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Abstract: The Green function for an electron confined to a plane in the presence of a uniform
perpendicular magnetic field is derived and is decorated by several modified Dirac delta functions
(MDF). In each case the ground state energy is examined as a function of the field strength, the
spacing and the coupling constant of the MDFs. The results suggest that the magnetic field is ionising
and the strength of the MDFs must attain a field-dependent critical value in order that a bound state
be formed. This offers a new perspective on the question of whether a static magnetic field can
be ionising.
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1. Introduction

The aim of this note is to propose an exactly solvable quantum-mechanical model
based on contact interactions in accordance with the subject of this issue of Symmetry. To
this end, we consider a particle in the presence of three static attractive modified two-
dimensional Dirac delta functions (MDF) in a uniform magnetic field perpendicular to
the plane formed by the MDFs. We examine the behaviour of the ground-state energy of
the particle with respect to the strength of the MDF (assumed to be the same for all) and
their configuration.

We consider the contact interactions introduced by Horing et al. [1,2] who have
examined various energy levels of a a pair of dissimilar MDF subject to uniform magnetic
fields. They call their contact potentials “quantum dots”, although this term generally
refers to the more realistic Fock–Darwin parabolic model [3,4]. To avoid confusion we will
not use their term. Furthermore, their analysis is based on truncating a slowly convergent
series representation of the exact Green function used here. For completeness, we shall also
investigate the one and two MDF models.

To introduce the modified contact interaction, the zero field case is treated next for
a single “MDF”( the two “MDF” case is examined in the Appendix A) More detailed
information can be found in [5].

The Schroedinger equation for the Hamiltonian p2/2m− λδ(~r) in momentum space
has the solution

ψ̂(p) =
2mλ

h̄2 ψ(0)[p2 + κ2]−1, κ =
√
−2mE/h̄ > 0 (1)

Thus,

ψ(r) =
2mλ

h̄2 ψ(0)
∫ d~k

(2π)2
ei~k·~r

k2 + κ2 =
mλ

πh̄2 ψ(0)K0(κr) (2)
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Now, to determine κ one should set r = 0 and cancel ψ(0) to obtain a transcendental
equation for κ, but this leads to ψ(r) = 0 or ∞. To obtain sensible results we replace 0 by
the cut-off a giving the transcendental equation

1 =
mλ

πh̄2 K0(κa) (3)

Setting a = 5
√

2 , say, for a MDF radius of roughly 6 Bohr units, gives the bound state
energies shown in Figure 1.
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Figure 1. Single MDF: κ vs. λ for B = 0, (atomic units).

Similarly, the zero field κ vs λ relation for two MDFs, given by (A5) (see Appendix A)
is shown in Figure 2 for a = 2

√
2 and separation distance d = 9.
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Figure 2. Two MDFs: κ vs. λ for B = 0, a = 2
√

2, d = 9 (atomic units).

In the next section we work out a convenient form of the Green function for a charged
particle in a plane subject only to a uniform perpendicular magnetic field ~B = ∇× ~A. In
Section 3 this is applied to obtain the ground state equation for such a system decorated
by N identical “fuzzy” delta functions, which is then solved for N = 1, 2, 3 such quantum
MDFs in various configurations. The note ends with a brief discussion of the results.

2. Green Function

The Green function for an electron, in two- and three-dimensions, in a uniform mag-
netic field ~B = Bẑ = ∇× ~A is closely related to the solution of the Sturm–Liouville problem
for the Harmonic Oscillator solved in the 1850s and summarised briefly by Titchmarsh [6] in
1946. The result has been re-derived many times by a variety of techniques; a representative
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sample of these is contained in references [7–12]. We, next, present a brief derivation of
the two-dimensional case g, (~r = (x, y)), in a form convenient for quantising fields in the
z-direction.

For an electron system with energy levels {α} the resolvent operator is (h̄ = 2m = 1)

G = ∑
α

|α〉〈α|
w− α

(4)

Translation by the arbitrary vector ~v corresponds to the operator Tv = ei~v·~P where, in a
magnetic field ~B = ∇× ~A, ~P = ~p + e~A (in the symmetric gauge ~A = 1

2
~B×~r). Thus

TvF(~r) = e
1
2 i~v·(~B×~r)F(~r +~v). (5)

Since T~v commutes with the Hamiltonian for a free particle, the Green function obeys

G(~r,~r′; w) =

〈~r|G|~r′〉 = ∑
α

〈~r|Tv|α〉〈|α|Tv|~r′〉
w− α

= ei~B·~V×(~r−~r′)〈~r +~v|G|~r′ +~v〉 (6)

Next, choose ~v = −~r′ so in a magnetic field (with ~ρ =~r−~r′),

〈~r|G|~r′〉 = e
1
2 i~B·~r×~r′〈~ρ|G|0〉 (7)

Suppose we change ~A→ ~A+∇φ. Then, in the new gauge the Green function becomes

〈~r|eieφ(~r)Ge−ieφ(~r′)|~r′〉 = ei[φ(~r)−φ(~r′ ])〈~r|G|~r′〉 = ei 1
2
~B·(~r×~r′)ei[φ(~r)−φ(~r′)]〈~ρ|G|0〉 (8)

i.e.,
G(~r,~r′; E) = C(~r,~r′)g(~ρ′; E) (9)

where the so-called Peierls factor C is unimodular and g is gauge invariant. Since C cancels
out in what follows, we omit it and use the symmetric gauge. The cyclotron frequency
ω0 = 2eB/c serves as a field strength parameter.

We start with the well-known Green equation{
−∇2 − ieB(y∂x − x∂y) +

1
4

e2B2(x2 + y2)− E
}

G(~r,~r′; E) = −δ(~r−~r′), (10)

where, in the causal variant, E has a positive infinitesimal imaginary part, and after in-
troducing ξ = 1

2 ω0(~r−~r′)2, find the inhomogeneous confluent hypergeometric equation
(ω = E/ω0) {

ξ∂2
ξ + ∂ξ −

1
4

ξ + ω

}
g(ξ; ω) =

1
4π

δ(ξ). (11)

whose homogeneous solution is

[A1 1F1(1/2−ω; 1; ξ) + A2U(1/2−ω; 1; ξ)]e−ξ/2. (12)

The method of undetermined coefficients next yields,

g(ξ; ω) = − 1
4
√

ξ

sec(πω)

Γ
(

ω + 1
2

)Wω,0(ξ), (13)

where the identity

U
(

1
2
− w, 1, s

)
=

es/2Ww,0(s)√
s

(14)
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has been incorporated and Wκ,µ(z) is Whittaker’s confluent hypergeometric function [13].

3. Calculation

As introduced in Section 1, a point quantum MDF can be modelled by the contact
potential V(~r) = −λδ(~r), but to avoid divergences and to simulate a real dot we introduces
a minimum radius ξ0 = 2a2/ω by imposing g(0; ω) = g(ξ0; ω). As representative MDF
radii of about 3.7 Bohr units, we have set a = 2

√
2 and for an attractive quantum MDF,

λ > 0.
The Green function for N MDFs in a magnetic field can be worked out exactly [14], but

is quite complicated. Fortunately, we only require its denominators DN whose smallest real
roots correspond to the ground state energies. (For N = 1, 2, 3, the complete expressions
have been given in [2,14]). The eigenvalue equations are, for a single MDF

α(a) = β (15)

where

β =
a
√

8ω0

λ

α(c) =
sec(πω)

Γ(ω + 1
2 )

Wω,0(
1
2

ω0c2) (16)

The solutions are shown in Figure 3
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Figure 3. Single MDF: ω vs. λ for ω0 = 1, a = 2
√

2.

For two MDFs a Distance d Apart
The ground state is the lower root of the two equations

α(a)± a
d

α(d) = β. (17)

The ground state energy is shown in Figures 4 and 5 for two MDFs separated by 9a0
in a weak field (ω0 = 1) and in Figure 6 for ω0 = 3, d = 9. Figure 7 also shows below.
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Figure 4. Single MDF: ω vs. Log(λ) for ω0 = 3, a = 2
√

2.
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Figure 5. Two MDFs: ω vs. λ for ω0 = 1, a = 5
√

2 ,d = 9 Bohr units.
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Figure 6. Two MDFs: ω vs. λ for ω0 = 3, a = 5
√

2,d = 9 Bohr units.

In the case of an equilateral triangle of side d the eigenvalue equation can be written

3A(λ, ω){1− A(λ, ω)[1− ρ2(ω)] +
1
3

A2(λ, ω)[1− ρ3(ω)]} = 1, (18)

with

A(λ, ω) =
λ

a
√

8ω0

sec(πω)

Γ(ω + 1/2)
Wω,0(ω0a2/2) (19)

ρ(ω) =
aWω,0(ω0d2/2)
dWω,0(ω0a2/2)

(20)
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Figure 7. Triangle: ω vs. λ for ω0 = 1, a = 2
√

2, d = 9.

Finally, for three MDFs in a Row with Separation d one has the eigenvalue equation

3A(λ, ω){1− A(λ, ω[1− 2
3

ρ2(ω)]− 1
3

A2(λ, ω)[1 + ρ2(ω)σ(ω)]} = 1, (21)

where

σ(ω) =
aWω,0(2d2ω0)

dWω,0(a2ω0/2)
. (22)

4. Conclusions

The first striking result of this calculation is the loss of the bound state unless the
magnitude of the coupling constant λ exceeds a critical value, which is zero if the field
strength is zero. This magnetic ionisation effect. is a feature of the λ-dependence of the
ground state for all the configurations. The second is to note from Figures 8 and 9 that
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for a row of MDFs the effect of Landau quantisation is evident, but not in the triangular
case. Additionally, it is hard to account for the suppression of the ground state energy for
very small λ seen in Figure 9. It will be interesting to see if these features are preserved
for a more realistic Quantum Dot model, such as the Fock–Darwin harmonic system.
Figures 10 and 11, below, show the value of λ below which the bound state of a single MDF
is ionised vs the cyclotron frequency. The dependence of the field on λc is logarithmic. The
values for all the configurations considered are identical.

The only previous study that has been made for two “MDFs” is [6] where the coupling
constants, expressed in terms of well-depth, are allowed to be different. The authors
of [6] have examined a number of excited states as well, but the results are insufficiently
systematic to allow comparison with this work or to observe regularities. In addition, they
use an approximate Green function obtained by truncating a slowly convergent series,
which has been summed exactly in this work.
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Figure 8. Triangle: ω vs. λ for ω0 = 3, a = 2
√

2, d = 9.
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Figure 9. Three in row: ω vs. λ for ω0 = 1 a = 2
√

2, d = 9.
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Figure 10. Three in row: ω vs. λ for ω0 = 3 a = 2
√

2, d = 9.
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Figure 11. λc vs. ω0 for all configurations.
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Appendix A

For the ground state of two MDFs separated by ~d = dx̂ the Schroedinger equation in
momentum space is

(k2 + κ2)φ̂(~k) = λ[ψ(a) + e−ikxdψ(d)], (A1)

κ =
√
−E and a << d is the minimal length. Thus,

ψ(a) = λ[ψ(a)F(0, 0) + ψ(d)F(d, 0)] (A2)

ψ(d) = λ[ψ(a)F[0, 0] + ψ(d)F[0, 0] (A3)

with

F(c, 0) =
∫ ∞

−∞

dky

2π

∫ ∞

−∞

dkx

2π
eikx x e−ikxc

k2
x + k2

t + κ2
=

1
2π

K0(κ|x− c|) (A4)

Consistency of (A2) gives[
1− λ

2π
K0(κa)

]2
−
(

λ

2π

)2
K0(κa)K0(κd) = 0 (A5)

Solving for λ yields

λ =
2π

∆
[1−
√

R]

∆ = K0(κa)− K0(κd), R = K0(κd)/K0(κa). (A6)
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