, quantum groups and quantum algebras
were soon considered as ‘abstract’ Hopf algebras (being both noncommutative and non-
co-commutative) in order to explore whether these new objects can be considered as new
symmetries of some physically relevant systems. The keystone of this approach was the
discovery of the suq(2) invariance of the Heisenberg spin XXZ chain [6, 7], that was followed
by a number of results exploiting quantum algebra symmetries in two-dimensional models
[8]. Indeed, in the XXZ chain the ‘quantum’ deformation parameter q is clearly identified

1751-8113/09/275202+09$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1
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Abstract
In this paper, it is shown that a one-dimensional Hamiltonian with an attractive
delta potential at the origin plus a mass jump at the same point cannot have
a bound state, as is the case with the ordinary attractive delta potential with
constant mass, unless another term is added into the potential in the form of
a derivative of the Dirac delta at the origin. The consistency of this singular
potential with two terms is guaranteed by choosing suitable matching conditions
at the singular point for the wavefunctions. Furthermore, it is proved that the
self-adjointness of the Hamiltonian with both singular interactions determines
the coefficient of the derivative of the delta in a unique manner. Under these
conditions, the bound state and its energy are obtained and it is checked that
the correct results in the limit of equal masses are obtained.

PACS numbers: 03.65.−w, 03.65.Db, 03.65.Ge

1. Introduction

The consideration of Hamiltonians with variable mass in non-relativistic quantum mechanics
is an old problem that has recently attracted a lot of attention [1]. When the mass is not a
constant, but depends on the position, m(x), it has to be considered as a position-dependent
operator not commuting with the momentum operator p. Therefore, the kinetic term K of the
Hamiltonian cannot be written in the usual way, being the most generally accepted form of
H = K + V [2]:

H = K + V = 1
2 mα(x)p mβ(x)p mα(x) + V (x), (1)

with 2α + β = −1. Note that the usual form of the kinetic energy is recovered for constant
mass.

Physical systems with an abrupt discontinuity of the mass at one point are modeling the
behavior of a quantum particle, i.e. an electron, moving in a media formed up by two different
materials. On each of the materials the particle behaves as if it had a different mass. The
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Ş Kuru1, J Negro2 and L M Nieto2

1 Department of Physics, Faculty of Science, Ankara University, 06100 Ankara, Turkey
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Abstract
Exact analytical solutions for the bound states of a graphene Dirac electron in various magnetic
fields with translational symmetry are obtained. In order to solve the time-independent
Dirac–Weyl equation the factorization method used in supersymmetric quantum mechanics is
adapted to this problem. The behavior of the discrete spectrum, probability and current
densities are discussed.

1. Introduction

The discovery of graphene [1, 2], a two-dimensional layer
of graphite, and the massless Dirac character of the low
energy electrons moving has attracted much interest in physics
due to its important electronic properties. In particular, it
is a scenario where some fundamental aspects of relativistic
quantum mechanics can be addressed, such as the Klein–
Gordon paradox or the anomalous Landau–Hall effect [2, 3].
Also, graphene is an appropriate material to develop electronic
devices. Recently a series of studies concerning the
interaction of graphene electrons in perpendicular magnetic
fields (sometimes including electrostatic fields parallel to the
layer surface) have been carried out in order to find a way for
confining the charges [4–12]. In these works the Dirac–Weyl
equation for massless electrons with a Fermi velocity vF is
considered, where a minimal coupling with the vector potential
describes the interaction with the external field. In general,
some kinds of numerical computation were needed to find the
energy levels of confined states or transmission coefficients for
scattering states.

In this paper our interest is to consider interactions under
perpendicular magnetic fields invariant under translations in
one direction, and at the same time allowing for exact
analytical solutions of the Dirac–Weyl equation. In order to
achieve this goal we will adapt the factorization method and
the techniques of supersymmetric quantum mechanics (SUSY-

QM) to this situation [13–18]. This will allow us to gather
here a number of problems where the results can be easily
discussed, and at the same time we can interpret them in light
of other situations previously considered in the literature. Let
us mention that some SUSY-QM methods have been applied
to graphene to obtain the exact and numerical solutions of
Dirac electron Hamiltonians [19, 20] and also to describe the
quantum Hall effect [21–23].

The organization of this paper is as follows. In section 2
we introduce the factorization method in the framework of the
Dirac–Weyl equation for a massless electron in a magnetic
field. Section 3 supplies a list of cases that can be solved
using this method and with some figures describing basic
properties. We end with some comments on the obtained
results in section 4.

2. The Dirac–Weyl equation and SUSY partner
Hamiltonians

In graphene a Dirac electron moves with an effective Fermi
velocity vF = c/300, where c is the velocity of light,
and behaves as a massless quasi-particle. The effective
Hamiltonian around a Dirac point for a Dirac electron has the
form [2]

H = vF(σ · p), (2.1)

where σ = (σx , σy) are the Pauli matrices and p =
−ih̄(∂x , ∂y) is the two-dimensional momentum operator. The
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In this Letter, we present a one-dimensional model that includes a hard core at the origin, a Dirac
delta barrier at a point in the positive semiaxis and a mass jump at the same point. We study the
effect of this mass jump in the behavior of the resonances of the model. We obtain an infinite number
of resonances for this situation, showing that for the case of a mass jump the imaginary part of the
resonance poles tend to a fixed value depending on the quotient of masses, and demonstrate that none
of these resonances is degenerated.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The concept of resonance plays a central role in Quantum Me-
chanics and therefore, for this reason, it is important the search for
models with resonances. Some of them are based on the Friedrichs
model [1] and its variants [2,3]. In addition to be exactly solvable,
the Friedrichs model has the most important and basic features for
the description of resonance phenomena. A second type of solvable
models are those one-dimensional with a hard core at the origin.
This means that the potential is infinite on the negative semiaxis.
These models often come from a Hamiltonian with a spherically
symmetric potential, when restricted to � = 0. On the other hand,
Hamiltonians with singular potentials has been recently the ob-
ject of study [4–7]. Combining both fields of research, the authors
of a recent paper [8] study the resonances produced by a one-
dimensional Hamiltonian of the form

H = − h̄2

2m

d2

dx2
+ V 0(x) + γ δ(x − a), γ > 0, a > 0, (1)
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with

V 0(x) :=
{∞ if x � 0,

0 if x > 0.
(2)

In this model, the existence of an infinite number of resonances is
shown. The study [8] is made by using the Krein formula that re-
lates Green functions for potentials that are extensions of the same
symmetric operator with identical deficiency indices [5]. Complex
poles of the Green function are often associated to resonances.
However, although the Krein formula gives precise results, it is
not quite familiar to physicists. Instead, a calculation of resonances
based in the idea of purely outgoing boundary conditions is more
familiar to physicists and the eventual complexity in the equa-
tions giving the resonances is facilitated by the use of packages
like Mathematica.

Resonances of physical systems can be of different types, de-
pending on the character of the poles of the associated S matrix.
Usually, the interest is centered around its simple poles, but not
exclusively. Indeed, the search for systems with resonances from
multiple poles of the S matrix has been initiated by Mondragón
and coworkers [9]. These poles lead to degenerate resonances, for
which the exponential decay on time is multiplied by a polyno-
mial on time [3,9]. It is shown in [9] that if we replace in (1) the
term γ δ(x−a) by γ1δ(x−a)+γ2δ(x−b), with γ1,2 > 0, b > a, and
these constants are suitably chosen, a double pole arise in the ana-
lytic continuation of the S matrix. This justifies the interest for the
theoretical search of degenerated resonances. We show that in the
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We show that a one-dimensional Schrödinger equation in which the potential is a delta well plus a δ′
interaction at the same point has a bound state, and we obtain the energy of this bound state in terms
of the parameters. In addition, the expression of the reflection and transmission coefficients is also fully
determined.

© 2009 Elsevier B.V. All rights reserved.

The goal of the present communication is to analyze the one-
dimensional quantum Hamiltonian

H = p2

2m
− aδ(x) + bδ′(x), a > 0, b ∈ R, (1)

showing that (i) it has a unique bound state, whose energy will be
given in terms of a and b, and (ii) its reflection and transmission
coefficients can be also determined explicitly for any (positive) en-
ergy.

This model is very well known when b = 0, a case that appears
as a nice toy model in many textbooks [1]. Indeed, it is known that
for b = 0, the Hamiltonian in (1) is self-adjoint in a domain D of
continuous functions ψ(x) such that ψ ′(0+) − ψ ′(0−) = maψ(0),
where ψ ′(0+) and ψ ′(0−) are respectively the right and left limits
of ψ ′(x) at the origin [2,3], and in this case it can be easily checked
that H has a bound state of energy E = − 1

2 ma2, with h̄ = 1. In ad-
dition, the Dirac delta potential has been also used together with
background potentials, for example in [4] combined with a con-
stant electric field to illustrate a model for resonances.

Nevertheless, to our knowledge, the general case considered in
Eq. (1) does not seem to have been treated before in the liter-
ature. As we will see, its solution is not complicated at all but
it has many interesting features which deserves a careful atten-
tion. Actually, there is some controversy on the meaning of the
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δ′(x) potential [5], as different regularizations produce different re-
flection and transmission coefficients [6–8]. In our treatment for
V (x) = −aδ(x) + bδ′(x), and hence for the particular case a = 0,
b = 1, we have followed the general approach proposed by Kurasov
and coworkers [3,9,10]. This has the clear advantage that the defi-
nitions for the singular potentials depend on matching conditions
at the origin and not on the choice of a particular regularization.

First of all, let us remark that the domain of self adjointness of
H in (1) has been well established in [3]. This is the subspace of
functions ψ(x) satisfying the following matching conditions at the
origin1:

(
ψ(0+)

ψ ′(0+)

)
=

( 1+mb
1−mb 0

−2am
1−m2b2

1−mb
1+mb

)(
ψ(0−)

ψ ′(0−)

)
, (2)

where ψ(0+), ψ(0−), ψ ′(0+) and ψ ′(0−) are the right and left
limits at the origin of the function ψ(x) and its first derivative, re-
spectively. Therefore, possible bound states of H in (1) must fulfill
these matching conditions at the origin.

1 For the sake of mathematical rigor, it must be said that the wave functions ψ(x)

must belong to the Sobolev space W 2
2 (R/{0}) of continuous functions (except for a

finite jump at the origin) from R into C such that: (i) any f ∈ W 2
2 (R/{0}) admits

a first continuous derivative (except at the origin), (ii) the second derivative exists
almost everywhere, and (iii) both f ∈ W 2

2 (R/{0}) and its second derivative are a.e.
square integrable, so that

∞∫
−∞

{∣∣ f (x)
∣∣2 + ∣∣ f ′′(x)

∣∣2}
dx < ∞.
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In early work, March and Murray (MM) solved the Bloch equation for the canonical density matrix
generated by a given potential V (r) using perturbation theory to all orders in V , the unperturbed
problem being that of free homogeneous electrons. Here, we avoid perturbation theory by using, but
now in one dimension, the MM differential equation for the so-called Slater sum S(x, β) for given V (x),
to write the Bloch equation for C(x, x′, β) in terms of its diagonal element C(x, x′, β)|x′=x = S(x, β), where
β = (kB T )−1. In the language of the Feynman propagator, β → it where t is the time, and this propagator
is then characterized solely by its diagonal element in one dimension. The connection with ground-state
density functional theory is finally emphasized.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In an early study, March and Murray (MM) [1,2] used the Bloch
equation for the canonical density matrix C(r, r′, β) generated by a
given one-body potential V (r) to generate C to all orders in pow-
ers of V , the unperturbed wave functions being plane waves. MM
also solved the one-dimensional analogue C(x, x′, β) to obtain its
diagonal element S(x, β) defined by

S(x, β) = C(x, x′, β)|x′=x, (1)

where

C(x, x′, β) =
∑

i

ψ∗
i (x)ψi(x′)exp(−βεi). (2)

Here, ψi(x) and εi are wave functions and corresponding eigen-
values generated by the given V (x) potential inserted in the
Schrödinger equation. In Eq. (2) β = (kB T )−1.
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The ‘kinetic energy per unit length’ tL(x, β) is defined from the
canonical density matrix C(x, x′, β) as

tL(x, β) = − h̄2

2m

∂2

∂x2
C(x, x′, β)

∣∣∣∣
x′=x

. (3)

As summarized by March and Howard [3], following [1], the
Slater sum S(x, β) itself satisfies the following differential equation
into which the input is the chosen potential V (x):

h̄2

8m

∂3 S(x, β)

∂x3
= ∂2 S(x, β)

∂x∂β
+ V (x)

∂ S(x, β)

∂x
+ 1

2

dV (x)

dx
S(x, β). (4)

We shall utilize Eq. (4) below as a first-order linear differential
equation for V (x), given the Slater sum S(x, β) as an input.

To complete the introduction, we note that the Bloch equation
for C(r, r′, β) reads [4]

HrC(r, r′, β) = −∂C(r, r′, β)

∂β
, (5)

where the Hamiltonian Hr is given by

Hr = − h̄2

2m
∇2

r + V (r). (6)

Below, our considerations are restricted to the one-dimensional
analogue of Eq. (6) with potential V (x) appearing in Eq. (4).
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