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a b s t r a c t

The asymmetric scattering between wobblers and kinks in the standard φ4 model is
numerically investigated in two different scenarios. First, the collision between wobblers
with opposite phases is analyzed. Here, a destructive interference between the shape
modes of the colliding wobblers takes place at the impact time. The second scenario
involves the scattering between a wobbler and an unexcited kink. In this case the energy
transfer from the wobbler to the kink can be examined. The dependence of the final
velocities and wobbling amplitudes of the scattered wobblers on the collision velocity
and on the initial wobbling amplitude is discussed. Both situations lead to very different
fractal structures in the velocity diagrams.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The scattering between kinks has become a very popular research topic in recent decades because of its astonishing
roperties [1–3]. The study of the collisions between kinks and antikinks in the φ4 model was initially addressed in the
eminal Refs. [4–6]. As it is well known, only two different scattering channels arise: bion formation (where kink and
ntikink collide and bounce back over and over emitting radiation in every impact) and kink reflection (where kink and
ntikink collide and bounce back a finite number of times before moving away from one another). These two channels
re predominant, respectively, for low and large values of the initial collision velocity. In these studies there emerges
he fascinating property that the two previously mentioned channels are infinitely interlaced in the transition between
hese regimes, giving rise to a fractal structure embedded in the final versus initial velocity diagram. Kink reflection
ncluded in this region involves scattering processes where kink and antikink collide and bounce back a finite number of
imes before definitely separating. This kink dynamics could have important consequences for physical applications where
he presence of these topological defects allows us to understand certain non-linear phenomena. Kinks (and topological
efects in general) occur in a wide variety of physical disciplines, such as Condensed Matter [7–9], Cosmology [10,11],
ptics [12–14], molecular systems [15,16], Biochemistry [17], etc.
The appearance of a fractal structure in the velocity diagram describing kink scattering for the φ4 model is based on

the existence of an internal vibrational mode (the shape mode) associated with the kink solutions. The presence of this
massive mode together with the zero mode triggers a resonant energy transfer mechanism, which allows the redistribution
of the energy between the kinetic and vibrational modes when kinks collide. Usually, in a scattering event the kink and
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the antikink approach each other and collide. A certain amount of kinetic energy is transferred to the shape mode, such
that kink and antikink become wobblers (kinks whose shape modes are excited), which try to escape from each other.
If the kinetic energy of each wobbler is not large enough both of them end up approaching and recolliding. This process
can continue indefinitely or end after a finite number of collisions. In the last case, enough vibrational energy returned
back to the zero mode as kinetic energy, which allows the wobblers separate. This mechanism and related phenomena
have been thoroughly analyzed in a large variety of models [18–70], revealing the enormous complexity of these events
and the difficulty to explain this phenomenon analytically. The collective coordinate approach has indeed been used to
ccomplish this task, reducing the field theory to a finite dimensional mechanical system, where the separation between
he kinks and the wobbling amplitudes of the shape modes are promoted to dynamical variables. This method has been
rogressively improved, see for example [3,4,71,72] and references therein, and recently, a reliable description of kink
cattering in the φ4 model has been achieved in the reflection-symmetric case [73], by introducing into this scheme the
emoval of a coordinate singularity in the moduli space and choosing the appropriate initial conditions.

As mentioned, after the first collision the initially unexcited kink and antikink become wobblers, so in a n-bounce
cattering process the subsequent n − 1 collisions can be understood to be scattering processes between two wobblers.
his observation justifies interest in collisions between these objects. The evolution of a single wobbler has been studied
y perturbations by various authors, see [74–76] and references therein. Scattering between wobblers in the φ4 model
as discussed in [77] for space reflection symmetry. This situation is relevant to the original kink scattering problem
here mirror symmetry is preserved. The goal of these investigations is to bring insight into the resonant energy transfer
echanism by means of numerical analysis of the scattering solutions derived from the corresponding the Klein–Gordon
artial differential equations. In this context it is worthwhile mentioning that the scattering of wobblers in the double
ine–Gordon model has been studied by Campos and Mohammadi [78].
In this paper we shall continue this line of research by investigating asymmetric scattering between wobblers in two

ifferent scenarios, which we consider representative in this context. The scattering processes addressed in previous works
nvolve wobblers which evolve with the same phase. This implies that constructive interference between the shape modes
ssociated to each wobbler takes place at the collision. In this work we propose to analyze the scattering between wobblers
ith opposite phases, such that destructive interference between the vibrational modes now occurs at impact. The second
cenario is described by the collision between a wobbler and an unexcited kink. This allows us to monitor the transfer
f vibrational energy from the wobbler to the kink. We will show that the fractal structures associated with resonance
henomenon in these two cases display very different patterns. The motivation to explore these new scenarios is twofold.
rom a theoretical point of view, this analysis provides us with new data on the behavior of the resonance phenomenon.
n this article it will be shown that the difference between the wobbling phases associated with the colliding wobblers on
mpact determines the efficiency of energy transfer between the different eigenmodes. The collective coordinate method
ould be used to examine this framework by considering initial configurations in which the wobbling phases of the moving
obblers are arbitrary. On the other hand, the scattering between wobblers seems to be the natural situation found in
real physical application where non-linear phenomena are explained by the presence of kinks. During the creation of
inks in a phase transition, the vibrational and zero modes of these topological defects will be excited. Therefore, the
elevant physical scenario must involve the presence of wobbling kinks that collide with each other with different initial
onditions. In a real physical material it is difficult to observe if the energy lumps (described by topological defects)
nvolve vibrational modes and if they are excited or not. However, as it will be shown in this paper, if a scattering process
s detected where the final velocities of two scattered extended particles are greater than the collision velocities, then it
s clear that the vibration modes must play a relevant role in these phenomena. In this sense, the differences in the fractal
tructures and, in general, the differences between the velocity diagrams associated with different initial conditions could
rovide us with an image of the phenomena that occur in real applications.
The organization of this paper is as follows: in Section 2 the theoretical background of the φ4 model together with the

nalytical description of kinks and wobblers is introduced. Kink–antikink scattering is also discussed, which allows us to
escribe the numerical methods to study the problem. Section 3 is dedicated to study scattering between wobblers with
pposite phase, whereas the collision between a wobbler and an unexcited kink is addressed in Section 4. Finally, some
onclusions are drawn in Section 5.

. The φ4 model: kinks and wobblers

The dynamics of the φ4 model in (1+1) dimensions is governed by the action

S =

∫
d2x L(∂µφ, φ) , (1)

here the Lagrangian density L(∂µφ, φ) is of the form

L(∂µφ, φ) =
1
2
∂µφ ∂

µφ − V (φ) with V (φ) =
1
2
(φ2

− 1)2 . (2)

he use of dimensionless field and coordinates, as well as Einstein summation convention, are assumed in expressions
1) and (2). Here, the Minkowski metric g has been set as g = −g = 1 and g = g = 0. Therefore, the non-linear
µν 00 11 12 21
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Klein–Gordon partial differential equation

∂2φ

∂t2
−
∂2φ

∂x2
= −2φ(φ2

− 1) (3)

characterizes the time-dependent solutions of this model. The energy–momentum conservation laws imply that the total
energy and momentum

E[φ] =

∫
dx

[1
2

(∂φ
∂t

)2
+

1
2

(∂φ
∂x

)2
+ V (φ)

]
, P[φ] = −

∫
dx
∂φ

∂t
∂φ

∂x
, (4)

are system invariants. The kinks/antikinks (+/−)

φ
(±)
K (t, x; x0, v0) = ± tanh

⎡⎣x − x0 − v0t√
1 − v20

⎤⎦ (5)

are traveling solutions of (3), whose energy density is localized around the kink center xC = x0 + v0t (the value where
the field profile vanishes). The parameter v0 can be interpreted as the kink velocity. Is well known that the solutions (5)
are topological defects because they asymptotically connect the two elements of the set of vacua M = {−1, 1}. These
solutions have a normal mode of vibration. When this mode is excited the size of these solutions (called wobbling kinks or
wobblers) periodically oscillate with frequency ω =

√
3. This fact has been numerically checked and has been analytically

proved in the linear regime. The spectral problem

Hψω2 (x) = ω2ψω2 (x)

of the second order small fluctuation operator associated with the static kink/antikink,

H = −
d
dx2

+ 4 − 6 sech2(x − x0), (6)

involves the shape mode

ψω2=3(x; x0) = sinh(x − x0) sech2(x − x0)

with eigenvalue ω2
= 3. The discrete spectrum of the operator (6) is completed with the presence of a zero mode

ψω2=0(x; x0) = sech2(x − x0) =
∂φ

(+)
K

∂x

⏐⏐⏐⏐⏐
t=0,v0=0

,

whereas the continuous spectrum emerges at the threshold value ω2
= 4.

As a result of this linear analysis, the expression

φ
(±)
W (t, x; x0, v0, ω, a, δ) = ± tanh

⎡⎣x − x0 − v0t√
1 − v20

⎤⎦ + a sin(ωt + δ)sech

⎡⎣x − x0 − v0t√
1 − v20

⎤⎦ tanh

⎡⎣x − x0 − v0t√
1 − v20

⎤⎦ (7)

is a good approximation of a traveling wobbler in the linear regime a ≪ 1. Note that φ(−)
W (t, x) describes a wobbling

antikink (or antiwobbler).
The maximum deviation of the wobbler (7) from the kink (5) takes place at the points

x(±)
M = xC ±

√
1 − v20 arccosh

√
2 , (8)

where the relation⏐⏐⏐φW(x(±)
M ) − φK(x

(±)
M )

⏐⏐⏐ =
1
2

|a|

olds. An optimized numerical strategy to measure the wobbling amplitude of a traveling wobbler is to monitor the profile
f these solutions at the points (8). By using fourth order perturbation theory in the expansion parameter a, it has been
roven that a depends on time, a = a(t), and decays following the expression

|a(t)|2 =
|a(0)|2

1 + ω ξI |a(0)|2t
, (9)

where ξI is a constant. However, when the initial wobbling amplitude a(0) is small, the decay is very slow and becomes
appreciable only after a long time t ∼ |a(0)|−2 [74,75].

The scattering between a kink and an antikink has been thoroughly analyzed in the physical and mathematical
literature during the last decades. A kink and antikink which are well separated are pushed together with initial collision
velocity v . Taking into account the spatial reflection symmetry of the system the kink can be located at the left of
0
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Fig. 1. Final versus initial velocity diagram for the kink–antikink scattering. The final velocity of the bion is assumed to be zero in this context. The
color code is used to specify the number of bounces suffered by the kinks before escaping.

the antikink or vice versa. For very small values of the time t (with respect to the impact time), the latter scenario is
characterized by the concatenation

ΦKK (t, x; x0, v0) = φ
(±)
K (t, x; x0, v0) ∪ φ

(∓)
K (t, x; −x0,−v0) (10)

for x0 ≫ 0, where we have introduced the notation

φ
(±)
K (t, x; x0, v0) ∪ φ

(∓)
K (t, x; −x0,−v0) ≡

{
φ

(±)
K (t, x; x0, v0) if x ≤ 0,

φ
(∓)
K (t, x; −x0,−v0) if x > 0.

(11)

The initial separation between the kink and the antikink is equal to 2x0. The configuration (10) defines the initial conditions
of the scattering problem. As it is well known, there exist two different scattering channels in this case: (1) bion formation,
where kink and antikink end up colliding and bouncing back over and over again, and (2) kink reflection, where kink and
antikink collide, bounce, and finally recede with respective final velocities vf ,L and vf ,R in the opposite direction to which
they were initially traveling. These scattering regimes are predominant, respectively, for low and high values of the initial
velocity v0. In Fig. 1 the two final velocities vf ,L and vf ,R are plotted as a function of the incident velocity v0.

From the spatial reflection symmetry exhibited by the initial configuration (10) it is clear that vf ,L = −vf ,R and that
the velocity of a bion must be zero. Therefore, the velocity diagram in Fig. 1 is symmetric with respect to the v0-axis. In
the next sections we shall address asymmetric scattering events where this symmetry is lost and |vf ,L| ̸= |vf ,R| in general.
The fascinating property found in this scattering problem is that the transition between the two previously mentioned
regimes is ruled by a fractal structure where the bion formation and the kink reflection regimes are infinitely interlaced.
The kink reflection windows included in this initial velocity interval involve scattering processes where kink and antikink
collide and bounce back a finite number of times exchanging energy between the zero and shape modes before definitely
moving away. These processes involve the so called resonant energy transfer mechanism.

For the previously mentioned n-bounce processes (with n ≥ 2) it is clear that after the first impact the subsequent
collisions correspond to scattering processes between wobblers because, in general, the collision between kinks causes
the excitation of their shape modes. Taking into account the spatial reflection symmetry of the problem, the wobbling
amplitudes and phases of the colliding wobblers are equal. Therefore, these events are characterized by an initial
configuration of the form

ΦWW (t, x; x0, v0, ω, a, δ) = φ
(±)
W (t, x; x0, v0, ω, a, δ) ∪ φ

(∓)
W (t, x; −x0,−v0, ω, a, δ) . (12)

This scattering problem was studied numerically in [77]. By mirror symmetry, it can be assumed that the phases of the
shape modes of the traveling wobblers are also the same at the impact time, so constructive interference takes places
in the collision. As a consequence, it is found that the fractal pattern enlarges and becomes more complex as the value
of the initial wobbling amplitude a increases. Another interesting property in this context is the emergence of isolated
1-bounce windows, which are not present in the original kink–antikink scattering. It is clear that the scattering between
wobblers characterized by the initial configuration (12) is relevant in studying the resonant energy transfer mechanism in
this problem. However, because of the spatial reflection symmetry of this type of processes, wobblers transfer the same
amount of energy to each other at the collision, that is, the scattered wobblers travel away with the same final speeds
and wobbling amplitudes. In this work we are interested in analyzing more general scattering events where the energy
transfer mechanism becomes asymmetric with respect to the traveling wobblers.

The first type of processes which could involve novel properties in this framework is the collision between two
wobblers with opposite phase. This scenario can be characterized by the initial configuration

ΦWW̃ (t, x; x0, v0, ω, a, δ) = φ
(±)
W (t, x; x0, v0, ω, a, δ) ∪ φ

(∓)
W (t, x; −x0,−v0, ω, a, π + δ) . (13)

We have employed the notation WW̃ as subscript ofΦ in (13) simply to emphasize that the wobblers have different initial
phases and to distinguish this configuration from (12). In this case it is assumed that the wobblers evolve preserving a
phase difference of π , giving place to destructive interference in the excitation of the shape modes of each wobbler when
they collide. It is expected that the final versus initial velocity diagrams associated to these scattering events will be
4
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affected by this fact and that they will be very different from those found in the constructive interference scenario (12),
analyzed in [77].

Another important situation which deserves attention is the scattering between a wobbler and a kink. These asym-
etric events can be characterized by the initial configuration

ΦWK (t, x; x0, v0, ω, a, δ) = φ
(±)
W (t, x; x0, v0, ω, a, δ) ∪ φ

(∓)
K (t, x; −x0,−v0) , (14)

where without loss of generality the non-excited antikink/kink φ(∓)
K (t, x; −x0,−v0) has been placed to the right of the

wobbler/antiwobbler. This situation allows us to analyze how the vibrational energy is transferred to the non-excited
kink in a better way than previously.

In order to study the scattering between kinks and wobblers in the two previously described scenarios, in the present
work we shall employ numerical approaches based on the discretization of the partial differential Eq. (3) with different
initial conditions determined by the configurations (13) and (14). The particular numerical scheme used here is a fourth-
order explicit finite difference algorithm implemented with fourth-order Mur boundary conditions, which has been
designed to address non-linear Klein–Gordon equations, see the Appendix in [54]. The linear plane waves are absorbed
at the boundaries in this numerical scheme avoiding that radiation is reflected in the simulation contours. To rule out the
presence of spurious phenomena attributable to the use of a particular numerical algorithm, a second numerical procedure
is used to validate the results. This double checking has been carried out by means of an energy conservative second-order
finite difference algorithm with Mur boundary conditions.

As previously mentioned, the initial settings for our scattering simulations are described by single solutions (kinks or
wobblers) which are initially well separated, and are pushed together with initial collision velocity v0. This situation is
characterized by the concatenation (13) for the scattering between wobblers with opposite phase and by (14) for the
scattering between a wobbler and a kink, both of them with x0 ≫ 0. These configurations verify the partial differential
Eq. (3) in a very approximate way for very small values of the time when x0 ≫ 0 and a ≪ 1. Therefore, Φ(t = 0) and
∂Φ
∂t (t = 0) provide the initial conditions of our scattering problem.

In particular, our numerical simulations have been carried out in a spatial interval x ∈ [−100, 100] where the
centers of the single solutions are initially separated by a distance d = 2x0 = 30. Simulations have been performed
for v0 ∈ [0.04, 0.9] with initial velocity step ∆v0 = 0.001, which is decreased to ∆v0 = 0.00001 in the resonance
interval.

At this point it is worthwhile mentioning that the expression (7) is only an approximation of the exact wobbler solution.
When this expression is employed as initial condition in the Klein–Gordon Eq. (3) a small amount of radiation is emitted
for a very small period of time. In this time interval the approximate solution (7) decays to the exact wobbler. When
considering a traveling wobbler, this radiation emission can cause a very small change in its velocity. This effect takes
place when δ ̸= 0, π in the expression (7) and it is maximized for δ = ±π/2. In order to avoid this effect we shall
implement initial conditions by setting δ = 0 in the configurations (13) and (14). By taking this restriction we guarantee
that the traveling wobbler involved in (14) continues to move with velocity v0 after the initial radiation emission. As
mentioned above, this effect is very small and unnoticeable in the final versus initial velocity diagrams. However, we
shall analyze the velocity difference of the resulting wobblers and in this context it is better to avoid this influence. On
the other hand, for the values δ = 0 or δ = π the decay of the approximation (7) to the real wobbler induces a very
small variation in its wobbling amplitude. This effect also is very small and does not affect the global properties of the
scattering processes discussed in this paper. An alternative scheme to implement initial configurations (14) with non-
vanishing initial phases is to find an approximately equivalent configuration with vanishing phase. This can be obtained,
for example, taking into account that

φ
(±)
W (t, x; x0, v0, ω, a, δ) = φ

(±)
W (t −

δ
ω
, x; x0 −

δv0
ω
, v0, ω, a, 0) .

. Scattering between wobblers with opposite phases

In this section we shall analyze the asymmetric scattering between two wobblers whose shape modes have the same
mplitude but they have opposite phases with respect to our inertial system, which is located at the center of mass. In this
ontext, a wobbler and an anti-wobbler approach each other with initial velocity v0 and −v0, respectively. They evolve
reserving the phase difference of π and collide giving place to a destructive interference between the shape modes of
he involved wobblers. Fig. 2 shows the final versus initial velocity diagrams for three representative values of the initial
obbling amplitude, a = 0.04, a = 0.1, and a = 0.2.
Unsurprisingly, the only scattering channels to emerge in this new scenario are still bion formation and kink reflection.

s before, the former is predominant for small values of the initial velocity v0, while the latter is found for large values.
owever, these velocity diagrams display some important differences regarding the scattering of wobblers addressed
n [77], where the corresponding shape modes have the same phase and a constructive interference occurs in the collision.
n this new context, the destructive interference avoids the emergence of isolated 1-bounce windows (at least for non-
xtreme values of a), as can be observed in Figs. 2 and 3. The suppression of this mechanism implies that the fractal
tructure width does not increase.
In Fig. 3 the evolution of the fractal pattern can be visualized as the value of the initial amplitude a increases. First,

we can observe that the value of the critical velocity v varies very slowly as the initial amplitude a grows. For instance,
c
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Fig. 2. Final versus initial velocity diagram for the scattering between two wobblers with opposite phase for the values of the wobbling amplitude
= 0.04, a = 0.1 and a = 0.2. The color code is used to specify the number of bounces suffered by the kinks before escaping. The black curves
etermine the final velocity of the bion formed for low initial velocities.

c ≈ 0.2601 for a = 0.02, whereas vc ≈ 0.2681 for a = 0.2, following a linear dependence in a for intermediate values.
econd, it can be seen that the 2-bounce windows are deformed as the value of a increases and get broken up into smaller
-bounce windows. The first 2-bounce window shown in Fig. 3 for a = 0.04 can be used to illustrate this mechanism.
his window gets distorted when a = 0.12 and split into two pieces for a = 0.14. In turn, one of these pieces is divided
gain into two new 2-bounce windows for a = 0.20. Third, spontaneous generation of n-bounce windows with n ≥ 2
an also be identified in the sequence of graphics included in Fig. 3. For instance, for a = 0.12 a small 3-bounce window
pontaneously emerges in the interval [0.21585, 0.2174], which was occupied by the bion formation regime for previous
alues of a. Subsequently, this window is split into two parts, resulting in a 2-bounce window in the middle for a = 0.14,
hich is surrounded by new n-bounce windows. This new 2-bounce window gets bigger as a increases and finally splits

into two new 2-bounce windows once more, as one can see from the graphics for a = 0.20. This window generation
mechanism could explain the clustering of 2-bounce windows that arise around the v0 = 0.2566 value for a = 0.20.

Another important characteristic of this type of scattering processes is that the final velocities of the scattered wobblers
are different. This behavior is not surprising because the initial configuration (13) is not symmetric. Recall that the initial
wobbling phases of the colliding wobblers are different. This velocity difference is very small, and therefore not noticeable
in the velocity diagrams shown in Fig. 2. In order to emphasize this feature we define the magnitude

∆vf = |vf ,R| − |vf ,L| , (15)

as the difference between the final speed |vf ,R| of the rightward traveling wobbler and the final speed |vf ,L| of the leftward
raveling wobbler. Positive values of ∆vf imply that the wobbler scattered to the right travels faster than the wobbler
scattered to the left, whereas negative values describe the reverse situation. In Fig. 4, the magnitude ∆vf is plotted as
function of the initial velocity v0 and the wobbling amplitude a. There, we can see that ∆vf has oscillating behavior,
hich means that there are alternating initial velocity windows in which the wobbler traveling from the left travels faster
han the wobbler traveling from the right and vice versa. The amplitudes of the oscillations exhibited by ∆vf increase
s the value of the parameter a increases. This is reasonable because the vibrational energy stored in the shape mode is
reater for bigger values of a and the resonant energy transfer mechanism may deflect a greater amount of this energy
nto the kinetic energy pool. However, the most remarkable property exhibited by Fig. 4 is that the zeros of ∆vf , the
initial velocity values for which the two wobblers disperse with the same velocity, are approximately independent of the
initial amplitude a. This behavior is precisely followed for sufficiently large values of v0, where the effect of the resonance
regime is not noticed (approximately for v0 ≥ 0.3 in Fig. 4).

In Table 1, the zeros ṽk of the final velocity difference ∆vf (explicitly computed for the case a = 0.04) are shown in the
non-resonance regime. The values ṽ correspond to the nodes of the oscillations found in Fig. 4, which have been indicated
k
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Fig. 3. Evolution of the fractal pattern found in the velocity diagrams associated to the scattering between wobblers with opposite phases as a
function of the initial wobbling amplitude a.

Fig. 4. Final velocity difference ∆vf of the scattered wobblers as a function of the collision velocity v0 and the initial wobbling amplitude a for the
cattering of two wobblers with opposite phase. Recall that ∆vf = 0 for a = 0 due to spatial reflection symmetry. For the sake of clarity, n-bounce
rocesses with n ≥ 2 have not been included in the plot. The vertical dashed lines mark the zeros ṽk of the final velocity difference ∆vf .

by means of vertical dashed lines. The location of these points seems to depend mainly on the value of the wobbling
phase when the collision between the wobblers occurs. This conjecture is heuristically supported by the following simple
argument. Remember that x0 denotes the initial position of the kink center, while ω represents the wobbling frequency.
s previously discussed, the values x0 = 15 and ω =

√
3 have been implemented for our numerical simulations. Let v0 be

he initial wobbler approach velocity. In the point particle approximation the collision would happen at the time tI =
x0
v0
.

e must bear in mind that there are several factors in the actual dynamics which break the precision of this assumption.
or example, the interaction between the kinks and/or wobblers can make the collision velocity v vary. We shall assume
0

7
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Table 1
Comparison between the zeros ṽk of the final velocity difference ∆vf and
the values Vk = fk(v0, π ) obtained by using Eq. (17) for the scattering
between wobblers with opposite phase and initial wobbling amplitude
a = 0.04.
k ṽk Vk

0 0.301538 0.301538
1 0.313991 0.313224
2 0.326057 0.325797
3 0.340542 0.339354
4 0.354757 0.354006
5 0.371738 0.369877
6 0.388575 0.387110
7 0.408291 0.405864
8 0.428219 0.426323
9 0.451464 0.448689
10 0.475173 0.473188
11 0.502713 0.500069
12 0.531044 0.529591
13 0.563882 0.562022
14 0.597459 0.597606
15 0.636259 0.636531
16 0.675558 0.678857
17 0.727740 0.724418
18 0.770909 0.772667

that the phase of the wobbler at the instant tI can be expressed as

ϕ(v0) = c(x0)
x0
v0
ω

√
1 − v20 + δ .

where c(x0) is a correction factor which is included to incorporate the previously mentioned behavior. The main
assumption in this case is that c(x0) does not depend on v0. If we think about the initial impact velocity v as variable,
then it makes sense to consider ϕ(v) = c(x0)

x0
v
ω

√
1 − v2 + δ. Those phenomena depending only on the wobbling phase

ust exhibit the periodicity

ϕ(v0) − ϕ(v) = T k , k ∈ Z , (16)

here T is the periodicity associated to our problem. In general, T = 2π but in the present scenario where we are
nterested in the zeros ṽk of ∆vf the symmetry of the initial configuration leads to the choice T = π . From (16) we
onclude that the discrete set of velocities

fk(v0, T ) =
v0 x0 ω√

k2 T2 v20
4 c(x0)2

−
T

c(x0)
k v0 x0 ω

√
1 − v20 + x20 ω2

, k ∈ Z, (17)

ust share similar features. The nodes ṽk of ∆vf can be found approximately by using Eq. (17). In Table 1 (third column)
he values Vk = fk(v0, π ), obtained by using formula (17) taking as initial input v0 = ṽ0 = 0.301538, are included.
he value c(x0) has been adjusted to c(x0) = 0.465. The comparison between the data allows us to conclude that the
revious conjecture is satisfied at least for intermediate values of the initial velocity. Of course, the nonlinear nature of
he problem makes the argument only an approximation to the actual behavior. This is clear for very large values of the
ollision velocity. In this regime the amplitudes of the oscillations of ∆vf are very attenuated compared to intermediate
alues of v0. For these cases radiation can play a predominant role in the scattering processes.
At this point it is worthwhile mentioning that the zeros ṽk introduced in Table 1 have been computed when δ = 0

n the initial configuration (13). The particular location of these points depends on the initial phase δ introduced in (13),
lthough it is clear that the same pattern is periodically reproduced for the values δ + kT with k ∈ Z.
Now that the final velocities of the scattered wobblers have been examined, we shall analyze the behavior of the

obbling amplitude of these evolving topological defects. In Fig. 5, the oscillation amplitudes of the wobblers moving to
he left and to the right are represented as a function of the initial velocity v0 and the initial amplitude a. There it can be
een that this magnitude oscillates with respect to kink–antikink scattering. The variation of these oscillations increase
ith parameter a. Furthermore, the amplitudes of the resulting wobblers decrease. When the oscillation amplitude of
he wobbler moving to the left reaches a maximum as a function of the initial velocity v0, the oscillation amplitude of
he wobbler moving to the right is minimized and vice versa. The asymmetry of the initial configuration (13) causes the
obblers to vibrate at different amplitudes in general. On the other hand, there are some points in the graphs shown in
ig. 5 where the amplitudes of the two wobblers coincide. Surprisingly, these points coincide with the zeros ṽk of the final
elocity difference ∆vf (as we can observed by means of the vertical dashed lines plotted in Fig. 5). In conclusion, for the
nitial velocities ṽ the scattered wobblers travel with the same velocity and vibrate with the same wobbling amplitude.
k

8
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Fig. 5. Graphics of the final wobbling amplitudes of the wobblers scattered to the left and to the right as a function of the initial velocity v0 and
he initial amplitude a. For the sake of clarity, n-bounce processes with n ≥ 2 have not been included. The vertical dashed lines mark the zeros
k of the final velocity difference ∆vf . The letters L and R label the smooth amplitude functions associated with wobblers traveling left and right,
espectively.

Fig. 6. Graphics of ∆vf (final velocity difference) and ∆a (final wobbling amplitude difference) as functions of the initial collision velocity v0 for
he scattering between wobblers with opposite phase with a = 0.10. n-bounce processes with n ≥ 2 have not been included. The vertical dashed
ines mark the zeros ṽk of ∆vf .

Fig. 7. Final bion velocity as a function of the initial velocity v0 in the interval v0 ∈ [0.10, 0.18] for the scattering between two wobblers with
pposite phase and the initial wobbling amplitude a = 0.10. The vertical dashed lines mark some of the nodes of the curve.

In order to explore the relation between the final velocity and the final wobbling amplitude of the scattered wobblers,
e define the amplitude difference

∆a =
1
2

[
af ,R − af ,L

]
, (18)

here af ,R and af ,L are, respectively, the final oscillation amplitudes of the wobblers moving to the right and to the left.
a > 0 means that the wobbler scattered to the right vibrates more strongly than that moving to the left, whereas∆a < 0
escribes the opposite situation. Fig. 6 shows simultaneously the final velocity and the amplitude differences ∆vf and ∆a,
s functions of the initial velocity v0 for the particular value a = 0.10. It can be seen that when one scattered wobbler
ains more kinetic energy than the other, it obtains less vibrational energy, and vice versa. The values ṽk are interpreted
s the collision velocities for which the final velocities and the wobbling amplitudes of the scattered wobblers are the
ame.
Finally, another consequence of the asymmetry of these scattering events is that the bion (formed as a bound state

etween the two colliding wobblers) can now move with certain final non-vanishing velocity after the impact. This
elocity will be very small and for this reason it is sometimes difficult to compute its magnitude numerically. In Fig. 7 the
egion of the velocity diagram introduced in Fig. 2 for a = 0.10 with v0 ∈ [0.10, 0.18] has been enlarged to illustrate the
behavior of the bion velocity. Again, we find an oscillating pattern, clearly seen in Fig. 7 for the interval v0 ∈ [0.13, 0.16].
Also, it turns out that the formula (17) still governs this oscillating behavior. In the previously mentioned range of v0,
vertical dashed lines have been plotted to approximately mark the location of the nodes of the bion velocity. The values
used correspond to the initial velocities v1 ≈ 0.134, v2 ≈ 0.1364, v3 ≈ 0.1388, v4 ≈ 0.1415, v5 ≈ 0.1443, v6 ≈ 0.1475,
v ≈ 0.1506, v ≈ 0.1538, v ≈ 0.1572 and v ≈ 0.161, which can be approximately reproduced by (17).
7 8 9 10

9
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Fig. 8. Final versus initial velocity diagram for the wobbler–antikink scattering for the values of the wobbling amplitude a = 0.04, a = 0.10 and
= 0.20. The color code is used to specify the number of bounces suffered by the kinks before escaping.

Fig. 9. Velocity diagrams for the wobbler–antikink scattering showing the emergence and location of the isolated 1-bounce windows as the value
of the wobbling amplitude increases. The vertical dashed lines mark the values of v0 at the center of the 1-bounce windows for the extreme case

= 0.2. For the sake of clarity, n-bounce processes with n ≥ 2 have not been included.

. Scattering between a kink and a wobbler

In this section we shall study the scattering between a wobbler and a kink. This scenario is characterized by the
oncatenation (14). With the first choice of signs, this configuration describes a wobbler and an antikink which travel
espectively with velocities v0 and −v0. The rightward traveling wobbler and the leftward traveling antikink approach
ach other, collide, and bounce back. As usual, the formation of a bion and the reflection of the solutions complete the list of
ossible scattering channels. In the reflection regime, the initially unexcited antikink becomes an anti-wobbler after the
ollision because, in general, the shape mode of this solution is excited. Therefore, after the impact two wobblers emerge
oving away with different final velocities in our inertial system. The goal of this study is to analyze the transfer of the
ibrational and kinetic energies between the resulting wobblers. The dependence of the final velocities of the scattered
xtended particles on the initial velocity v0 has been graphically represented in Fig. 8 for the cases a = 0.04, a = 0.1,
nd a = 0.2.
Some of the most relevant characteristics described in [77] for the scattering between wobbling kinks are also

ound in the present framework, such as the emergence of isolated 1-bounce windows and the growing complexity
f the fractal pattern as the initial amplitude a of the originally rightward-traveling wobbler increases. It is also
orthwhile mentioning the presence of oscillations in the 1-bounce tail arising for large values of the initial velocity.
owever, these features are less accentuated in this scenario. The reason for this behavior lies in the fact that the
onstructive interference is maximized when the wobblers with the same wobbling phase collide. In particular, we
an observe the existence of two isolated 1-bounce windows for the case a = 0.04. They occupy approximately the
region [0.2458, 0.2522] ∪ [0.2607, 0.2717]. For a = 0.1 six of these windows can be identified in [0.2068, 0.2085] ∪

[0.2183, 0.2214]∪ [0.2310, 0.2358]∪ [0.2452, 0.2521]∪ [0.2610, 0.2709]∪ [0.2787, 0.2925]. Finally, the number of these
10
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Fig. 10. Final velocity difference ∆vf of the scattered wobblers as a function of the collision velocity v0 and the initial wobbling amplitude a for
he scattering of a wobbler and a kink. n-bounce processes with n ≥ 2 have not been included. The vertical dashed lines mark the zeros ṽk of ∆vf
isplayed in Table 1.

Fig. 11. Final wobbling amplitudes aL and aR of the wobblers scattered to the left (top) and to the right (bottom) as a function of the initial velocity
v0 and the initial wobbling amplitude a of the colliding wobbler. The vertical dashed lines mark the zeros ṽk of ∆vf displayed in Table 1.

indows explodes as the initial amplitude a grows. This can be observed in the velocity diagram for a = 0.2 in Fig. 8.
ome of the widest 1-bounce windows in this case arise in the set of intervals [0.2067, 0.2108] ∪ [0.2185, 0.2234] ∪

[0.2315, 0.2375] ∪ [0.2460, 0.2535] ∪ [0.2621, 0.2717] ∪ [0.2804, 0.2928] ∪ [0.3012, 0.3179]. From the list of 1-bounce
indows above, it can be verified that once an isolated 1-bounce window emerges its location is approximately fixed
although its width grows slightly) as the initial wobbling amplitude a increases. This behavior can be checked in Fig. 9.
ote that the deviation from the rule described above is a small translation of the center of these windows. In Fig. 9 the
ertical dashed lines mark the values of the initial velocity which determine the centers of the 1-bounce windows for the
xtreme case a = 0.2. Once again, these velocities approximately follow relation (17), which reveals that the role of the
hase of the evolving shape mode is predominant in this phenomenon.
The velocity diagrams shown in Fig. 8 also have some distinctive properties of their own. Because the scattering

rocesses introduced in this section are asymmetric, the final velocities of the resulting wobblers are different, as well as
heir wobbling amplitudes. In order to illustrate this feature more clearly, the difference ∆vf between the final speeds of
he scattered wobblers is plotted for different values of the wobbling amplitude a in Fig. 10. For the sake of simplicity,
nly 1-bounce events have been included in Fig. 10. As in the case of the scattering between wobblers with opposite
hase discussed in Section 3, the zeros of this function ∆vf are approximately independent of the initial amplitude a and,
ndeed, coincide with the zeros ṽk introduced in Table 1 in Section 3. This behavior underlies the fact that the initially
ightward wobbler defined in the configuration (14) has the same initial conditions as those given by the configuration
13).

In Fig. 11 the final wobbling amplitudes of the scattered wobblers are plotted as a function of the initial velocity v0 and
he initial wobbling amplitude a. Recall that aL(v0, a) and aR(v0, a) represent, respectively, the final wobbling amplitudes
f the resulting leftward and rightward traveling wobblers after the collision. We can observed that the shape modes
f the scattered wobblers become excited and its amplitudes are similar as a function of the initial velocity, oscillating
round the values found for the kink–antikink scattering events (with a = 0). However, the amplitude of these oscillations
s much bigger for the final rightward traveling wobbler.

To illustrate the role of the zeros ṽk of the final velocity difference ∆vf shown in Table 1 in this scenario, the functions
vf and ∆a have been represented simultaneously for the case a = 0.10 in Fig. 12. As in the scattering between wobblers
ith opposite phase, the values ṽk determine the initial velocities for which the final velocities and the final wobbling
mplitudes are the same for the both scattered wobblers.
11
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Fig. 12. Graphics of ∆vf (final velocity difference) and ∆a (final wobbling amplitude difference) as a function of the initial collision velocity v0 for
he scattering between a wobbler and an antikink with a = 0.10. n-bounce processes with n ≥ 2 have not been included. The vertical dashed lines
ark the zeros ṽk of ∆vf .

. Conclusions

This paper delves into the study on the scattering between wobbling kinks initially addressed in [77]. Here, we have
nvestigated the asymmetric scattering between kinks and wobblers (kinks whose shape mode is excited) in the standard
4 model. In particular, two different scenarios in this context have been considered: (a) the scattering between wobblers
ith opposite phases, and (b) the scattering between a wobbler and an unexcited antikink. Both cases exhibit the usual
ion formation and reflection regimes, which are infinitely interlaced forming a fractal structure embedded in the final
ersus initial velocity diagram. However, the first case involves destructive interference of the shape modes in the collision.
s a consequence, the growth in the complexity of the fractal pattern is smaller than that found in [77], where the colliding
obbling kinks travel with the same phase leading to constructive interference at the impact. For example, the emergence
f isolated 1-bounce windows is not found in this new case (at least for moderate values of the initial wobbling amplitude
), although the splitting of n-bounce widows is present. On the other hand, the kink scattering in the second scenario

displays similar features (although more attenuated) than to those found in [77].
Due to the asymmetry of the initial configurations (13) and (14), the final velocities and wobbling amplitudes of the

scattered wobblers are different in general. However, there is a sequence of initial velocities for which both the final
velocities and wobbling amplitudes coincide. These values are almost independent of the initial wobbling amplitude a
when the initial wobbling phase considered in (13) and (14) is fixed. Besides, the values of these velocities approximately
follow the expression (17). This means that the phase associated to the shape modes of the evolving wobblers at the
collision instant plays a predominant role in the scattering properties of these objects. Indeed, (17) allows obtaining values
of the initial velocities which share similar features. For example, this expression has been used in the second scenario
to predict the location of the maxima of the isolated 1-bounce windows. Finally, it is also worthwhile mentioning the
results displayed in Figs. 6 and 12. It can be verified that systematically when a scattered wobbler gains more kinetic
energy than the other, it obtains less vibrational energy and vice versa.

The research introduced in the present work opens up some possibilities for future work. For example, the φ6 model
possess a resonance regime similar to the φ4 model, although it does not present vibrational eigenstates in the second-
order small fluctuation operator. The characteristics of scattered wobbling kinks can be analyzed to study their influence
on the resonant energy transfer mechanism. Alternatively, you can build a model twin to the φ6 model that involves
internal modes. By doing this, we could compare the scattering processes of the twin model with those of the standard
φ6 model. In this way, it will be possible to examine the role that shape modes play in the collision process. Furthermore,
many other different topological defects (kinks in the double sine–Gordon model, deformed φ4 models, hybrid and
hyperbolic models, etc.) could be studied in the new perspective presented here. Work in these directions is in progress.
Another interesting line of research to explore is the application of the collective coordinate method in this asymmetric
frame. This study could provide further evidence for the validity of the resonant energy transfer mechanism as addressed
in [73], or the need to introduce new degrees of freedom to broaden the applicability of this analytical approach.
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