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A Note on Beukers’s
and Related Double Integrals

M. L. Glasser

Abstract. An elementary transformation formula is derived, allowing double integrals of the
type introduced by F. Beukers to be reduced, and new ones to be constructed.

1. INTRODUCTION. As an aid to studying the irrationality of certain mathematical
constants, including Apery’s constant ζ(3), in 1979 F. Beukers [1] introduced double
integrals of the type

ζ(2) =
∫ 1

0

∫ 1

0

dx dy

1 − xy
. (1)

This is easily verified by expanding the denominator as a geometric series and integrat-
ing termwise. Since that time this class of representation has been studied intensively
and extended to nearly all transcendental numbers important to number theory: Euler’s
constant, polylogarithms, etc. (see [3–5, 7, 8] where further references are given). For
example [3],

∫ 1

0

∫ 1

0

ln(1 + xy)

1 − xy
dx dy = π2

4
ln 2 − ζ(3) (2)

∫ 1

0

∫ 1

0

ln(1 − xyz)

1 − xy
dx dy = π2

6
ln(1 − z) −

∞∑
n=1

Hn,2

n
zn (3)

where Hn,m = 1 + 2−m + 3−m + · · · + n−m is a generalized harmonic number.
The aim of this note is to prove the following.

Theorem 1. If f : R → R is integrable over the unit interval, then

∫ 1

0

∫ 1

0
f (xy) dx dy = −

∫ 1

0
ln(x)f (x) dx. (4)

Equation (4) can serve to dispel any mystery one might feel surrounding formulas
such as (1); since (1) becomes the familiar representation

ζ(2) = −
∫ 1

0

ln x

1 − x
dx,
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it also provides an easy route to constructing additional representations and might even
provide a few new definite integrals.

We also have the following corollary.

Theorem 2. Under the same assumption as in Theorem 1,

∫ 1

0

∫ 1

0

f (xy)

ln(xy)
dx dy = −

∫ 1

0
f (x) dx.

2. CALCULATION. By symmetry, the left-hand side of (4) is

I = 2
∫

R

f (xy) dx dy,

where R is the right triangle (0, 0), (1, 0), (1, 1). Under the transformation

x = 1

2
[
√

t2 + 4u + t], y = 1

2
[
√

t2 + 4u − t]

u = xy, t = x − y

having Jacobian J = −(t2 + 4u)−1/2, in the (u, t)-plane R becomes the right triangle
(0, 0), (0, 1), (1, 0) yielding

I = 2
∫ 1

0
duf (u)

∫ 1−u

0

dt√
t2 + 4u

= 2
∫ 1

0
f (u) sinh−1

(
1 − u

2
√

u

)
du.

Next, let u = sech2y, so (1 − u)/2
√

u = (cosh y − sech y)/2 and with cosh y = ex ,
sinh−1[(1 − u)/2

√
u] = x. Therefore, with s = e−2x , we have

I = 4
∫ ∞

0
xe−2xf (e−2x) dx = −

∫ 1

0
ln(s)f (s) ds.

This completes the proof of (4).
It was emphasized by an (anonymous) referee that the proof above is adapted to

the continuous functions f in the examples and the referee outlined a more general
argument based on partitioning the unit square into infinitesimal hyperbolic strips of
the form u = xy. In this way the logarithm appearing in (4) emerges more naturally.
This is left as an enlightening exercise.

3. DISCUSSION. Let us apply this to the Guillera–Sondow [3] formula (2). Equa-
tion (4) immediately gives

∫ 1

0

ln(x) ln(1 + x)

1 − x
dx = ζ(3) − π2

4
ln 2.

Mathematica is able to reproduce this and it can be reproduced using formula (A.3.5)
in [6], for example. However, in the case of (3), Mathematica and Lewin [6, (A.3.5)]
give, for 0 < z < 1,

∫ 1

0

ln(x) ln(1 − xz)

1 − x
dx, (3)
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a complicated expression containing di- and trilogarithms, meaning that the generating
function for the generalized harmonic numbers Hn,2/n can be expressed in closed
form. In the case z = 1/2 the many terms simplify and one finds

∞∑
n=1

Hn,2

2nn
= 5

8
ζ(3).

As an example of the corollary we have

∫ 1

0

∫ 1

0

e−xyz

ln(x) + ln(y)
dx dy = 1 − ez

ez
, Re[z] > 0,

which may be new.
Finally, many of the important double integrals, such as that representing Euler’s

constant, are of the form

J =
∫ 1

0

∫ 1

0
(1 − x)f (xy) dx dy = 1

2

∫ 1

0

∫ 1

0
(2 − x − y)f (xy) dx dy.

However, by a similar calculation (see [8]) one finds

J =
∫ 1

0
(1 − x − ln x)f (x) dx.

This gives an immediate proof of Hadjicostas’s conjecture [2, 4]

�(n + 2)ζ(n + 2) − �(n + 1) =
∫ 1

0

∫ 1

0

(1 − x)(− ln xy)n

1 − xy
dx dy.
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