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Dirac fermions in armchair graphene nanoribbons trapped by electric quantum dots
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We study the confinement of Dirac fermions in armchair graphene nanoribbons by means of electrostatic
quantum dots. We provide an analytically feasible model where some bound states can be found explicitly. We
show that the energies of these bound states belong either to the gap of valence and conducting bands or they
represent bound states in the continuum whose energies are embedded in the continuous spectrum. The solutions
satisfying armchair boundary conditions are found in an elegant manner with the use of specific projection
operators.
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I. INTRODUCTION

Electrostatic barriers are transparent for massless Dirac
fermions with normal incidence due to Klein tunneling
[1]. Therefore, electrostatic confinement of massless Dirac
fermions in graphene is difficult. In the oblique direction, the
nonzero tangent momentum gives rise to an effective mass
term and reflection on the barrier is possible.

It was predicted theoretically and observed experimentally
that despite the Klein tunneling, there are resonant modes
called quasibound states that are trapped for very long times
by the electrostatic field [2–12], see also Ref. [13]. They
arise due to constructive interference of the reflected waves
within the quantum dot, in analogy to whispering-gallery
modes in acoustic cavities [14]. The quasibound states, char-
acterized by outgoing boundary conditions and nonvanishing
yet small imaginary parts of the energy, were analyzed the-
oretically in circular graphene quantum dots [2–7], as well
as in the systems with rectangular geometry in plane [8],
or in carbon (arm-chair) nanoribbons [9–12]. In the later
work, they were suggested in the role of possible spin qubit
system.

Electrostatic quantum dots can even confine bound states
with exponentially decaying wave functions outside the po-
tential well. Their existence was revealed in systems with
translational symmetry [15–19]. Confinement of zero-energy
Dirac fermions by electrostatic quantum dots with rotational
symmetry was showed analytically in Refs. [20–22]. Bound
states in circular quantum dots with nonvanishing energy were
discussed in Ref. [4]. Electronic transport of Dirac fermions
in armchair nanoribbons in the presence of a rectangular
electrostatic barrier dependent on a single coordinate was
studied in Refs. [9,12]. A similar setting with an additional
inhomogeneity of Fermi velocity was taken into account in
Ref. [23]. In Ref. [24], the confinement of Dirac fermions of
nonzero energy by a periodic chain of electrostatic scatterers
was demonstrated.

Theoretical studies of the quasibound states as well as
bound states confined by the electrostatic field have been
accompanied by experimental results. Electrostatic quan-
tum dots with circular geometry can be created by the tips
of scanning tunneling microscope (STM). Existence of the
quasibound states created by the STM or by substrate ma-
nipulations was reported in Refs. [14,25–27]. In Ref. [28],
a modified STM tip was used for the creation of circular
quantum dots with tunable size from nanometers to microme-
ters. The bound states were observed for deep, small potential
wells of nanometer scale, whereas whispering-gallery modes
were reported for the quantum dots of larger scale. The ex-
istence of bound states was also confirmed experimentally in
Ref. [29].

Bound states in a quantum system can correspond either
to discrete energies or to energies embedded in the contin-
uum. In the latter case, they are called BICs (bound states in
the continuum). Existence of BICs in physical systems was
anticipated back in 1929 by von Neumann and Wigner [30].
Despite their coexistence with scattering states of infinitely
close energies, they do not couple to them. They can be un-
derstood as resonances with infinitely long decay rates. Since,
BICs have been studied in a wide range of physical scenarios;
see Ref. [31] for extensive review. In the context of graphene,
they have an important role in the design of graphene-based
electronic and optical devices with tunable transport [32,33]
and optical properties [34,35].

In the current paper, we present an analytically tractable
model of quantum dots in an arm-chair graphene nanorib-
bon (AGNR) that confines bound states of nonzero energy.
Although the model lacks both translational and rotational
symmetry, we show that there can be confined bound states
with nonzero energies that are either in the spectral gap or be-
long to the continuum spectral band and correspond to BICs.
The corresponding wave functions are given by analytical
closed expressions. To facilitate their calculation, we propose
the method of projection operators based on symmetries of
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the two-valley Dirac equation. The projectors map the generic
solutions of the stationary equation into those that comply
with the boundary conditions. This approach is rather general
and can be applied to a wider class of systems than those
presented in this paper.

The stationary equation of free Dirac massless fermions in
graphene can be written in the following form [36]:

H0� = (τ0 ⊗ σ1 px + τ0 ⊗ σ2 py)� = E�, (1)

where both τ j and σ j , j = 1, 2, 3, are Pauli matrices, and τ0

and σ0 are 2 × 2 identity matrices. The matrices τ j act on the
valley degree of freedom associated to the Dirac points K and
K′ of graphene. The matrices σ j act on the sublattice degree
of freedom related to presence of two triangular sublattices A
and B. For convenience, we identify the components ψ (′)X of
� in Eq. (1) with the sublattices and valleys as follows, see
Ref. [36]:

� := (ψA, ψB, ψ ′
B,−ψ ′

A). (2)

For instance, ψA(′)(r) describes Dirac fermions localized at
the lattice A with momentum near the Dirac point K(′). The
interpretation of the other components goes in the same man-
ner.

In graphene nanoribbons, the solutions of Eq. (1) are sub-
ject to the boundary conditions that characterize the edges of
the graphene strip. The boundary conditions were discussed
in a number of works [36–39].We adopt here the notation of
Ref. [36] in which the stationary equation of the free Dirac
fermion coincides with Eq. (1).1

The boundary condition at boundary � can be specified in
terms of a unitary matrix M as follows:

�|�x∈� = M�|�x∈�, M† = M, M2 = 1. (3)

To avoid the leaks of probability current through the boundary,
the matrix has to satisfy

{M, nB.J} = 0, (4)

where nB = {n1, n2, 0} is the normal vector to the boundary
and J = (τ0 ⊗ σ1, τ0 ⊗ σ2, 0) is the current density operator.
Together with the requirement of the time-reversal symmetry
[36], the matrix M acquires the following general form:

M = ν · τ ⊗ n1 · σ, (5)

where τ = {τ1, τ2, τ3}, σ = {σ1, σ2, σ3}; n1 is a unit vector
perpendicular to nB and ν is an arbitrary three-dimensional
unit vector. Let us mention two specific families of the bound-
ary conditions. In the first case, the boundary condition does
not mix the valleys:

M = τ3 ⊗ σ3eiνσ1 , ν ∈ (−π, π ]. (6)

When ν = 0, M represents a zigzag boundary condition. For
ν = ±π/2, it describes infinite-mass boundary condition. The

1Hamiltonian used by Brey et al. in Ref. [37] reads HB = τ3 ⊗
σ1 px + τ0 ⊗ σ2 py whereas the Hamiltonian used by Akhmerov et al.
in Ref. [36] is HA = τ0 ⊗ (σ1 p1 + σ2 p2). The mapping between the

two operators is mediated by the operator U = (
σ0 0
0 −σ2

). There

holds HB = UHAU −1.

other values of ν can be attributed to the presence of staggered
potential at the boundary, see Ref. [36]. The second family
corresponds to an armchairlike boundary:

M = τ1eiατ3 ⊗ σ1eiμσ3 , α, μ ∈ (−π, π ]. (7)

Here μ depends on the explicit form of nB whereas parameter
α can be attributed to width L of the nanoribbon.

It is worth mentioning that the armchair boundary con-
ditions are less universal than zigzag graphene nanoribbons
boundary conditions with M = τ3 ⊗ σ3, which apply to a
wider range of lattice terminations [36]. Nevertheless, AGNRs
attract attention due to the energy gap that opens between
positive and negative energies, which is desirable in electronic
devices. Additionally, it proved to be possible to fabricate
highly precise AGNR in the experiments [40].

We will present a model where Dirac fermions in AGNR
are confined by a strongly localized electrostatic field. But
first, it is convenient to briefly review the spectral properties of
free Dirac fermions in an armchair nanoribbon, since it will be
quite helpful for the following analysis of the electric quantum
dots.

II. FREE PARTICLES IN AGNR

Let us consider an armchair nanoribbon of width L which
is oriented along the y axis, i.e., x ∈ [0, L] and y ∈ R. The
normal vector nB perpendicular to the boundary and pointing
outward is nB = (−1, 0, 0) for x = 0 and nB = (1, 0, 0) for
x = L. Therefore, we can see from Eqs. (4) and (7) that the
matrices M1 and M2 fixing the boundary conditions at x = 0
and x = L, respectively, can be defined without lack of gener-
ality as2

M1 = τ1 ⊗ σ2, M2 = τ1eiατ3 ⊗ σ2, α ∈ (−π, π ]. (8)

For the armchair nanoribbon without any additional inter-
action at the boundary, the parameter α can be associated
with the width L of the nanoribbon. Its origin can be traced
back to the tight-binding model. Indeed, the solutions of the
Dirac Eq. (1) correspond to the slowly varying amplitudes
ψA(′), ψB(′) of the total wave functions defined on sublattices
A and B, see Refs. [37,41]:

�A = ei KxψA − iei K ′xψ ′
A, �B = ei KxψB − iei K ′xψ ′

B. (9)

Remember that the Dirac points are K = (K, 0) = ( 2π
3a0

, 0)
and K′ = (K ′, 0) = −K, where a0 is the constant of the lat-
tice. The armchair boundaries are formed by the atoms from
both sublattices A and B. The corresponding total wave func-
tions should be vanishing there:

(ψX (x, y)eiKx − iψ ′
X (x, y)eiK ′x )|x=0

x=L
= 0, X = A, B, ∀y.

(10)

Comparing these relations with Eqs. (8), we get α = 2KL =
4π
3a0

L. Therefore, for nanoribbons with no additional edge

2Indeed, if the wave function � satisfies (1 − M1)�(0, y) = 0
and (1 − M2)�(L, y) = 0, then the wave function �̃ = eiβτ3� sat-
isfies (1 − M̃1)�̃(0, y) = 0 and (1 − M̃2)�̃(L, y) = 0, where M̃1 =
τ1e−2iβτ3 ⊗ σ2 and M̃2 = τ1ei(α−2β )τ3 ⊗ σ2.

165404-2



DIRAC FERMIONS IN ARMCHAIR GRAPHENE … PHYSICAL REVIEW B 105, 165404 (2022)

interactions, we get effectively α = 0 for L = 3Ma0 and
α = ±2π/3 for L = (3M ± 1)a0, where M is an integer, see
Refs. [37,41]. Other values of α can reflect the presence of
an additional interaction or altered crystal structure at the
boundary [42].

The admissible solutions of the stationary Eq. (1) have to
satisfy

H0� = E�, �(0, y) = M1�(0, y),

�(L, y) = M2�(L, y). (11)

The boundary conditions Eqs. (10) have been replaced by
matrix equations which allow for an easier algebraic manip-
ulation, as will be shown in the following. This matrix form
will play a fundamental role in our approach. We can find the
wave functions �(x, y) in the following manner: the Hamil-
tonian H0 commutes with the operator P0M1, [H0, P0M1] = 0,
where P0 is reflection along the axis y = 0, i.e., P0 f (x, y) =
f (−x, y). We can utilize this fact and define the wave function

�(x, y) = (1 + P0M1)F (x, y), (12)

where F = F (x, y) is a generic solution of (H0 − E )F (x, y) =
0 and 1 = τ0 ⊗ σ0. By construction, � solves the same equa-
tion and additionally it satisfies the boundary condition at
x = 0. Indeed, we have

�(0, y) = (1 + P0M1)F (x, y)|x=0 = (1 + M1)F (0, y)

= M1(1 + M1)F (0, y) = M1�(0, y), (13)

where we used the fact that M2
1 = 1. Hence, the operator 1 +

P0M1 works as a projector to the space of functions where
the boundary condition at x = 0 is satisfied.3 If we substitute
the explicit form of � into the boundary condition at x = L,
(1 − M2)�(L, y) = 0, and use M2

2 = 1, we get the following
equation:

(1 − M2)(F (L, y) − M2M1F (−L, y)) = 0. (14)

Therefore, when F (x, y) satisfies

F (L, y) = M2M1F (−L, y) = eiτ3α ⊗ σ0 F (−L, y), (15)

then �(x, y) defined by Eq. (12) fulfills the boundary condi-
tions both at x = 0 and x = L.

Relation Eq. (15) requires the components of F (x, y) to be
quasiperiodic. It is rather straightforward to find the bispinors
F (x, y) such that Eq. (14) is satisfied. They are

F1,n(x, y) = eikyy+i( nπ
L + α

2L )x

⎛
⎝ nπ

L + α
2L − iky√(

nπ
L + α

2L

)2 + k2
y

, 1, 0, 0

⎞
⎠,

F2,n = τ1 ⊗ σ0 F1,n|α→−α
n→−n

, n ∈ Z, (16)

where (H0 − En)F1(2),n = 0 and En =
√

( nπ
L + α

2L )2 + k2
y . The

corresponding bispinors that comply with the boundary

3At the boundary x = 0, the space of solutions of (H0 −
E )F (x, y)|x=0 = 0 is four-dimensional. The projector in Eq. (12) re-
duces into 1 + M1 at the boundary and projects the space of solutions
into a two-dimensional subspace.

conditions are

�1,n = (1 + P0M1)F1,n, �2,n = (1 + P0M1)F2,n, (17)

such that (H0 − En)� j,n = 0, j = 1, 2.
The spectrum of a generic self-adjoint operator consists of

two disjoint sets: the essential spectrum σess and the discrete
spectrum σd . In the case of the free-particle Hamiltonian H0

with the domain specified by the boundary conditions Eqs. (8),
there are no discrete eigenvalues. Its spectrum is formed just
by the essential spectrum. The gap between positive and neg-
ative energies depends on the value of the parameter α:

σ (H0) = σess(H0) = (−∞,−E0] ∪ [E0,∞), E0 = |α|
2L

.

(18)
When α = 0, i.e., M2 = M1 there is no gap in the spectrum so
the nanoribbon is metallic. When α = π , i.e., M2 = −M1, the
spectral gap is maximal.

It is worth noticing that the construction of eigenstates via
the projector Eq. (12) is rather general and can be applied
to a large class of energy operators, see Appendix. Formula
Eq. (15) suggests that it can be particularly useful for periodic
systems where the wave functions are quasiperiodic due to
the Bloch theorem. We will apply this construction in the next
section.

III. ELECTROSTATIC QUANTUM DOTS IN AGNR

Now, let us analyze the possible confinement of Dirac
fermions on armchair nanoribbons in the presence of elec-
trostatic quantum dots described by the following stationary
equation:

H� = (H0 + V (x, y))� = E�, (19)

where H0 is the free Hamiltonian given in Eq. (1) and the
potential term has the following explicit form:

V (x, y) = −σ0 ⊗ σ0
4mω2 sin2 κx

m2 + ω2 cos 2κx + κ2 cosh 2ωy
,

κ =
√

m2 + ω2. (20)

The parameters m and ω can acquire arbitrary nonvanish-
ing real values. The sign of V (x, y) corresponds to −sign m.
Equation (19) was derived in Ref. [24] with the use of
time-dependent supersymmetric transformation. In that work,
analytical solutions for planar Dirac fermions of a specific,
fixed energy E = m were provided. We have no explicit
knowledge of solutions for other energy values. Notice that
the chiral symmetry of H0 is broken in H by the presence
of V (x, y). Therefore, the spectrum of H is not necessarily
symmetric with respect to zero. From now on, we fix m > 0
without loss of generality. This choice makes the electrostatic
field V (x, y) nonpositive. The results for m < 0 can be ob-
tained in the same vain.

The term Eqs. (20) corresponds to an electrostatic potential
which is periodic in x and decreases exponentially in y,

V (x, y) = V (x + T, y), T = π

κ
,

V (x, y) → 0, for |y| → ∞. (21)
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As the potential term is exponentially vanishing in y, its pres-
ence does not alter the essential spectrum of Dirac fermions in
the nanoribbons—it does not alter the spectral gap. Therefore,
there holds

σess(H ) = σess(H0), (22)

see Lemma 3.4 in Ref. [43]. Nevertheless, there can emerge
bound states due to the interaction with energies either in the
gap or within the essential spectrum. Let us notice that expo-
nentially vanishing electrostatic quantum dot was considered

as a reasonable approximation of the experimental setting in
Ref. [44].

The Hamiltonian Eq. (19) commutes both with P0M1 and
P0M2:

[H, P0M1] = [H, P0M2] = 0, (23)

where M1 and M2 are given in Eqs. (8).
Equation (19) has four solutions for E = m that are

strongly localized by the electrostatic field. The first one, v1,
has the following expression:

v1(x, y) = 1

D(x, y)

⎛
⎜⎝

−i cosh(ωy)[κ cos(κx) + m sin(κx)] + ω sin(κx) sinh(ωy)
cosh(ωy)[−κ cos(κx) + m sin(κx)] + iω sin(κx) sinh(ωy)

0
0

⎞
⎟⎠, (24)

where we abbreviated the denominator by the nonvan-
ishing function D(x, y) = m2 + ω2 cos(2κx) + κ2 cosh(2ωy).
The other solutions, v2, v3, and v4, are obtained from v1 by

v2(x, y) = σ0 ⊗ σ3v1(−x,−y), v3 = σ1 ⊗ σ0v1,

v4 = σ1 ⊗ σ0v2. (25)

All of them have the same eigenvalue m:

Hva(x, y) = m va(x, y), a = 1, 2, 3, 4. (26)

These wave functions are strongly localized along the y axis
and are T antiperiodic in the x direction:

va(x, y) = −va(x + T, y). (27)

Let us stress that the states va(x, y) do not necessarily comply
with the boundary conditions of the armchair nanoribbon.
Nevertheless, we will consider two specific cases where lo-
calized states based on Eqs. (24) and (25) can be found.

A. AGNR with the maximal band gap

Let us focus on the specific case of the armchairlike bound-
ary conditions Eqs. (8) where the spectral gap is maximal, i.e.,
α = π and M2 = −M1. We fine-tune the electrostatic field
such that its period Tj can match the fixed width L of the
nanoribbon in the following manner:

Tj = π√
m2

j + ω2
j

= L

j + 1/2
, j ∈ {0, 1, 2, . . . }. (28)

Now we can follow the same steps as in case of the free
particle model. We compose the wave functions �a as

�a = (1 + P0M1)va(x, y), H�a = mj�a, a = 1, 2, 3, 4,

(29)
which, by definition, comply with the boundary condition at
x = 0. The eigenstates Eqs. (25) are T antiperiodic, va(x, y) =
−va(x + T, y), and satisfy

va(L, y) = M1M2va(−L, y) = −va(−L, y). (30)

Then it is possible to show (see the Appendix) that �a satisfies
the boundary conditions

(1 − M1)�a(0, y) = 0, (1 + M1)�a(L, y) = 0,

a = 1, 2, 3, 4. (31)

Additionally, the bispinors �a are square integrable on
(x, y) ∈ [0, L] × R so they represent bound states confined
by the electrostatic field. As their density of probability is
essentially indistinguishable in the plots, we illustrate just one
of them in Fig. 1 for different choices of parameters m, ω,
and L.

The energy E = mj of the bound states Eq. (29) can be
either in the energy gap or within the spectral band, i.e.,
immersed in the essential spectrum of H . In the latter case,
we deal with the BICs. The position of the bound-state energy
relative to the energy gap depends on the parameters m ≡ mj

and ω ≡ ω j that define the electrostatic potential Eqs. (20).
The condition Eqs. (28) does not fix the parameters mj and
ω j uniquely. Indeed, with j being fixed, any of the configu-

rations that satisfies m2
j + ω2

j = π2(2 j+1)2

4L2 is admissible. These
configurations differ by the energy mj of the bound states �a:

mj ∈
(

0,
π (2 j + 1)

4L

)
. (32)

The threshold of the essential spectrum E0 = π
2L stays within

this interval for any j ∈ {1, 2, . . . } and, therefore, there exists
mj in Eq. (32) such that mj < E0 or such that mj > E0 for
nonzero j. For j = 0, all the admissible values of m0 lie below
the threshold of the essential spectrum, m0 < E0; see Fig. 2 for
illustration. We arrive at the following conclusions:

(1) If the period of the potential is T0 = 2L, then the en-
ergy of the bound state is in the interval 0 < m0 < E0 = π

2L
and, therefore, it belongs to the discrete spectrum σd (H ).

(2) If the period Tj of the potential is smaller, j =
1, 2, . . . , then we have two options how to choose parameter
mj :

(i) 0 < mj < E0 = π
2L ,

(ii) E0 = π
2L < mj <

π (2 j+1)
2L .

If mj satisfies (i), then the energy E = mj stays in the gap
and belongs into σd (H ). When mj satisfies (ii), the energy mj
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FIG. 1. Top: Electrostatic potential V (x, y) in Eqs. (20). On the left, the potential has period T0 = 2L and m0 = 1. The corresponding
energy level E ≡ m0 belongs to the discrete spectrum. On the right, there holds T1 = 2L

3 and m1 = 4. In this case, the energy E ≡ m1 of the

bound states is embedded in the continuum. In both cases, L = π

2
√

2
and ω =

√
π2

T 2 − m2. Bottom: Density of probability of (normalized) �1 in
Eqs. (29) for the boundary matrices M2 = −M1 and for the aforementioned values of parameters ω, m, and width L.

belongs to the essential spectrum σess(H ) and the correspond-
ing states �a represent BICs.

We illustrate two configurations of the electrostatic dots in
the nanoribbon in Fig. 1 where the bound-state energy E = m
will be a discrete energy in the gap or will be embedded into
the continuum spectrum in the second case, for j = 0 and j =
1, respectively.

B. Quantum dots in metallic AGNR

Let us consider now the setting where we fix M2 = M1, i.e.,
α = 0. In this case, there is no gap in the essential spectrum
Eq. (18) and the nanoribbon is metallic. We alter the electro-
static field Eqs. (20) to match its period with the width of the
nanoribbon in the following manner:

T = L

j
, j = 1, 2, 3, . . . . (33)

We can achieve it by fixing m ≡ mj and ω ≡ ω j such that

m2
j + ω2

j = π2 j2

L2
, j = 1, 2, 3, . . . . (34)

In the construction of bound states confined by these quan-
tum dots, we can follow exactly the same steps as in the

previous subsection. We define

�a = (1 + P0M1)va(x, y), H�a = mj�a, a = 1, 2, 3, 4.

(35)
Due to Eq. (33), the bispinors Eqs. (25) are 2L periodic, and
there holds, in particular,

va(L, y) = M1M2va(−L, y) = va(−L, y). (36)

It is possible to show that the the eigenstates �a comply
with the required boundary conditions and represent Dirac
fermions confined by the electrostatic field. They are BICs as
their energy E = mj is embedded in the essential spectrum:

mj ∈ σess(H ). (37)

We illustrate the potential together with the probability of
density of states in Fig. 3.

IV. CONCLUSIONS

Our results show that the localized electric field can con-
fine Dirac fermions with energies that are either in the gap
or embedded in the continuum. In our models, the match
between the period of the electric field and the width of the
nanoribbons, Eq. (28) or (33), allowed us to find the local-
ized solutions analytically at the fixed energy E = m. When
the width of the nanoribbon is mismatched with the period
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FIG. 2. The electrostatic potential Eqs. (20) is uniquely fixed by
the choice of the parameters ω and m. The eligible values of the
parameters have to satisfy Eqs. (28), which implies that m2

j + ω2
j =

π2 (2 j+1)2

4L2 , j = 0, 1, 2, .... Note that ωm �= 0 as the electrostatic field
would vanish otherwise. The two dashed circles correspond to j = 0
and j = 1. The parameter mj corresponds to the bound-state energy
(black dots). The horizontal axis m can be also identified with the
energy axis. The shaded half planes (black semilines on m, E axis)
correspond to bands of essential spectrum σess(H ) = (−∞, − π

2L ] ∪
[ π

2L ,∞). For any j > 0, we can select mj such that it belongs to the
essential spectrum. In the figure, [m0, ω0] and [m1, ω1] are fixed in
coherence with their values used in Fig. 1. E = m0 is discrete energy,
E = m1 corresponds to BIC.

of the potential, we expect the confined states with discrete
energies to keep existing in the system. Nevertheless, their
energy would depart from value m and their form would not be
calculable analytically. The BICs are more fragile with respect
to perturbations [31]. Therefore, we expect that they would
turn into long-life resonance states in the case of imperfections
of the electrostatic potential. Remark that analytical solutions
for bound states with nonzero energy are quite unusual in the
literature where mainly zero modes confined by electrostatic
potentials are considered [20–22,45–47].

Our models can serve for perturbative analysis of bound
states in the systems with generalized form of electrostatic
dots. In this way, they can provide insight into a wider class
of settings where analytical treatment is not possible. Recent
advances in fine tuning of electrostatic quantum dots [28] sug-
gest that the settings similar to those discussed in the current
paper could be reachable experimentally in the near future.

The BICs are rather difficult to observe in the experiments
directly as they do not couple to the propagating modes and,
therefore, they do not contribute to the electronic transport.
Nevertheless, it seems to be possible to prove their exis-
tence by simultaneous measurements of local density of states
(LDOS) and conductance. There were theoretical studies on
the existence of BICs in graphene nanoribbons. In Ref. [32],
the BICs were found in the nanoribbon with variable width. In
Ref. [33], BICs were observed by in the system where trilayer
graphene flakes in an AAA configuration was connected to
armchair nanoribbon leads. In both cases, the tight-binding
calculations showed that BIC has no influence on the transport
properties. Yet, they correspond to delta function peaks in

LDOS. When a perturbation is introduced, e.g., by applying
voltage on the trilayer graphene flake, BICs get coupled to the
propagating modes and contribute to the conductance. There-
fore, the combination of LDOS and conductance calculations
can prove the existence of BICs in these systems. The BICs
can also play an essential role in the control of absorption of
light by graphene with the use of dielectric metasurfaces, see,
e.g., Refs. [34,35] where ultrasensitive absorption character-
istics for graphene-based devices were achieved.

The electrostatic field Eqs. (20) lacks both translational
and rotational symmetry. To our best knowledge, such con-
figuration of the electric field in graphene nanoribbons have
not been discussed in the literature so far. We believe that
the presented results improve our understanding of elec-
tronic properties of Dirac fermions in graphene and arm-chair
nanoribbons in particular. We also think that our analysis,
based on reflection and periodic symmetries, can inspire fur-
ther investigation of analytically solvable models of Dirac
fermions in graphene nanoribbons with electrostatic field. We
plan to report on our progress along this line in the near future.
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APPENDIX

Let us have a system described by the Hamiltonian H =
H0 + V (x, y), where V (x, y) can be an arbitrary Hermitian
matrix with position-dependent entries. We set the following
boundary condition in x = 0 and x = L:

�(0, y) = M1�(0, y), �(L, y) = M2�(L, y),

M2
1 = M2

2 = 1. (A1)

We suppose that

[P0M1, H0] = 0, [P0M1,V ] = 0, (A2)

where P0 is reflection at x = 0, P0 f (x, y) = f (−x, y). The first
commutator in Eqs. (A2) implies that the matrix M1 has the
following form:

M1 = ν.τ ⊗ σ2, (A3)

where the real vector ν is arbitrary. Therefore, there holds
[P0M1, H0] = 0 both for armchairlike boundaries specified by
Eq. (7) and for the infinite-mass boundary conditions given by
Eqs. (6) with ν = π/2. We suppose that the potential V (x, y)
is such that the second commutator in Eqs. (A2) is vanishing
as well. This is particularly the case for the electrostatic inter-
action V (x, y) = v(x, y)1 that is even in x.

Let us take a generic solution F = F (x, y) of (H −
E )F (x, y) = 0. We define the function �,

�(x, y) = (1 + P0M1)F (x, y), (A4)
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FIG. 3. Top: Density of probability of (normalized) �1 in Eqs. (35) for the boundary matrices M1 = M2. Botttom: Electrostatic potential

V (x, y) in Eqs. (20). We fixed m1 = 2, T1 = L (left) m2 = 5, T2 = L
2 (right). L = 1 and ω j =

√
π2

T 2
j

− m2
j , j = 1, 2 in all cases. It is worth

noticing that similar electrostatic quantum dots in armchair nanoribbons created by STM tips were considered in Ref. [11].

that is, an eigenstate of H . It is straightforward to see that
the function � satisfies the boundary conditions in x = 0
by construction, �(0, y) = M1�(0, y). The formula Eq. (A4)
represents a simple way how to construct spinors that fol-
low the boundary condition at x = 0 from a generic solution
F (x, y) of the stationary equation (H − E )F (x, y) = 0.

We require � to satisfy the boundary conditions at x = L.
Substituting Eq. (A4) into the second relation in Eqs. (A1),

the corresponding equation can be brought into the following
form:

(1 − M2)(F (L, y) − M2M1F (−L, y)) = 0. (A5)

Therefore, when F (x, y) satisfies

F (L, y) = M2M1F (−L, y), (A6)

the wave function � in Eq. (A4) satisfies the required bound-
ary conditions Eqs. (A1).
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