Papers

Here you will find the papers published in JCR journals by members of the group (since 2009), as well as the last preprints submitted.

 Preprints (12):

  1. A Solvable Contact Potential Based on a Nuclear Model, A. Martín-Mozo, L.M. Nieto and C. Romaniega (2021).
  2. Asymmetric scattering between kinks and wobblers, A. Alonso Izquierdo, L.M. Nieto and J. Queiroga-Nunes (2021).
  3. Kinetic and Magnetic Mixing with Antisymmetric Gauge Fields, J. Gamboa, J. Lopez-Sarrion, F. Mendez (2021). arXiv:2107.09197
  4. Two-atom van-der-Waals forces with one atom excited: the identical atoms limit I, J. Sánchez-Cánovas and M. Donaire (2021). arXiv:2104.05851
  5. Massive and massless two-dimensional Dirac particles in electric quantum dots, S. Kuru, J. Negro, L.M. Nieto, and L. Sourrouille (2021).
  6. A duality in the origin of bulges and spheroidal galaxies, L. Costantin et al. (2021).
  7. The ASTRODEEP-GS43 catalogue: new photometry and redshifts for the CANDELS GOODS-South field, E. Merlin et al. (2021).
  8. The VANDELS ESO public spectroscopic survey: final Data Release of 2087 spectra and spectroscopic measurements, B. Garilli et al. (2021). arXiv:2101.07645v1
  9. Ghost condensation and Ostrogradskian instability on low derivative backgrounds, J. López-Sarrión and M. Valencia-Villegas (2021). quantum_carpetarXiv:2011.04008
  10. Carroll versus Galilei from a Brane Perspective, E. Bergshoeff, J.M. Izquierdo, and L. Romano (2021).
  11. A note on Beuker’s and related double integrals,  M. L. Glasser (2021).
  12. From single-particle physical distributions to probabilistic measures of two-particle entanglement, I. Nagy and M. L. Glasser (2021).

2021 (31 papers):

  1. Vertical distribution of aerosols and hazes over Jupiter’s Great Red Spot and its surroundings in 2016 from HST/WFC3 imaging, A. Anguiano-Arteaga, S. Pérez-Hoyos, A. Sánchez-Lavega1, J.F. Sanz-Requena, Patrick G.J. Irwin, to appear in J. Geophys. Res. Planets (2021).  https://doi.org/10.1029/2021JE006996
  2. The evolution of compact massive quiescent and starforming galaxies derived from the Re-Rh and Mstar-Mh relations, L. Zanisi et al., to appear in MNRAS (2021).
  3. Euclid preparation: XVI. Exploring the ultra low-surface brightness Universe with Euclid/VIS, A. S. Borlaff et al., to appear in Astronomy & Astrophysics (2021). arXiv: 2108.10321to

  4. Resonant scattering of a single atom with gain: A wave-function-diagrammatic approach, M. Donaire, Phys. Rev. A 104, 043704 (2021). arXiv:2106.16155
  5. Shadows and optical appearance of black bounces illuminated by a thin accretion disk, M. Guerrero, G. J. Olmo, D. Rubiera-Garcia, D. Sáez-Chillón Gómez, JCAP 08 (2021) 036;  arXiv:2105.15073
  6. 3+1 decomposition in modified gravities within the Palatini formalism and some applications, D. Sáez-Chillón Gómez, Phys. Rev. D 104 (2021) 024029; arXiv:2103.16319
  7. The quantum harmonic oscillator and Catalan’s constant, S. Fassari, L.M. Nieto, F. Rinaldi, and C. San Millán, Rep. Math. Phys. 88, 195-202 (2021).
  8. A Note on the Riemann ξ-Function, M.L. Glasser, Scientia, Series A: Mathematical Sciences 31, 15-23 (2021).
  9. Superintegrability on the 3-dimensional spaces with curvature. Oscillator-related and Kepler-related systems on the sphere S^3 and on the hyperbolic space H^3, J.F. Cariñena, M.F. Rañada and M. Santander, J. Phys. A: Math. Theor. 54, 365201 (2021).
  10. Jupiter’s Great Red Spot: Strong Interactions With Incoming aAticyclones in 2019, A. Sánchez-Lavega, A. Anguiano-Arteaga, P. Iñurrigarro, E. Garcia-Melendo, J. Legarreta, R. Hueso, J. F. Sanz-Requena et al. (2021), Journal of Geophysical Research: Planets, 126, e2020JE006686.
  11. The Energy of the Ground State of the Two-Dimensional Hamiltonian of a Parabolic Quantum Well in the Presence of an Attractive Gaussian Impurity, S. Fassari, M. Gadella, L.M. Nieto, and F. Rinaldi, Symmetry 2021, 13, 1561. https://doi.org/10.3390/sym13091561
  12. A method to find approximate solutions of first order systems of non-linear ordinary equations, J.J. Alvarez-Sánchez, M. Gadella, and L.P. Lara, Math. Meth. Appl. Sci. 44, 10014-10031 (2021).
  13. Heisenberg-Weyl groups and generalized Hermite functions, E. Celeghini, M. Gadella, and M.A. del Olmo, Symmetry 2021, 13, 1060 (21pp).
  14. The momentum distribution of two bosons in one dimension with infinite contact repulsion in harmonic trap gets analytical, K. Bencheikh, L.M. Nieto, and U. Ancarani, to appear in Eur. Phys. J. Plus 136, 721 (2021).
  15. The Schrödinger particle on a half line with an attractive δ-interaction: bound states and resonances, S. Fassari, M. Gadella, L.M. Nieto, and F. Rinaldi, Eur. Phys. J. Plus 136, 673 (2021).
  16. Dirac-like Hamiltonians associated to Schrödinger factorizations, D. Demir Kızılırmak, S. Kuru, and J. Negro, Eur. Phys. J. Plus 136, 668 (2021). arXiv:2104.02732v1
  17. Modelling and testing the equation of state for (Early) dark energy, Shin’ichi Nojiri, Sergei D. Odintsov, Diego Sáez-Chillón Gómez, and German S. Sharov, Phys. Dark Univ. 32 100837 (2021). arXiv:2103.05304
  18. Non-Perturbative Aspects of Spontaneous Symmetry Breaking, J. Gamboa and J. López-Sarrión, Int. J. Mod. Phys. A. 36, 2150074 (2021). arXiv:2009.05852
  19. Hermite functions and Fourier series, E. Celeghini, M. Gadella, and M. A. del Olmo, Symmetry 2021, 13, 853. https://doi.org/10.3390/sym13050853
  20. Coherent states in the symmetric gauge for graphene in a constant perpendicular magnetic field, E. Díaz-Bautista, J. Negro, and L.M. Nieto, Eur. Phys. J. Plus 136, 505 (2021).
  21. Repulsive Casimir-Lifshitz pressure in closed cavities, C. Romaniega, Eur. Phys. J. Plus 136, 1051 (2021).  arXiv:2008.02031
  22. Admissible vectors and Hilbert Algebras, F. Gómez-Cubillo and S. Wickramasekara, Mediterr. J. Math. 18, 16 (2021). arXiv:1812.00092
  23. Analyzing the Ho tension in F(R) gravity models, S.D. Odintsov, D. Sáez-Chillón Gómez, and G.S. Sharov, Nucl. Phys. B 966, 115377 (2021). arXiv:2011.03957 [gr-qc].
  24. Univariate tight wavelet frames of minimal support, F. Gómez-Cubillo and S. Villullas, Banach J. Math. Anal. 15 (2021) 42.
  25. Casimir pistons with generalized boundary conditions: a step forward, G. Fucci, K. Kirsten, and J.M. Muñoz-Castañeda, Anal. Math. Phys. 11, 70 (2021). arXiv:1906.08486v1
  26. Superintegrability of 3-dimensional Hamiltonian systems with conformally Euclidean metrics. Oscillator-related and Kepler-related systems, J.F. Cariñena, M.F. Rañada, and M. Santander, J. Phys. A: Math. Theor. 54 (2021) 105201 (24pp).
  27. Supersymmetric Partners of the One-dimensional Infinite Square Well Hamiltonian, M. Gadella, J. Hernández-Muñoz, L.M. Nieto, and C. San Millán, Symmetry 2021, 13, 350.
  28. Variational principle and boundary terms in gravity à la Palatini, D. Sáez-Chillón Gómez, Phys. Lett. B 814, 136103 (2021). arXiv:2011.11568 [gr-qc]
  29. Casimir energy for concentric δ-δ’ spheres, I. Cavero-Peláez, J. M. Munoz-Castaneda, and C. Romaniega, Phys. Rev. D 103, 045005 (2021)ArXiv:2009.03785
  30. Scattering between wobbling kinks, A. Alonso Izquierdo, J. Queiroga-Nunes, and L.M. Nieto, Phys. Rev. D 103, 045003 (2021). arXiv:2007.15517
  31. Polynomial algebras from su(3) and a quadratically superintegrable model on the two sphere, F. Correa, M. A. del Olmo, I. Marquette, and J. Negro, J. Phys. A: Math. Theor. 54 (2021) 015205. arXiv:2007.11163

2020 (32 papers):

  1. General slow-roll inflation in f(R) gravity under the Palatini approach, S. Bekov, K. Myrzakulov, R. Myrzakulov, and D. Sáez-Chillón Gómez, Symmetry 12, no.12, 1958 (2020). doi:10.3390/sym12121958. arXiv:2010.12360
  2. Constant roll inflation in multifield models, M. Guerrero, D. Rubiera-Garcia, and D. Sáez-Chillón Gómez, Phys. Rev. D 102, 123528 (2020). doi:10.1103/PhysRevD.102.123528. arXiv:2008.07260
  3. Extremal cosmological black holes in Horndeski gravity and the anti-evaporation regime, I. Ayuso and D. Sáez-Chillón Gómez, Universe 6, no.11, 210 (2020).
    doi:10.3390/universe6110210. arXiv:2004.10139v1
  4. The general Racah algebra as the symmetry algebra of generic systems on pseudo–spheres, S. Kuru, I. Marquette, and J. Negro, J. Phys. A: Math. Theor. 53 (2020) 405203. https://arxiv.org/pdf/2004.07048.pdf
  5. Some recent results on contact or point supported potentials, L.M. Nieto, M. Gadella, J. Mateos-Guilarte, J.M. Muñoz-Castañeda, and C. Romaniega, in Geometric Methods in Physics XXXVIII, P. Kielanovski, A. Odzijewicz and E. Previato (Eds.), Birkhäuser,  Trends in Mathematics, pp 197-219 (2020). doi.org/10.1007/978-3-030-53305-2_14
  6. Redundant poles of the S-matrix for the one dimensional Morse potential, M. Gadella, A. Hernandez-Ortega, S. Kuru, and J. Negro, Eur. Phys. J. Plus, 135 (2020) 822.
  7. Band spectra of periodic hybrid δ-δ’ structures, M. Gadella, J. M. Mateos Guilarte, J. M. Muñoz-Castañeda, L. M. Nieto, and L. Santamaría-Sanz, Eur. Phys. J. Plus, 135 (2020) 786.
  8. Gamow vectors formalism applied to the Loschmidt echo, S. Fortin, M. Gadella, F. Holik, and M. Losada, Eur. Phys. J. Plus, 135 (2020) 738.
  9. Methods in Statistical Mechanics. A Modern View. O. Civitarese and M. Gadella. Part of the Lecture Notes in Physics book series, volume 974 (Berlin: Springer, 2020). https://doi.org/10.1007/978-3-030-53658-9
  10. The two lowest eigenvalues of the harmonic oscillator in the presence of a Gaussian perturbation, S. Fassari, L.M. Nieto, and F. Rinaldi, Eur. Phys. J. Plus, 135 (2020) 728.
  11. Thermal Casimir effect with general boundary conditions, J. M. Munoz-Castaneda, L. Santamaría-Sanz, M. Donaire, and M. Tello-Fraile, Eur. Phys. J. C, 80 (2020) 793.
  12. Color and aerosol changes in Jupiter after a North Temperate Belt disturbance, S. Pérez-Hoyos, A. Sánchez-Lavega, J.F. Sanz-Requena et al., Icarus (2020) 114031.
  13. Free energy and entropy for finite temperature quantum field theory under the influence of periodic backgrounds, M. Bordag, J. M. Muñoz-Castañeda, and L. Santamaría-Sanz, Eur. Phys. J. C, 80 (2020) 221 (11 pp). https://doi.org/10.1140/epjc/s10052-020-7783-3
  14. Evolution of quantum observables: from non-commutativity to commutativity, S. Fortin, M. Gadella, F. Holik, and M. Losada, Soft Computing, 24 (2020) 10265–10276.
  15. Exact results for nonequilibrium dynamics in Wigner phase space, K. Bencheikh and L.M. Nieto, Phys. Lett. A 384 (2020) 126599.
  16. Approximate solutions of one dimensional systems with fractional derivative, A. Ferrari, M. Gadella, L.P. Lara, and E. Santillan Marcus, Int. J. Mod. Phys. C 31 (2020) 2050092. ArXiv:1910.08182
  17. Topological thermalization via vortex formation in ultra-fast quenches, M. Tello-Fraile, A. Cano, and M. Donaire, Phys. Rev. E 101 (2020) 052113. http://arxiv.org/abs/2002.05464
  18. Multilayer hazes over Saturn’s hexagon from Cassini ISS limb images, A. Sánchez-Lavega, A. García-Muñoz, T. del Río-Gaztelurrutia, S. Pérez-Hoyos, J. F. Sanz-Requena et al., Nat. Commun. 11 (2020) 2281. https://doi.org/10.1038/s41467-020-16110-1
  19. An approximation to the Woods–Saxon potential based on a contact interaction, C. Romaniega, M. Gadella, R.M. Id Betan, and L.M. Nieto, Eur. Phys. J. Plus 135 (2020) 372. https://rdcu.be/b3PjY, https://doi.org/10.1140/epjp/s13360-020-00388-7.
  20. A Relativistic One Dimensional Band Model with Position Dependent Mass, M. L. Glasser, Phys. Lett. A 384 (2020) 126277. https://doi.org/10.1016/j.physleta.2020.126277
  21. Symmetries of certain double integrals related to Hall effect devices, U. Ausserlechner, M. L. Glasser, and Y. Zhou, Ramanujan J. 53 (2020), 39-48. https://doi.org/10.1007/s11139-019-00212-6
  22. The Propagators for δ and δ’ Potentials with Time-Dependent Strengths, F. Erman, M. Gadella, and H. Uncu, Front. Phys. 8:65 (2020).
  23. Groups, Jacobi functions and rigged Hilbert spaces, E. Celeghini, M. Gadella, and M. A. del Olmo, J. Math. Phys. 61 (2020) 033508.
  24. Testing the equation of state for viscous dark energy, S. D. Odintsov, D. Saez-Chillon Gomez, and G. S. Sharov, Phys. Rev. D 101  (2020) 044010. doi:10.1103/PhysRevD.101.044010
  25. A complex storm system in Saturn’s north polar atmosphere in 2018, A. Sánchez-Lavega, E. García-Melendo, J. Legarreta, R. Hueso, T. del Río-Gaztelurrutia, J. F. Sanz-Requena et al., Nature Astronomy 4 (2020) 180-187. https://www.nature.com/articles/s41550-019-0914-9 https://doi.org/10.1038/s41550-019-0914-9
  26. Covariant integral quantization of the unit disk, M. A. del Olmo and J. P. Gazeau, J. Math. Phys. 61 (2020) 022101. https://doi.org/10.1063/1.5128066
  27. Second harmonic Hamiltonian: Algebraic and Schrödinger approaches, T. Mohamadian, J. Negro, and H. Panahi, Phys. Lett. A 384 (2020) 126091.
  28. A note on the Moll–Arias de Reyna integral,  M. L. Glasser, The Ramanujan Journal 51 (2020) 329–332. https://doi.org/10.1007/s11139-018-0091-y
  29. Dirac-Weyl equation on a hyperbolic graphene surface under perpendicular magnetic fields, D. Demir Kızılırmak, S. Kuru, and J. Negro, Physica E: Low-dimensional Systems and Nanostructures 118 (2020) 113926.
  30. Revisiting the Casimir Energy with General Boundary Conditions, and applications in 1D Crystals, J. M. Muñoz-Castañeda, M. Bordag, and L. Santamaría-Sanz, Mod. Physics. Lett. A 35 (2020) 2040018. ArXiv: https://arxiv.org/abs/1910.08142

  31. Nonclassical States for Non-Hermitian Hamiltonians with the Oscillator Spectrum, K. Zelaya, S. Dey, V. Hussin, and O. Rosas-Ortiz, Quantum Rep. 2020, 2, 12-38. https://www.mdpi.com/2624-960X/2/1/2/htm

  32. Superpositions of bright and dark solitons supporting the creation of balanced gain and loss optical potentials, O. Rosas-Ortiz and S. Cruz y Cruz, Math. Meth. Appl. Sci. (2020) 112. https://doi.org/10.1002/mma.6666

2019 (37 papers):

  1. Lie Algebra Expansions and Actions for Non-Relativistic Gravity, E. Bergshoeff, J.M. Izquierdo, T. Ortín, and L. Romano, J. High Energ. Phys. (2019) 2019: 48. https://doi.org/10.1007/JHEP08(2019)048
  2. Extended D=3 Bargmann supergravity from a Lie algebra expansion, J.A. de Azcárraga, D. Gútiez, and J.M. Izquierdo, Nucl. Phys. B 946 (2019) 114706.
  3. Cayley-Klein Poisson Homogeneous Spaces, F. J. Herranz, A. Ballesteros, I. Gutierrez-Sagredo, and M. Santander, Geom. Integrability & Quantization vol. XX, I. M. Mladenov, V. Pulov and A. Yoshioka (eds.) (Sofia: Avangard Prima, 2019), 161 – 183. doi: 10.7546/giq-20-2019-161-183
  4. Acceleration of an unpolarized proton along a uniform magnetic field: Casimir momentum of leptons, M. Donaire, J. High Energ. Phys. 10 (2019) 041. ArXiv ePrint: 1907.13518
  5. One-Dimensional Scattering of Fermions on δ-Impurities, J. M. Guilarte, J.M. Munoz-Castaneda, I. Pirozhenko, and L. Santamaría-Sanz, Front. Phys. 7:109 (2019). doi: 10.3389/fphy.2019.00109
  6. Zernike functions, rigged Hilbert spaces and potential applications, E. Celeghini, M. Gadella and M. A. del Olmo, J. Math. Phys. 30 (2019) 083508.
  7. Integrability, Supersymmetry and Coherent States. A volume in honour of Professor Véronique Hussin. S. Kuru, J. Negro and L.M. Nieto (eds.), CRM Series in Mathematical Physics (Berlin: Springer, 2019). https://doi.org/10.1007/978-3-030-20087-9
  8. Groups, Special Functions and Rigged Hilbert Spaces, E. Celeghini, M. Gadella and M. A. del Olmo, Axioms 2019, 8, 89. doi:10.3390/axioms8030089
  9. The Birman-Schwinger operator for a parabolic quantum well in a zero-thickness layer in the presence of a two-dimensional attractive Gaussian impurity, S. Albeverio, S. Fassari,  M. Gadella, L.M. Nieto, and F. Rinaldi, Front. Phys. (2019) 7:102. doi: 10.3389/fphy.2019.00102
  10. The Lippmann–Schwinger Formula and One Dimensional Models with Dirac Delta Interactions, F. Erman, M. Gadella, and H. Uncu, in S. Kuru, J. Negro and L.M. Nieto (eds.), Integrability, Supersymmetry and Coherent States. A volume in honour of Professor Véronique Hussin. CRM Series in Mathematical Physics (Berlin: Springer, 2019), pp. 309-322. https://doi.org/10.1007/978-3-030-20087-9_13
  11. Jacobi Polynomials as su(2, 2) Unitary Irreducible Representation, E. Celeghini, M.A. del Olmo, and M.A. Velasco, in S. Kuru, J. Negro and L.M. Nieto (eds.), Integrability, Supersymmetry and Coherent States. A volume in honour of Professor Véronique Hussin. CRM Series in Mathematical Physics (Berlin: Springer, 2019), pp. 267-283. https://doi.org/10.1007/978-3-030-20087-9_10
  12. Tavis-Cummings models and their quasi-exactly solvable Schrödinger Hamiltonians, T. Mohamadian, J. Negro, L.M. Nieto, and H. Panahi, Eur. Phys. J. Plus (2019) 134:363.
  13. Vacuum energy for generalised Dirac combs at T=0, M. Bordag, J. M. Muñoz-Castañeda and L. Santamaría-Sanz, Front. Phys. (2019) 7:38. arXiv:1812.09022
  14. Hazes and clouds in a singular triple vortex in Saturn’s atmosphere from HST/WFC3 multispectral imaging, J.F. Sanz-Requena et al., Icarus 333 (2019) 22-36.
  15. Field Fluctuations and Casimir Energy of 1D-Fermions, M. Donaire, J. M. Muñoz-Castañeda, L. M. Nieto and M. Tello-Fraile, Symmetry 2019, 11, 643.
  16. Coherent Gamow states for the hyperbolic Pöschl-Teller potential, O. Civitarese and M. Gadella, Ann. Phys. 406 (2019) 222-232. https://doi.org/10.1016/j.aop.2019.04.005
  17. Classical ladder functions for Rosen-Morse and curved Kepler-Coulomb systems, L. Delisle-Doray, V. Hussin, S. Kuru, and J. Negro, Ann. Phys. 405 (2019) 69-82. arXiv:1812.11582
  18. Logical Approach to the quantum-to-classical transition, S. Fortín, M. Gadella, F. Holik, and M. Losada. Quantum Worlds, O. Lombardi, S. Fortín, F. Holik, C. López, Eds, Cambridge University Press, Cambridge UK (2019) 360-378.
  19. Spectral properties of the two-dimensional Schrödinger Hamiltonian with various solvable confinements in the presence of a central point perturbation, S. Fassari, M. Gadella, M. L. Glasser, L. M. Nieto, and F. Rinaldi, Phys. Scr. 94 (2019) 055202 (12pp).
  20. Partial coherent states in graphene, by E. Díaz-Bautista, J. Negro and L. M. Nieto, J. Phys. Conf. Series 1194 (2019) 012025.
  21. Hyperspherical δ-δ’ potentials, J. M. Muñoz-Castañeda, L. M. Nieto, and C. Romaniega, Ann. Phys. 400 (2019) 246–261. https://doi.org/10.1016/j.aop.2018.11.017
  22. A Note on the Exact Green Function for a Quantum System Decorated by Two or More Impurities, M. L. Glasser, Front. Phys. 7:7 (2019). doi: 10.3389/fphy.2019.00007
  23. Trends in Supersymmetric Quantum Mechanics, D.J. Fernández C., in S. Kuru, J. Negro and L.M. Nieto (eds.), Integrability, Supersymmetry and Coherent States. A volume in honour of Professor Véronique Hussin. CRM Series in Mathematical Physics (Berlin: Springer, 2019), pp. 37-68. https://doi.org/10.1007/978-3-030-20087-9_2
  24. Coherent States in Quantum Optics: An Oriented Overview, J.P. Gazeau, in S. Kuru, J. Negro and L.M. Nieto (eds.), Integrability, Supersymmetry and Coherent States. A volume in honour of Professor Véronique Hussin. CRM Series in Mathematical Physics (Berlin: Springer, 2019), pp. 69-101. https://doi.org/10.1007/978-3-030-20087-9_3
  25. Nonlinear Supersymmetry as a Hidden Symmetry, M. Plyushchay, in S. Kuru, J. Negro and L.M. Nieto (eds.), Integrability, Supersymmetry and Coherent States. A volume in honour of Professor Véronique Hussin. CRM Series in Mathematical Physics (Berlin: Springer, 2019), pp. 163-186. https://doi.org/10.1007/978-3-030-20087-9_6
  26. Coherent and Squeezed States: Introductory Review of Basic Notions, Properties, and Generalizations, O. Rosas-Ortiz, in S. Kuru, J. Negro and L.M. Nieto (eds.), Integrability, Supersymmetry and Coherent States. A volume in honour of Professor Véronique Hussin. CRM Series in Mathematical Physics (Berlin: Springer, 2019), pp. 187-230. https://doi.org/10.1007/978-3-030-20087-9_7
  27. Hermite Coherent States for Quadratic Refractive Index Optical Media, Z. Gress and S. Cruz y Cruz, in S. Kuru, J. Negro and L.M. Nieto (eds.), Integrability, Supersymmetry and Coherent States. A volume in honour of Professor Véronique Hussin. CRM Series in Mathematical Physics (Berlin: Springer, 2019), pp. 323-339. https://doi.org/10.1007/978-3-030-20087-9_14
  28. An Integro-Differential Equation of the Fractional Form: Cauchy Problem and Solution, F. Olivar-Romero and O. Rosas-Ortiz, in S. Kuru, J. Negro and L.M. Nieto (eds.), Integrability, Supersymmetry and Coherent States. A volume in honour of Professor Véronique Hussin. CRM Series in Mathematical Physics (Berlin: Springer, 2019), pp. 387-393. https://doi.org/10.1007/978-3-030-20087-9_18
  29. Interplay between Riccati, Ermakov and Schrödinger equations to produce complex-valued potentials with real energy spectrum, Z. Blanco-Garcia, O. Rosas-Ortiz and K. Zelaya, Math. Meth. Appl. Sci. 42 (2019) 4925-4938. https://doi.org/10.1002/mma.5069

  30. On the Equivalence Between Type I Liouville Dynamical Systems in the Plane and the Sphere, M. A. González León, J. Mateos Guilarte, and M. de la Torre Mayado, in S. Kuru, J. Negro and L.M. Nieto (eds.), Integrability, Supersymmetry and Coherent States. A volume in honour of Professor Véronique Hussin. CRM Series in Mathematical Physics (Berlin: Springer, 2019), pp. 359-373. https://doi.org/10.1007/978-3-030-20087-9_16
  31. Kink dynamics in the MSTB Model, A. Alonso Izquierdo, Phys. Scr. 94 (2019) 085302.
  32. Soliton fermionic number from the heat kernel expansion, A. Alonso-Izquierdo, R. Fresneda, J. Mateos Guilarte, and D. Vassilevich, Eur. Phys. J. C 79 (2019) 525. https://doi.org/10.1140/epjc/s10052-019-7041-8. arXiv:1905.09030.
  33. A generalized Holling type II model for the interaction between dextral-sinistral snails and Pareas snakes, A. Alonso-Izquierdo, M. A. González León, M. de la Torre Mayado, Applied Mathematical Modelling 73 (2019) 459–472, doi.org/10.1016/j.apm.2019.04.005, arXiv:1807.02349
  34. Asymmetric kink scattering in a two-component scalar field theory model, A. Alonso-Izquierdo, Commun. Nonlinear Sci. Numer. Simulat. 75 (2019) 200-219, arXiv:1901.03089
  35. Nonlinear symmetries of perfectly invisible PT-regularized conformal and superconformal mechanics systems, Juan Mateos Guilarte, Mikhail S. Plyushchay, J. High Energ. Phys. 1901 (2019) 194, doi: 10.1007/JHEP01(2019)194, arXiv:1806.08740

  36. Quantum groups, non-commutative Lorentzian spacetimes and curved momentum spaces, I. Gutiérrez-Sagredo, A. Ballesteros, G. Gubitosi, and F.J. Herranz, in “Spacetime Physics 1907 – 2017, C. Duston and M. Holman (Eds). Minkowski Institute Press, Montreal (2019), pp. 261-290. ISBN 978-1-927763-48-3.
  37. Global versus local superintegrability of nonlinear oscillators, S.C. Anco, A. Ballesteros, M.L. Gandarias, Phys. Lett. A 383 (2019) 801-807.

2018 (28 papers):

  1. A functional Identity involving Elliptic Integrals, M. L. Glasser and Y. Zhou, The Ramanujan Journal 47 (2018) 243–251. https://doi.org/10.1007/s11139-017-9915-4.
  2. Exactly solvable one-qubit driving fields generated via non-linear equations,
    M. Enríquez and S. Cruz y Cruz, Symmetry 10 (2018) 567. arXiv:1708.02348v1
  3. Spectral Algorithms for MRA Orthonormal Wavelets, F. Gómez-Cubillo and S. Villullas, Operator Theory: Advances and Applications 267  (2018) 185–198.
  4. Hermite functions, Lie groups and Fourier Analysis, E. Celeghini, M. Gadella and M. A. del Olmo, Entropy 20 (2018) 816.
  5. Transition from the wave equation to either the heat or the transport equations through fractional differential expressions, F. Olivar-Romero and O. Rosas-Ortiz, Symmetry 10 (2018) 524.
  6. Confinement of Dirac electrons in graphene magnetic quantum dots, S. Kuru, J. Negro and L. Sourrouille, J. Phys.: Condens. Matter 30 (2018) 365502.
  7. A study of periodic potentials based on quadratic splines, M. Gadella and L. P. Lara, Int. J. Mod. Phys. C, 29 (2018) 1850067.
  8. SU(2), Associated Laguerre Polynomials and Rigged Hilbert Spaces, E. Celeghini, M. Gadella, and M. A. del Olmo, Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics Volume 2, QTS-X/LT-XII, Varna, Bulgaria, June 2017, V. Dobrev (Ed.), Springer (2018), 373-383.
  9. Dynamics of algebras in quantum unstable systems, M. Losada, S. Fortín, M. Gadella, and F. Holik, Int. J. Mod. Phys. A 33 (2018) 1850109.
  10. Position dependent mass Scarf Hamiltonians generated via the Riccati equation, S. Cruz y Cruz and C. Santiago-Cruz, Math. Meth. Appl. Sci. (2018) 1-16.
  11. Spherical harmonics and rigged Hilbert spaces, E. Celeghini, M. Gadella, and M. A. del Olmo, J. Math. Phys. 59 (2018) 053502. arXiv:1802.08497
  12. Level crossings of eigenvalues of the Schrödinger Hamiltonian of the isotropic harmonic oscillator perturbed by a central point interaction in different dimensions,
    S. Fassari, M. Gadella, M. L. Glasser, L. M. Nieto, and F. Rinaldi, Nanosystems: Physics, Chemistry, Mathematics 9 (2018) 179-186.
  13. The definition of entropy for quantum unstable systems: a view-point based on the properties of Gamow states, O. Civitarese and M. Gadella, Entropy 20 (2018) 231.
  14. On Scattering from the One Dimensional Multiple Dirac Delta Potentials, F. Erman, M. Gadella, and H. Uncu, Eur. J. Phys. 39 (2018) 035403.
  15. Application of the plane-wave-based perturbation theory to the density modulation induced by a point charge in an electron gas, I. Nagy and M. L. Glasser, pp. 133-138, in “Many-body approaches at different scales: a tribute to Norman H. March on the occasion of his 90th birthday”, G. G. N. Angilella and C. Amovilli, editors (New York: Springer, 2018), ISBN 978-3-319-72373-0. doi.org/10.1007/978-3-319-72374-7_11
  16. Atomic spectra calculations for fusion plasma engineering using a solvable model potential, M.E. Charro and L.M. Nieto, pp. 163-176  in “Many-body approaches at different scales: a tribute to Norman H. March on the occasion of his 90th birthday”, G. G. N. Angilella and C. Amovilli, editors (New York: Springer, 2018), ISBN 978-3-319-72373-0. doi.org/10.1007/978-3-319-72374-7_14
  17. Second order exchange energy of a d-dimensional electron fluid, by M. L. Glasser, pp. 291-296, in “Many-body approaches at different scales: a tribute to Norman H. March on the occasion of his 90th birthday”, G. G. N. Angilella and C. Amovilli, editors (New York: Springer, 2018), ISBN 978-3-319-72373-0. doi.org/10.1007/978-3-319-72374-7_24
  18. Cytoskeleton stability is essential for the integrity of the cerebellum and its motor- and affective-related behaviors, R. Muñoz-Castañeda D. Díaz, L. Peris, A. Andrieux, C. Bosc, J. M. Muñoz-Castañeda, C. Janke, J. R. Alonso, M.-J. Moutin and E. Weruaga, Scientific Reports 8 (2018) 3072.
  19. Spectroscopy of a one-dimensional V-shaped quantum well with a point impurity, S. Fassari, M. Gadella, M.L. Glasser, and L.M. Nieto, Ann. Phys. 389 (2018) 48-62.
  20. Higher order supersymmetric truncated oscillators, D.J. Fernández C. and V.S. Morales-Salgado, Ann. Phys. 388 (2018) 122-134.
  21. Bi-orthogonal approach to non-Hermitian Hamiltonians with the oscillator spectrum: Generalized coherent states for nonlinear algebras, O. Rosas-Ortiz and K. Zelaya, Ann. Phys. 388 (2018) 26-53.

  22. Poisson-Hopf algebra deformations of Lie-Hamilton systems, A. Ballesteros, R. Campoamor-Stursberg, E. Fernández-Saiz, F.J. Herranz, and J. de Lucas, J. Phys. A: Math. and Theor. 51 (2018) 065202.
  23. Curved momentum spaces from quantum (Anti-)de Sitter groups in (3+1) dimensions, A. Ballesteros, G. Gubitosi, I. Gutiérrez-Sagredo, and F.J. Herranz, Phys. Rev. D 97 (2018) 106024.
  24. A unified approach to Poisson-Hopf deformations of Lie-Hamilton systems based on sl(2), A. Ballesteros, R. Campoamor-Stursberg, E. Fernandez-Saiz, F. J. Herranz, J. de Lucas, in Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics Vol.1, V. Dobrev (ed.), (2018) 347-366.
  25. Extended noncommutative Minkowski spacetimes and hybrid gauge symmetries, A. Ballesteros, F. Mercati, Eur. Phys. J. C 78 (2018) 615.

  26. Domain walls in a non-linear S2-sigma model with homogeneous quartic polynomial potential, A. Alonso-Izquierdo, A.J. Balseyro Sebastián and M.A. González León, J. High Energ. Phys. 11 (2018) 023.
  27. Reflection, transmutation, annihilation and resonance in two-component kink collisions, A. Alonso Izquierdo, Phys. Rev. D 97 (2018) 045016.
  28. Kink dynamics in a system of two coupled scalar fields in two space-time dimensions, A. Alonso Izquierdo, Physica D 365 (2018) 12-26.

2017 (32 papers):

  1. Dirac Green function for δ potentials, M.E. Charro, M.L. Glasser, and L.M. Nieto, EPL, 120 (2017) 30006.
  2. On the spectrum of the one-dimensional Schrödinger Hamiltonian perturbed by an attractive Gaussian potential, S. Fassari, M. Gadella, L. M. Nieto, and F. Rinaldi, Acta Politechnica 57(6) (2017) 385–390.
  3. Lie Algebra Representations and Rigged Hilbert Spaces: the SO(2) case,  E. Celeghini, M. Gadella, and M. A. del Olmo, Acta Politechnica 57(6) (2017) 379–384.
  4. Graphene coherent states, Erik Díaz-Bautista and David J. Fernández, Eur. Phys. J. Plus 132 (2017) 499 (13 pp).
  5. Dipole-dipole interaction in cavity QED: The weak-coupling, nondegenerate regime, M. Donaire, J.M. Muñoz-Castañeda, and L.M. Nieto, Phys. Rev. A 96 (2017) 042714. arXiv: 1702.00438
  6. The Perlick system type I: from the algebra of symmetries to the geometry of the trajectories, S. Kuru, J. Negro and O. Ragnisco, Phys. Lett A. 381 (2017) 3355-3363. arXiv: 1705.04618.
  7. Bosonic D=11 supergravity from a generalized Chern-Simons action,  J.A. de Azcárraga, D. Camarero y J.M. Izquierdo, Nucl. Phys. B 923 (2017) 633-652.
  8. A Singular One-Dimensional Bound State Problem and its Degeneracies, F. Erman, M. Gadella, S. Tunali, and H. Uncu, Eur. Phys. J. Plus 132 (2017) 352.
  9. Superintegrability of the Fock-Darwin system, E. Drigo-Filho, S. Kuru, J. Negro, and L.M. Nieto, Ann. Phys. 383 (2017) 101-119.
  10. Group approach to the paraxial propagation of Hermite–Gaussian modes in a parabolic medium, S. Cruz y Cruz and Z. Gress, Ann. Phys. 383 (2017) 257-277.
  11. Towards Modelling QFT in Real Metamaterials: Singular Potentials and Self-Adjoint Extensions, by L.M. Nieto, M. Gadella, J. Mateos-Guilarte, J.M. Muñoz-Castañeda, and C. Romaniega, J. Phys. Conf. Series 839 (2017) 012007.
  12. Mathematical Foundations of Time Asymmetric Quantum Mechanics, by M. Gadella, J. Phys. Conf. Series 839 (2017) 012001.
  13. The behaviour of the three-dimensional Hamiltonian -Δ+λ[δ(x+x0)+δ(x-x0)] as the distance between the two centers vanishes, S. Albeverio, S. Fassari, and F. Rinaldi, Nanosystems: Physics, Chemistry, Mathematics 8 (2017) 153–159.
  14. Factorization Approach to Superintegrable Systems: Formalism and Applications, A. Ballesteros, F.J. Herranz, S. Kuru, and J. Negro, Physics of Atomic Nuclei 80 (2017) 389–396.
  15. Heisenberg-type higher order symmetries of superintegrable systems separable in cartesian coordinates, F. Güngör, S. Kuru, J. Negro, and L.M. Nieto, Nonlinearity 30 (2017) 1788–1808.
  16. The hyperbolic step potential: Antibound states, SUSY partners and Wigner time delays, M. Gadella, S. Kuru, and J. Negro, Ann. Phys. 379 (2017) 86-101.
  17. One-Dimensional Semi-Relativistic Hamiltonian with Multiple Dirac Delta Potentials, F. Erman, M. Gadella, and H. Uncu, Phys. Rev. D 95 (2017) 045004 (30pp).
  18. A qualitative study of a nanotube model using an iterative Taylor method, M. Gadella, L.P. Lara, and J. Negro, Int. J. Mod. Phys. C 28 (2017) 1750036 (22 pp).
  19. From osp(1|32) ⊕ osp(1|32) to the M-Theory Superalgebra: a Contraction Procedure, J.J.Fernández, J.M.Izquierdo, and M.A. del Olmo, Physics of Atomic Nuclei 80 (2017) 340–346.
  20. Completeness and Nonclassicality of Coherent States for Generalized Oscillator Algebras, K. Zelaya, O. Rosas-Ortiz, Z. Blanco-Garcia and S. Cruz y Cruz,
    Adv. Math. Phys. 2017 (2017) 7168592.


  21. On Hamiltonians with position-dependent mass from Kaluza-Klein compactifications, A. Ballesteros, I. Gutiérrez-Sagredo, P. Naranjo, Phys. Lett. A 381 (2017) 701.
  22. Poisson-Lie groups, bi-Hamiltonian systems and integrable deformations, A. Ballesteros, J.C. Marrero, and Z. Ravanpak, J. Phys. A: Math. and Theor. 50 (2017) 145204 (25pp).
  23. The kappa-(A)dS quantum algebra in (3+1) dimensions, A. Ballesteros, F.J. Herranz, F. Musso, and P. Naranjo, Phys. Lett. B 766 (2017) 205.
  24. Lie Hamilton systems on curved spaces: A geometrical approach, J. de Lucas, F.J. Herranz, M. Tobolski, J. Phys. A: Math. and Theor. 50 (2017) 495201.
  25. AdS Poisson homogeneous spaces and Drinfel’d doubles, A. Ballesteros, C. Meusburger, P. Naranjo, J. Phys. A: Math. and Theor. 50 (2017) 395202.
  26. Superintegrable systems on 3-dimensional curved spaces: Eisenhart formalism and separability, J.F. Cariñena, F.J. Herranz, M.F. Rañada, J. Math. Phys. 58 (2017) 022701.
  27. Quantum groups and noncommutative spacetimes with cosmological constant, A. Ballesteros, I. Gutiérrez-Sagredo, F.J. Herranz, C. Meusburger, P. Naranjo, J Phys. Conf. Series 880 (2017) 012023.
  28. Curved momentum spaces from quantum groups with cosmological constant, A. Ballesteros, G. Gubitosi, I. Gutiérrez-Sagredo, F.J. Herranz, Phys. Lett. B 773 (2017) 47.
  29. Non-commutative relativistic spacetimes and worldlines from 2+1 quantum (anti-)de Sitter groups, A. Ballesteros, N.R. Bruno, F.J. Herranz, Adv. High Energy Physics, Article ID 7876942, 19 pages (2017).

  30. Orbits in the problem of two fixed centers on the sphere, M.A. González León, J. Mateos Guilarte, M. de la Torre Mayado, Regular and Chaotic Dynamics  (2017) 520–542.
  31. Perfectly invisible PT -symmetric zero-gap systems, conformal field theoretical kinks, and exotic nonlinear supersymmetry, J. Mateos-Guilarte and M. S. Plyushchay, J. High Energ. Phys. 1712 (2017) 061.
  32. N=2 Supersymmetric quantum mechanics of N Lieb-Liniger-Yang bosons on a line, Juan Mateos Guilarte, Asdrúbal Moreno Mosquera, Eur. Phys. J. Plus 132 (2017) 93.

2016 (15 papers):

  1. Modelling quantum black holes, T. R. Govindarajan and J.M. Muñoz-Castañeda, Mod. Phys. Lett. A 31 (2016) 1650210 (10 pp).
  2. The Effect of Confinement on the Electronic Energy and Polarizability of a Hydrogen Molecular Ion, J.F. da Silva, F. Ramos Silva, E. Drigo Filho, Int. J. Quantum Chem. 116 (2016) 497–503.
  3. Net force on an asymmetrically excited two-atom system from vacuum fluctuations, M. Donaire, Phys. Rev. A 94 (2016) 062701 (8 pp).
  4. The anisotropic oscillator on curved spaces: A new exactly solvable model, A. Ballesteros, F.J. Herranz, S. Kuru, and J. Negro, Ann. Phys. 373 (2016) 399-423.
  5. A new look at the Feynman ‘hodograph’ approach to the Kepler first law, José F. Cariñena, Manuel F. Rañada and Mariano Santander, Eur. J. Phys. 37 (2016) 025004 (19 pp).
  6. Gamow states as solutions of a modified Lippmann-Schwinger equation, O. Civitarese and M. Gadella, Int. J. Mod. Phys. E 25 (2016) 1650075.
  7. Applications of rigged Hilbert spaces in quantum mechanics and signal processing, E. Celeghini, M. Gadella, and M. A. del Olmo, J. Math. Phys. 57 (2016) 072105.
  8. Solutions to the Painlevé V equation through supersymmetric quantum mechanics, D. Bermudez, D. J. Fernández C., and J. Negro, J. Phys. A: Math. Theor. 49 (2016) 335203 (37 pp).
  9. Confinement of an electron in a non-homogeneous magnetic field: Integrable vs superintegrable quantum systems, A. Contreras-Astorga, J. Negro, and S. Tristao, Phys. Lett. A 380 (2016) 48-55.
  10. Approximate solutions to the quantum problem of two apposite charges in a constant magnetic field. J.S. Ardenghi, M. Gadella, and J. Negro. Phys. Lett. A 380 (2016) 1817-1823.
  11. Two-point one-dimensional δ-δ’ interactions: non-abelian addition law and decoupling limit, by M. Gadella, J. Mateos-Guilarte, J.M. Muñoz-Castañeda, and L.M. Nieto, J. Phys. A: Math. Theor. 49 (2016) 015204.
  12. Resonances and antibound states of Pöschl-Teller potential: Ladder operators and SUSY partners, D. Çevik, M. Gadella, S. Kuru, and J. Negro, Phys. Lett. A 380 (2016) 1600-1609.

  13. Elementary solutions of the quantum planar two-center problem, M.A. González León, J. Mateos Guilarte and M. de la Torre Mayado, EPL 114 (2016) 30007.
  14. Quantum magnetic flux lines, BPS vortex zero modes, and one-loop string tension shifts, A. Alonso-Izquierdo, J. Mateos Guilarte and M. de la Torre Mayado, Phys. Rev. D 94 (2016) 045008.
  15. Higgs Phase in a Gauge U(1) Non-Linear CP1-Model. Two Species of BPS Vortices and Their Zero Modes, A. Alonso-Izquierdo and J. Mateos Guilarte, Symmetry 8 (2016) 91.

2015 (9 papers):

  1. Two-twistor particle models and free massive higher spin fields, by J.A. de Azcárraga, S. Fedoruk, J.M. Izquierdo, and J. Lukierski, J. High Energ. Phys. 04 (2015) 010.
  2. The energy level structure of a variety of one-dimensional confining potentials and the effects of a local singular perturbation, by M.L. Glasser and L.M. Nieto, Can. J. Phys. 93 (2015) 1588-1596.
  3. Degeneracy in carbon nanotubes under transverse magnetic δ-fields, by S. Kuru, J. Negro, and S. Tristao, J. Phys.: Condens. Matter 27 (2015) 285501 (11pp).
  4. An integral representation for the Fibbonacci numbers and its generalization, M.L. Glasser and Y. Zhou, Fibonacci Quart. 53 (2015) 313–318.
  5. On Morrison’s definite integral, J. Arias de Reyna, M.L. Glasser and Y. Zhou, Aequat. Math. 89 (2015) 1241–1250.
  6. Contractions from osp(1|32) ⊕ osp(1|32) to the M-theory superalgebra extended by additional fermionic generators, J.J.Fernández, J.M.Izquierdo, and M.A. del Olmo, Nuclear Physics B 897 (2015) 87–97.
  7. Approximate solution for Fokker-Planck equation, by M.T. Araujo and E. Drigo Filho, Condensed Matter Physics 18, No 4  (2015) 43003: 1–12.
  8. Periodic analytic approximate solutions for the Mathieu equation, by M. Gadella, H. Giacomini, and L.P. Lara, Applied Mathematics and Computation 271 (2015) 436–445.
  9. A Discussion on the Properties of Gamow States, by M. Gadella, Found. Phys. 45 (2015) 177–197.

2014 (9 papers):

  1. List of publications 2014.
  2. First pages of the most relevant papers 2014.

2013 (16 papers):

  1. List of publications 2013.
  2. First pages of the most relevant papers 2013.

2012 (12 papers):

  1. List of publications 2012.
  2. First pages of the most relevant papers 2012.

2011 (21 papers):

  1. List of publications 2011.
  2. First pages of the most relevant papers 2011.

2010 (12 papers):

  1. List of publications 2010.
  2. First pages of the most relevant papers 2010.

2009 (13 papers):

  1. List of publications 2009.
  2. First pages of the most relevant papers 2009.

kielanowski