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Abstract. We propose a formulation of Gamow states, which is the part of

unstable quantum states that decays exponentially, with two advantages in
relation with the usual formulation of the same concept using Gamow vectors.

The first advantage is that this formulation shows that Gamow states cannot
be pure states, so that they may have a non-zero entropy. The second is the

possibility of correctly defining averages of observables on Gamow states.

1. INTRODUCTION

Textbooks in Quantum Mechanics mostly deal with the so called bound states,
which are described by eigenvectors (in explicit models, eigenfunctions) of a given
Hamiltonian, H. Bound states are invariant under the time evolution governed by
H. Thus, bound states are stable states, unless that are exposed to interactions
with new external forces.

However, a substantial amount of quantum systems really existing in Nature are
unstable. The range of unstable quantum systems include excited atoms, nuclei
and particularly elementary particles. Needless to say that a Quantum Theory for
unstable quantum states has been developed [1–5], although it may be considered
as incomplete for various reasons, some of them will be the object of our study in
the present paper.

Unstable quantum systems have historically received different names: quasi-
stable states, meta-stable states, scattering resonances, etc, which have received
different definitions, but that all have been proven to be the same. They have a
common feature: they have an experimental exponential decay at most observable
times. We have underlined the word most, since the ranges of time for which this
decay is not exponential are very difficult to observe in practice. These deviations
that have been foreseen by the general theory [5, 6] have been observed for very
short [7] or very high times [8]. Nevertheless, the observed exponential decay for
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most times is not exact due to noise [5]. Thus, exponential decay may be considered
as a very good approximation for the behaviour of quantum unstable systems for
most purposes.

Generally speaking, quantum unstable states, henceforth resonances, are pro-
duced in resonance scattering [1] due to the presence of some external forces, which
are usually given by a potential V . A particle, otherwise looked as free, evolves
under the free dynamics given by H0 up to it enters on the region where the inter-
action of V takes place. Then, the particle finally escapes from this interaction. If
this particle stays in the interaction region a much higher time it would have stayed
should this interaction not exist, we say that a resonance has been produced. Thus,
for the creation of a scattering resonance, we need a Hamiltonian pair, {H0, H},
where H = H0 + V , V being the potential responsible for the creation of the
resonance. Typically, point potentials [10] give often resonances.

Resonances are characterized in various forms from the physical point of view,
not always equivalent [1]. Possibly the most popular among the physicists is given
by poles of the analytic continuation of the scattering function (or matrix) S(k)
in representation of momenta. These poles are located on the lower half plane
and appear in pairs symmetric to the negative imaginary axis. If instead of this
representation, we go to energies, resonance poles are pairs of conjugate complex
numbers located on the analytic continuation of S(E) through the cut given by the
spectrum of the total Hamiltonian H, and these poles lie on the second sheet of
the Riemann surface associated to the transformation k =

√
2mE. Each pair of

resonance poles have the form ER ± iΓ/2 with ER,Γ > 0.
Is it possible to define a vector state for a unstable quantum state as is for a

bound state? The vector state, ψ, for an unstable quantum state should have the
following property: its probability amplitude in terms of time, t, which is given by

α(t) := 〈ψ|e−itH |ψ〉 , (1)

where H = H0 + V , must be approximately exponential for almost all times, with
the exception of very short or very long times, which may be unobservable in most
cases.

Due to this condition, Nakanishi [9] in 1959 proposed to define the vector state
for a resonance as an eigenvector of the Hamiltonian with complex eigenvalues. For
instance, if a resonance pole is located at the point zR = ER − iΓR/2, this vector
state, |ψ〉, should be characterized by the property:

H |ψD〉 = zR |ψD〉 = (ER − iΓR/2) |ψD〉 , (2)

since then if t means time, formally:

e−itH |ψD〉 = e−itER e−tΓ/2 |ψD〉 , (3)

so that the time evolution for t 7−→ ∞ is a decaying exponential.
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Some important comments:

i.) Each resonance is given by a pair of complex conjugate poles, so that along
|ψD〉 it must exist another vector, |ψG〉, so that

H |ψG〉 = z∗R |ψG〉 = (ER + iΓR/2) |ψG〉 =⇒ e−itH |ψG〉 = e−itER e+tΓ/2 |ψG〉 . (4)

Consequently, the vector |ψG〉 grows exponentially as t 7−→ ∞. The superindices
D and G stand precisely for decaying and growing, respectively. Note that the time
behaviour of |ψD〉 and |ψG〉 as t 7−→ −∞ is the opposite.

ii.) This opposite time behaviour of the vectors |ψD〉 and |ψG〉 suggests that they
may be defined as the time reverse of each other. This is exactly what happens
in [11]. Both vectors represent equally well the state of one unique and the same
resonance, given by the poles zR = ER − iΓR/2 and z∗R = ER + iΓ/2. The real
part ER is called the resonance energy and the imaginary part is proportional to
the inverse of the mean life.

iii.) The vectors |ψD〉 and |ψG〉 are called the decaying Gamow vector and the
growing Gamow vector. Decaying and growing always with reference to the future
of increasing times.

iv.) Realistic vector states for resonances show deviations of exponential law for
very small and very large values of time. At the same time the time interval with
exponential decay always shows certain amount of noise, so that this exponential
is usually not exact. Thus, if |ψ〉 is the vector state for a resonance, it must be a
sum of two contributions:

|ψ〉 = |ψD〉+ |ψBACK〉 = |ψG〉+ |ψBACK∗〉 , (5)

so that we have split |ψ〉 into the sum of the Gamow vector plus the vector state
of a certain background, which is a vector state including all possible effects so that
diverts |ψ〉 from the purely exponential behaviour. The effect of the background
vector is much smaller than the effect of the Gamow vector for the effectively
observable time interval.

v.) This is the most important point. Since H is a self adjoint operator, how is
it possible that it shows complex eigenvalues? Not as an operator on Hilbert space!
We need to extend the Hilbert space as well as H to a larger space on which H
may have complex eigenvalues.

This extension comes after the rigging of the Hilbert space of states, H, with
another two spaces, so as to make a triplet of spaces,

Φ ⊂ H ⊂ Φ× , (6)

where:

i.) The Hilbert space H is infinite dimensional, usually of the type of space of
square integrable functions such as L2(R). If the space were finite dimensional a
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construction like (6) would not be possible unless the other two spaces were equal
to H.

ii.) The space Φ is a dense subspace of H. Dense means that for any ψ ∈ H and
any ε > 0, there exists a φ ∈ Φ such that ||φ− ψ|| < ε, where || − || is the Hilbert
norm (||ψ||2 = 〈ψ|ψ〉, where 〈−|−〉 is the scalar product on the Hilbert space). In
addition, it has a topology which is strictly finer than the Hilbert topology. Finer
means that it has more open sets. In general, although not always, this topology is
constructed with a countably infinite set of norms [12], one of which is the Hilbert
space norm. This implies in particular that the canonical injection:

i : Φ 7−→ H , i(φ) = φ , ∀φ ∈ Φ , (7)

is continuous.

iii.) A continuous linear functional, or in short, a functional on Φ is a mapping
F : Φ 7−→ C, where C is the field of complex numbers with its usual topology, such
that

a) F is anti-linear:

F (αψ + β ϕ) = α∗ F (ψ) + β∗ F (ϕ) , ∀α, β ∈ C , ∀ψ,ϕ ∈ Φ . (8)

where the star denotes complex conjugation.
b) F is continuous with the topologies on Φ and C. Since we have not given

details on the topology on Φ, we cannot give details on some properties of F . Let
us call Φ× to the set of functionals on Φ. It forms a vector space over the complex
field. The sum of functionals and the multiplication of functionals by complex
numbers is given by

(αF + β G)(ϕ) := αF (ϕ) + β G(ϕ) , ∀α, β ∈ C , ∀F,G ∈ Φ× , (9)

so that Φ× is a linear space over the complex field.
We can endow Φ× with a topology compatible with the topology on Φ [13]. Each

vector ψ ∈ H determines a unique functional Fψ by Fψ(ϕ) := 〈ϕ|ψ〉 (we take the
anti-linear part of the scalar product at the left). By an abus de langage, we may
identify Fψ with ψ. With this idea in mind, the canonical mapping i : H 7−→ Φ×

is one to one (and also continuous).

iv.) We call the structure (6) with all the above defined properties, a rigged
Hilbert space (RHS) or a Gelfand triplet [14–29].

Next, let H be a self adjoint Hamiltonian with domain with domain D ⊂ H,
dense in the (separable) infinite dimensional Hilbert space H. Assume that we
have a RHS like (6), with Φ ⊂ D and HΦ ⊂ Φ. This means that for each ϕ ∈ Φ,
Hϕ ∈ Φ. Then, H may be extended to a unique operator into Φ×, that we also
call H for simplicity in the notation, using the following duality formula:

〈F |Hϕ〉 = 〈HF |ϕ〉 , ∀ϕ ∈ Φ . (10)
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This duality formula defines HF for each F ∈ Φ×. The operator H defined on
Φ× by (10) is linear. Its restriction to Φ coincides with the original operator, as
can be easily seen from (10). Moreover, if we assume that H is continuous on Φ, its
extension by (10) is continuous on Φ× with all topology on this space compatible
with the topology on Φ [13].

In [30–32], we have obtain a pair of RHS where the Gamow vectors are well
defined as functionals and verify properties (3-4). In addition, we may define RHS
so that the time evolution of the decaying Gamow vector |ψD〉 given by (3) be
properly given for t > 0 only [31,32] and the time evolution of |ψG〉 given for t < 0,
only. This clarifies further the meaning of the indices Decaying and Growing given
to these vectors.

Once we have clarified the notion of Gamow vectors, we ask ourselves whether
these vectors behave as ordinary state vectors, so that they may give expectation
values of observables. A first attempt was given by Berggren [33, 34]. A possible
definition of the energy average on Gamow vectors was given in [35]. None of these
results were convincing. Berggren averages were intended to be used with many
observables, although the average for the energy on a Gamow state was not what
our intuition would say it is (the real part of the resonance pole, or resonance
energy) and was rather sophisticated. The solution given in [35] was valid just for
H and could not be applied to other observables, even for H2, the square of the
Hamiltonian. In summary, expressions like 〈ψD|O|ψD〉 for a given observable O are
not defined. Even 〈ψD|ψD〉 does not admit a natural definition.

In the more widespread formulation of quantum mechanics, pure states are rep-
resented by vector states. The most popular representation for quantum unstable
states is given by the Gamow vectors, which may suggest that Gamow states are
pure states. Is this correct? This argument has two contradictions. The former is of
mathematical nature. Pure states are represented by square integrable functions or
normalizable vectors on a Hilbert space, which is not the case for Gamow vectors.
Second, Gamow vectors somehow represent dissipative states which cannot have
zero entropy. Pure states have zero entropy. The entropy for unstable quantum
states via Gamow vectors have been investigated [36, 37] and certainly, it is not
zero.

The generalization of all of the above to systems with N resonances is obvious.
Although many models exhibit an infinite number of resonances, one may always
keep a finite number since those resonances with large values of ΓR are practically
unobservable, since ΓR is related to the inverse of the mean life. Note that poles of
a meromorphic function (analytic except poles) are always isolated points.

In the present review paper, we show that Gamow states are not pure states and
suggest a receipt to obtain mean values of observables on Gamow states. To this
end, we have propose a formalism based on the notion of a state as a functional
over an algebra of operators including relevant observables. This construction is
the objective of the next Section.
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2. The algebra of observables and the states

Let us make the simplest possible assumptions for the Hamiltonian pair that
produces a resonance phenomena, {H0, H = H0 + V }. For instance that both H0

and H have a simple (non-degenerate) absolutely continuous spectrum coinciding
to [0,∞). Since Hamiltonians are always semi-bounded, the choice of the spectrum
as [0,∞) may be done without restriction to generality. We also assume some
scattering properties like the existence of the Møller wave operators and asymptotic
completeness [38, 39]. The Møller wave operators, Ω− and Ω+, relate the free
incoming and outgoing free states with the incoming and outgoing perturbed states,
respectively.

For the moment, let us focus our attention to the free Hamiltonian H0. Accord-
ing to a Theorem by Gelfand and Maurin [40, 41], and under the above working
hypothesis, there exists a RHS like (6) such that, i.) H0Φ ⊂ Φ and H0 is continuous
on Φ, so that H0 may be continuously extended to the anti-dual Φ×; ii.) For each
E ∈ [0,∞) there exists a functional |E〉 ∈ Φ× such that H0 |E〉 = E |E〉; iii.) For
all ϕ,ψ ∈ Φ, one has the following spectral decompositions:

〈ϕ|H0ψ〉 =

∫ ∞
0

E 〈ϕ|E〉〈E|ψ〉 dE , (11)

which may be written, by omitting the arbitrary ϕ,ψ ∈ Φ as

H0 =

∫ ∞
0

E |E〉〈E| dE . (12)

It is also valid that

Hn
0 =

∫ ∞
0

En |E〉〈E| dE , n = 0, 1, 2, . . . . (13)

Note that for n = 0, we have a spectral decomposition of the identity. After
the aforementioned hypothesis, we have that H = Ω±H0 (Ω±)†, where the dagger
means the adjoint. Using a new couple of RHS, where we define the spaces Φ± :=
Ω±Φ, we may consider the functionals |E±〉 := Ω± |E〉 in (Φ±)×. Then, H|E±〉 =
E |E±〉 and one has the following spectral decompositions for Hn, n = 0, 1, 2, . . . :

Hn =

∫ ∞
0

En |E±〉〈E±| dE . (14)

Again for n = 0, we have two distinct spectral decompositions for the identity,
which are different from those given in (13). As a matter of fact, n could have
been any real number. The above kets, |E〉 , |E±〉, satisfy the following product
relations [42]:

〈E|E′〉 = δ(E − E′) , 〈E±|E′±〉 = δ(E − E′) . (15)
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Now, we say that the operators O± are compatible with H if they satisfy the
following spectral decompositions:

O± =

∫ ∞
0

dE O(E) |E±〉〈E±|+
∫ ∞

0

dE

∫ ∞
0

dE”O(E,E′)|E±〉〈E′±|

∫ ∞
0

dE O(E) Ω±|E〉〈E|(Ω±)† +

∫ ∞
0

dE

∫ ∞
0

dE”O(E,E′)Ω±|E〉〈E′|(Ω±)† , (16)

where O(E) and O(E,E′) belong to certain spaces of test functions. The functions
O(E,E′) should admit analytic continuation to analytic functions on both variables
separately. Test functions should form linear spaces, which implies that the opera-
tors of the form (16) built two different linear spaces, one for + and the other for −.
In addition, we assume that the spaces of test functions O(E) and O(E,E′) form re-
spective algebras, which include the particular cases of O(E) = En, n = 0, 1, 2, . . .
and O(E,E′) = 0, which give respective spectral decompositions of powers of the
Hamiltonian H. Then, the product of two operators is given by

O±1 O
±
2 =

∫ ∞
0

dE O1(E)O2(E) |E±〉〈E±|

+

∫ ∞
0

dE

∫ ∞
0

dE′O1(E,E′)O2(E,E′) |E±〉〈E′±| . (17)

This, we have two algebras of operators with identity that we represent as A±.
These algebras are isomorphic. They have a topology induced by the topology of
the algebras of test functions O(E) and O(E,E′), although we will not insist on
this particular point.

It is convenient to simplify the notation. To this end, let us introduce the
following symbols:

|E±) := |E±〉〈E±| , |EE′±) := |E±〉〈E′±| . (18)

With this convention, the operators in (16) are written as

O± =

∫ ∞
0

O(E) |E±) dE +

∫ ∞
0

dE

∫ ∞
0

dE′O(E,E′) |EE′±) . (19)

In addition, we have some formal relations or “products” such that

(E±|w±) = δ(E − w) , (EE′
±|ww′±) = δ(E − w)δ(E′ − w′) ,

(EE′
±|w) = (w|EE′±) = 0 . (20)
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These relations permit to perform operations such as that in (17). With this
notation, we may write the functions O(E) and O(E,E′) as a sort of products such
as

(E±|O±) = O(E) , (EE′
±|O±) = O(E,E′) . (21)

The algebras A± have respective identities

I± :=

∫ ∞
0

dE |E±) . (22)

In addition, these algebras have an involution. It is natural to define the adjoints
of the operators O± as

(O±)† =

∫ ∞
0

dE O∗(E) |E±) +

∫ ∞
0

dE

∫ ∞
0

dE′O∗(E′, E) |EE′±) . (23)

As always, the star denotes complex conjugation. Observe on the transposition
of variables on the function under the double integral in (23). Clearly, (23) defines
respective involutions on A±.

Operators of the form (16) (or analogously (19)) and (23) are linear mappings
Φ± 7−→ (Φ±)×, which are, in addition, continuous. The proof of this continuity
requieres a detailed contruction of the topologies and, therefore, lies outside the
scope of the present article. Observe that definition (17) allows for the definition
of a product of operators and, therefore, for the structure of algebra on A±.

2.1. Functionals over the algebras. The algebras A± are endowed with a topol-
ogy compatible with the structure of algebra, which depend on the topological
structure of the algebras of test functions O(E) and O(E,E′). Functionals, ρ±,
over these algebras are continuous linear mappings ρ± : A± 7−→ C. In the present
situation, these functionals should be written in the following form:

ρ± :=

∫ ∞
0

dE ρ(E) (E±|+
∫ ∞

0

dE

∫ ∞
0

dE′ρ(E,E′) (EE′
±| . (24)

Here, ρ(E) is a functional (or a generalized function in the sense of Gelfand [12])
over the space of functions O(E) and ρ(E,E′) is a functional over the space of
functions O(E,E′). We should not forget that these functions form spaces of test
functions, which have their corresponding spaces of functionals defined as usual.
The action of (24) on (16) after (21) is

(ρ±|O±) =

∫ ∞
0

dE ρ(E)O(E) +

∫ ∞
0

dE

∫ ∞
0

dE′ ρ(E,E′)O(E,E′) . (25)

The meaning of the integrals in (25) should be clear as the action of the gener-
alized functions on the test functions. Thus, the first term of the right hand side of
(25) represents the action of the functional ρ(E) on the function O(E). Similarly,
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the second. These are truly integrals if ρ(E) and ρ(E,E′) are functions on a given
space such that both integrals converge. The action of a functional, which does not
admit a representation as a regular function may be exemplified taken for instance
ρ(E) = δ(w−E), where this delta is the Dirac delta. Note that (E±| are functionals
such that

ρ(E) = δ(E − w) , and ρ(E,E′) ≡ 0 . (26)

Analogously, the symbols (EE′
±| denote the following functionals:

ρ(E) ≡ 0 , and ρ(E,E′) = δ(E − w)δ(E′ − w′) . (27)

In both cases, w and w′ are variables and E and E′ are fixed positive real
numbers.

Just a brief comment on the spaces of functions O(E,E′). For reasons to be
understood next, these functions should be analytically continuable for each variable
independently, preferable to the whole complex plane. The construction relies on
some results of Mathematical Analysis that we do not want to mention here, since
we do not want to involve the reader with mathematical details that, although
important, distract from the objective of this presentation. They will be published
in a forthcoming paper [43].

2.2. On quantum states. Possibly, the most general definition of state in non-
relativistic Quantum Mechanics is given by the consideration of states and observ-
ables in its algebraic formulation [44, 45]. Let us define the notion of state in this
context.

The point of departure is an algebra of operators, A, with a topology, identity, I,
and an involution O 7−→ O† for all O ∈ A. An observable, O, in A is a self adjoint
operator, i.e., O = O†. The algebra A should contain the relevant observables of a
particular system.

Here, the notion of self adjointness is formal and differs from the same notion
relative to operators on Hilbert spaces, which imples the identity between the do-
main of a symmetric [46], also called Hermitian, operator and the domain of its
adjoint. By construction, an observable in this formalism is an operator of the type
(16), which satisfies (compare to (19)), O(E) = O∗(E) and O(E,E′) = O∗(E′, E),
where the asterisk stands for complex conjugation.

A state ρ on A is a linear mapping (with respect to the structure of linear space
on the algebra) ρ : A 7−→ C, such that:

i.) The mapping ρ is positive. This means that for each O ∈ A, ρ(O†O) ≥ 0.
ii.) The mapping ρ is normalized. This means that if I is the identity in A,

then, ρ(I) = 1.
iii.) The mapping ρ is continuous with respect to the topology on A and the

usual topology on C.
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Just restricting ourselves to states of the kind (24) on the algebras A±, there are
three different types of states:

i.) Pure states. A state is pure if the exists a square integrable function ψ(E) ∈
L2(R+), R+ ≡ [0,∞), such that

ρ(E) = |ψ(E)|2 , ρ(E,E′) = ψ∗(E)ψ(E′) . (28)

Note that ρ(E,E) = ρ(E).

ii.) Mixtures.- Just defined by the relation ρ(E) = ρ(E,E). Note that pure
states are a particular case of mixtures. For mixtures we do not need the existence
of a square integrable function satisfying (28).

iii.) Generalized states.- All the others. These states have been introduced [47] in
order to give a precise mathematical definition of the states with diagonal singular.
This notion has been introduced by van Hove [48, 49] for systems far from the
thermodynamic equilibrium. For the van Hove states, ρ(E) 6= ρ(E,E), which still
are regular functions, not generalized ones. Nevertheless, we may introduce in this
group states for which ρ(E) and ρ(E,E) are generalized functions. Next, we see
that Gamow states belong to this category.

2.3. Gamow states. Now, we define the notion of Gamow functional, which ap-
peared for the first time in [50] and, then, in [42]. For the growing Gamow vector
associated to the resonance pole zR = ER + iΓ/2, we begin with the generalized
function δzR ⊗ δz∗R and for the decaying Gamow vector associated to the resonance
pole z∗R = ER − iΓ/2, the generalized function δz∗R ⊗ δzR , which act on the test
function O(E,E′) as

(δzR ⊗ δz∗R |O(E,E′)) := O(zR, z
∗
R) , (δz∗R ⊗ δzR |O(E,E′)) := O(z∗R, zR) , (29)

respectively.
Recall that we have demanded that the functions O(E,E′) are analytically con-

tinuable independently in both variables. Once we have the generalized function
(29), we define the following functional on the algebra A−:

ρG :=

∫ ∞
0

dE δ(E − ER) (E−|+
∫ ∞

0

dE

∫ ∞
0

dE′ δzR ⊗ δz∗R (EE′
−| , (30)

and the following functional on the algebra A+:

ρD :=

∫ ∞
0

dE δ(E − ER) (E+|+
∫ ∞

0

dE

∫ ∞
0

dE′ δz∗R ⊗ δzR (EE′
+| . (31)

Functionals (30) and (31) are, respectively, the growing and the decaying Gamow
functionals or Gamow states. We need to show that ρG is a state on A− and ρD is
a state on A+. We sketch the proof for ρG, the proof for ρD being identical.
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i.) Positivity. We have not given details on the construction of the functions
O(E,E′), since this requires some mathematical subtleties. These subtleties are
important in order to show the positivity of these functionals. In particular,

(ρG|(O−)†O−) = |O(ER)|2 + |O(zR, z
∗
R)|2 ≥ 0 , (32)

where the positivity of the last term in the right hand side of (32) come from the
mentioned mathematical properties.

ii.) Normalization. This means that (ρG|I−) = 1. The proof is obvious after
(22).

iii.) Continuity. It comes from the topological properties of the algebras.

We denote the action of a state ρ± on an observable O± ∈ A± as (ρ±|O±).
Then, the action of ρG on O− ∈ A− is (ρG|O−) and the action of ρD on (ρD|O+).

From the definitions of ρG and ρD, we see that these lie on the kind of generalized
states, although they are different from the above mentioned van Hove states.

Next, let us show that it is always possible to define averages of observables
on Gamow states. The average of the observable O± on the state ρ± should be
defined, as usual as the action of ρ± on O±, as above. This definition is valid for all
observables in A± (respectively), so that is valid for a wide range of observables. In
particular, the averages of the identities in A± are both one. We also may obtain
the averages of the powers of the Hamiltonian using the spectral decomposition
(14). They are as may be directly checked from (14,30,31):

(ρG|Hn) = (ρD|Hn) = EnR . (33)

This result coincides with that one given in [35] for n = 1, where no average for
n > 1 can be defined. Thus, we go beyond other attempts in the same direction.
This result in (33) seems more reasonable than other proposals [33,34].

2.3.1. On the time evolution. First of all, let us go back to equations (30) and (31)
defining the Gamow functionals. Both are the sum of two contributions, so that
we may split ρG and ρD as the sum of these terms as:

ρD = ρDR + ρDS , ρG = ρGR + ρGS . (34)

In both cases, the first term in this decomposition is called the regular part and
the second one the singular part. This terminology is purely conventional.

In order to study the time evolution of Gamow states, we need first to define the
time evolution on the algebras A±. This is nothing else than the Heisenberg time
evolution for observables. This is given by
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eitH O± e−itH =

∫ ∞
0

dE O(E) eitH |E±〉〈E±| e−itH

+

∫ ∞
0

dE

∫ ∞
0

dE′O(E,E′) eitH |E±〉〈E′±| e−itH

=

∫ ∞
0

dE O(E) |E±〉〈E±|+
∫ ∞

0

dE

∫ ∞
0

dE′O(E,E′) eit(E−E
′) |E±〉〈E′±| . (35)

The Schrödinger evolution of the states is related to the Heisenberg evolution
of observables through a well known duality formula, given by the first identity in
(36).

(e−itH ρG e
itH |O−) = (ρG|eitH O− e−itH) =

∫ ∞
0

dE δ(E − ER)O(E)

+

∫ ∞
0

dE

∫ ∞
0

dE′ δzR ⊗ δz∗R O(E,E′) eit(E−E
′) = O(ER) +O(zR, z

∗
R) eit(zR−z

∗
R)

= O(ER) +O(zR, z
∗
R) etΓ = (ρGR|O−) + etΓ (ρGS |O−) . (36)

Thus, by omitting the arbitrary O− ∈ A−, we obtain the following time decay
for the Gamow state:

ρG(t) = e−itH ρG e
itH = ρGR + etΓ ρGS . (37)

Analogously,

ρD(t) = ρDR + e−tΓ ρDS . (38)

Observe that, while (36) grows for increasingly positive values of time and de-
creases for increasingly negative values of time, the opposite is true for (38). A
choice of O(E,E′) using a kind of complex analytic functions called Hardy func-
tions on a half plane [31, 32] implies the validity of (37) for t < 0 only and the
validity of (38) for t > 0 only. Thus, the evolution group splits into two distinct
semigroups, one for values of t negatives (the growing part) and the other for values
of t positives (the decaying part). This point of view postulates the existence of an
origin of times for decaying processes [51].

3. concluding remarks

Unstable quantum states, usually called quantum scattering resonances, can be
split into two parts: one which have exponential decay at all times, starting from an
origin t = 0. The other shows unescapable big deviations of the exponential law for
very small, next to t = 0, and very large values of time. These are hardly observable,
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so that exponential decay is assumed to be a good approximation for practically
all observable values of time. Then, it looks practical to use resonance states
which show an exponential decay for all times. Vector states for these exponential
decay states are called Gamow vectors or Gamow states. Different resonances have
distinct Gamow states.

The use of Gamow vectors as a representation of Gamow states has been popular
since the years 1950’. However, this representation has two problems. One is
the difficulty to define averages of observables on Gamow states. The other is
the presumption that Gamow states should have non-zero entropy, which looks
incompatible with the representation of Gamow state as vectors, as is the case for
pure quantum states. It is certainly true that Gamow vectors are not normalizable,
but we still need to show that notwithstanding they are not pure states.

We have used an algebraic formulation of observables and states that solves both
problems. In one side, averages on Gamow states are well defined for a wide range
of observables. In addition it is shown that Gamow states are not pure (neither
mixtures, although they are quantum states).
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[23] Gadella, M.; Gómez, F. A unified mathematical formalism for the Dirac formulation of quan-

tum mechanics. Found. Phys., 32 (2002), 815-869.
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