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Two-atom van der Waals forces with one atom excited: The identical-atom limit
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We compute the conservative van der Waals forces between two atoms, one of which is initially excited, in
the limit of identical atoms. Starting with the perturbative calculation of the interaction between two dissimilar
atoms, we show that a time-dependent approach in the weak-interaction approximation is essential in considering
the identical-atom limit in the perturbative regime. In this limit we find that, at leading order, the van der Waals
forces are fully resonant and grow linearly in time, being different upon each atom. The resultant net force upon
the two-atom system is related to the directionality of spontaneous emission, which results from the violation of
parity symmetry. The strength of this force is much greater than that found in dissimilar atoms, raising the
possibility of its experimental detection. In contrast to the usual stationary van der Waals forces, the time-
dependent conservative forces cannot be written as the gradients of the expectation values of the interaction
potentials, but as the expectation values of the gradients of the interaction potentials only.
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I. INTRODUCTION

Dispersion forces between neutral atoms are the result of
the coupling of the quantum fluctuations of the electromag-
netic (EM) field in its vacuum state with the fluctuations of
the atomic charges in stable or metastable states. Generically,
the corresponding forces are known as van der Waals (vdW)
forces [1–5]. In recent decades renewed interest has been
drawn to the interaction between excited atoms. The interests
are twofold. From a practical perspective, this is the kind
of interaction between Rydberg atoms [6–12] which makes
possible the coherent manipulation of their quantum states,
facilitating the entanglement between separated quantum sys-
tems as well as the storage of quantum information [13–17].
On the other hand, from a fundamental perspective, the at-
tention has focused on different aspects of the interaction,
namely, its scaling behavior with the distance [18–24], the role
of dissipation [22,23,25–27], its inherent time dependence
[19,20,22,28–30], and the net forces induced by parity and
time-reversal violation on a binary system [31,32].

Hereafter and for the sake of simplicity we will consider
the interaction between a pair of two-level atoms, A and B,
with resonance frequencies ωA and ωB, natural linewidths �A

and �B, and ground and excited states labeled with subscripts
+ and −, respectively, |A±, B±〉. In the case of dissimilar
atoms, i.e., for |�AB| = |ωA − ωB| � �A, �B, it is possible
to use quasi-stationary perturbation theory to compute the
interaction. This is so because the excitation process can be
considered adiabatic with respect to the rate at which the
excitation is transferred between the atoms, �AB. That is,
denoting by � the Rabi frequency of the external exciting
field, an adiabatic excitation holds for |�AB| � �. It was
shown in Ref. [22] that, for arbitrary values of �, the resultant
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resonant interaction contains a quasistationary term which
oscillates in space with wavelength cπ/ωA and is exponen-
tially attenuated in time at the rate �A, and time-oscillating
terms of frequency �AB whose amplitude is proportional to
�2/(�2

AB − �2). In the adiabatic limit the latter terms van-
ish [19], and the result is equivalent to that obtained using
adiabatic time-dependent perturbation theory [22]. Other ap-
proaches based on Heisenberg’s formalism [21,23,29] and
Feynman’s Lagrangian formalism between asymptotic states
[28,30] lead to an equivalent quasistationary result. In the op-
posite limit, that is, for a sudden excitation with � � |�AB|,
quasistationary and time oscillating terms happen to be of the
same order [20]. Either way, it was also found in Refs. [22,31]
that a weak net force acts upon the center of mass of the
two-atom system while excited.

As for the interaction of a binary system of identical
two-level atoms, with one of them initially excited, neither
quasistationary nor adiabatic approximations make physi-
cal sense for two reasons. In the first place, the system
becomes degenerate, as the states |A+, B−〉 and |A−, B+〉
possess identical energies, and the quasi-stationary sates
are instead the symmetric and antisymmetric Dicke’s states,
(|A+, B−〉 ± |A−, B+〉)/

√
2, respectively. This implies that the

states in which only one of the atoms is excited are no longer
quasistationary, and the use of stationary or time-adiabatic
perturbation theory becomes unsuitable. Second, in contrast to
the interaction between dissimilar atoms, the null value of �AB

makes an adiabatic excitation unfeasible with respect to the
original detuning. On the contrary, a sudden excitation is suit-
able as long as its associated Rabi frequency � is much greater
than the detuning between the stationary Dicke’s states [2,33].

In this article we will show that, starting with a binary
system of dissimilar atoms, the identical-atom limit upon
the interaction of the excited system can be formulated in
a consistent manner using time-dependent perturbation the-
ory in the sudden excitation approximation. In order to keep
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the calculation perturbative, we will restrict ourselves to the
weak-interaction regime, meaning that the observation time
is small in comparison to the time it takes for the excitation
to be transferred from the initially excited atom to the other,
which is of the order of the inverse of the detuning between the
Dicke states. We will show that, for two-level atoms, the van
der Waals forces are dominated by fully resonant components
which are different for each atom. Besides, in addition to
the familiar off-resonant van der Waals force, a reciprocal
semiresonant force arises. Interestingly, the time-dependent
forces are not derived from the gradients of the expectation
values of the interaction potentials, but from the expectation
values of the gradients of the interaction potentials instead.
The nonreciprocal components of the force result in a net
force upon the system. In contrast to the net force found
on dissimilar atoms [22,31], which is inversely proportional
to the detuning between their resonant frequencies, it grows
linearly in time for identical atoms. This finding invites one to
think of its experimental verification in excited systems made
of long lifetime identical atoms. Nonreciprocal forces are ex-
plained in terms of parity symmetry violation, and are related
to the asymmetry in the probability of emission of photons
from either atom [31,34]. The effect of the deexcitation upon
the off-resonant van der Waals force will be also analyzed.

Our perturbative approach in the weak-interaction regime
paves the way for its extension to the strong-interaction
regime where the vdW interaction between identical atoms
becomes nonperturbative, e.g., in binary systems of Rydberg
atoms. It is in the strong regime where the nonreciprocal
forces and the directional emission found here are expected to
be experimentally accessible. Hence, advances in the control
of individual atoms by optical tweezers and magneto-optical
traps have allowed the design of protocols and algorithms for
the deterministic loading of atomic arrays and the tracking of
the atomic positions [35].

The article is organized as follows. In Sec. II we explain
the formalism of our approach and discuss its adequacy for
the problem addressed in this work. In Sec. III we perform
the computation of the vdW forces between two dissimilar
two-level atoms, one of which is suddenly excited. The ori-
gin of nonreciprocal forces is related to the directionality of
spontaneous emission. In Sec. IV the identical-atom limit is
considered in the weak-interaction regime. The conclusions
are summarized in Sec. V together with a discussion on the
extension of our results.

II. COMPUTATION OF VAN DER WAALS FORCES

Let us consider two atoms, A and B, located a distance R
apart. Since we are ultimately interested in the identical-atom
limit, |�AB| � �A, �A → �B, atom A is assumed to be sud-
denly excited with an external field of strength � � |�AB|.
From the calculation carried out in Ref. [22] we note that the
effect of the external field on the vdW forces reduces to a
delay time π/� in their expectation values. Also, in order not
to confuse the recoil of the excited atom due to the absorption
of an external field photon with that due to the vdW interac-
tion, which is directed along the interatomic axis, we assume
that the illumination of atom A is transverse to the interatomic
axis. This is the situation considered in Ref. [20], where the

calculation was restricted to quasi-resonant processes, and to
observation times T such that �A,BT � 1. Here we will go
beyond those restrictions and we will evaluate all the contri-
butions to the vdW forces on both atoms, at leading order in
the coupling parameter.

A. Fundamentals of the approach

Let us consider a sudden excitation of atom A. The state of
the system at time 0 is |�(0)〉 = |A+〉 ⊗ |B−〉 ⊗ |0γ 〉, where
(A, B)± label the upper and lower internal states of the
atoms A and B respectively, and |0γ 〉 is the electromagnetic
(EM) vacuum state. At any given time T > 0 the state of
the two-atom-EM field system can be written as |�(T )〉 =
U (T )|�(0)〉, where U (T ) denotes the time propagator in the
Schrödinger representation,

U (T ) = T-exp

{
− ih̄−1

∫ T

0
dt H

}
,

H = T + HA + HB + HEM + W. (1)

In this equation T = mA|ṘA|2/2 + mB|ṘB|2/2 is the kinetic
energy of the center of mass of the atomic system, with
mA,B being the atomic masses and RA,B the position vectors
of the centers of mass of each atom. HA + HB is the free
Hamiltonian of the internal atomic states, h̄ωA|A+〉〈A+| +
h̄ωB|B+〉〈B+|, while the Hamiltonian of the free EM field is
HEM = ∑

k,ε h̄ω(a†
k,εak,ε + 1/2), where ω = ck is the photon

frequency, and the operators a†
k,ε and ak,ε are the creation and

annihilation operators of photons with momentum h̄k and po-
larization ε, respectively. Finally, the interaction Hamiltonian
in the electric dipole approximation reads W = WA + WB,
with

WA,B 	 −dA,B · E(RA,B). (2)

In this expression dA,B are the electric dipole operators of each
atom, and E(RA,B) are the quantum electric field operators
in Schrödinger’s representation evaluated at the position of
the center of mass of each atom. In terms of the EM vector
potential,

A(r, t ) =
∑
k,ε

√
h̄

2ωVε0
[εak,εe

i(k·r−ωt ) + ε∗a†
k,εe

−i(k·r−ωt )],

the electric field E(RA,B) = −∂t A(RA,B, t )|t=0 can be written
as a sum over normal modes,

E(RA,B) =
∑

k

[E(−)
k (RA,B) + E(+)

k (RA,B)]

= i
∑
k,ε

√
h̄ck

2Vε0
[εak,εe

ik·RA,B − ε∗a†
k,εe

−ik·RA,B ],

where V is a generic volume and E(∓)
k denote the annihilatio-

nand creation electric field operators of photons of momentum
h̄k, respectively. Strictly speaking, W includes an additional
term in the electric dipole approximation which is referred
to as the Röntgen term [36]. As argued in Ref. [37], that
term is negligible since its contribution to Eq. (1) contains
terms of orders ṘA,B/c and dA,B · E(RA,B)/mA,B smaller than
the contribution of Eq. (2).

052814-2



TWO-ATOM VAN DER WAALS FORCES WITH ONE ATOM … PHYSICAL REVIEW A 104, 052814 (2021)

Next, considering W as a perturbation to the free Hamilto-
nians, the unperturbed time propagator for atom and free pho-
ton states is U0(t ) = exp [−ih̄−1(T + HA + HB + HEM )t]. In
terms of W and U0, U (T ) admits an expansion in powers of W
which can be developed out of the time-ordered exponential
equation,

U (T ) = U0(T ) T-exp
∫ T

0
(−i/h̄)U†

0 (t ) W U0(t )dt, (3)

which can be written as a series in powers of W as U (T ) =
U0(T ) + ∑∞

n=1 δU (n)(T ), with δU (n) being the term of order
W n.

The system possesses a conserved total momentum
[38,39], [H, K] = 0,

K = PA + PB + Pγ

⊥, (4)

where PA,B are the canonical conjugate momenta of the cen-
ters of mass of each atom and Pγ

⊥ = ∑
k,ε h̄k a†

k,εak,ε is the
transverse EM momentum. Further, if the charges {qi} within
the atoms are considered individually at positions {ri}, the
canonical conjugate momenta can be written as

PA + PB = mAṘA + mBṘB +
∑

i

qiA(ri ), (5)

where the first two terms are the kinetic momenta of the
centers of mass of each atom, and the momentum within
the summation symbol is referred to as longitudinal EM mo-
mentum [38], Pγ

‖ = ∑
i qiA(ri ). Lastly, in the electric dipole

approximation, Pγ

‖ reads [36], Pγ

‖ 	 −dA × B(RA) − dB ×
B(RB), where B(RA,B) = ∇A,B × A(RA,B).

Following Refs. [31,37], the force on each atom is com-
puted applying the time derivative to the expectation value
of the kinetic momenta of the centers of mass of each atom.
Writing the latter in terms of the canonical conjugate momenta
and the longitudinal EM momentum, in the electric dipole
approximation, we arrive at

〈FA,B〉T = ∂T 〈mA,BṘA,B〉T

= −ih̄∂T 〈�(0)|U†(T )∇A,BU (T )|�(0)〉
+ ∂T 〈�(0)|U†(T )dA,B × B(RA,B)U (T )|�(0)〉

= −〈∇A,BWA,B〉T + ∂T 〈dA,B × B(RA,B)〉T , (6)

The first term on the right-hand side of the last equality is
a conservative force along the interatomic axis, which we
will refer to as vdW force. Note however that, in contrast
to the stationary vdW forces computed in the adiabatic ap-
proximation, cf. Ref. [22], time-dependent conservative forces
cannot be generally written as −1

2 ∇A,B〈WA,B〉T . We will show
later, including up to two-photon exchange processes, that the
reason is the functional dissymmetry in the contribution of the
two photons to the time-dependent terms. The second term is
a nonconservative force equivalent to the time derivative of
the longitudinal EM momentum at each atom, with opposite
sign. We will show in a separate publication [40] that its
contribution is only observable for |�AB| � ωA,B, being of the
order of max(|�AB|, �A)/ωA times smaller than the vdW con-
servative force. Hereafter we will neglect it and approximate
〈FA,B〉T 	 −〈∇A,BWA,B〉T .

B. Discussion on the formalism

As in preceding works [22,31,37], we have formulated the
vdW forces on a binary system in terms of the time-dependent
expectation value of the time derivative of the kinetic mo-
mentum of each atom, which in the Schrödinger picture reads
〈FA,B〉T = ∂T 〈�(0)|U†(T )mA,BṘA,BU (T )|�(0)〉; cf. Eq. (6).

However, previous approaches have formulated these
forces in terms of the level shift of the two-atom wave
function, δE , assuming implicitly that the atomic state is
stationary. Next, appealing to the conservative character of
the vdW interaction—up to considering the longitudinal EM
momentum—some authors have identified the vdW force
with −∇δE , where δE was computed in the framework of
stationary perturbation theory or linear response theory, re-
gardless of whether or not the atomic state was metastable,
e.g., Refs. [18,27].

On the other hand, applying time-dependent per-
turbation theory in the interaction picture, Berman’s
computation has led to the identification δE =
Re{ih̄∂T 〈�(0)|U†

0 (T )U (T )|�(0)〉} [19,22] for a binary
atomic system in an excited state. In this expression it
is assumed that, subjected to some physical conditions,
the time derivative of the probability amplitude provides
time-independent terms in addition to fast oscillating secular
terms that can be discarded. In the case of the setup addressed
in Refs. [19,22], the physical conditions needed are the
adiabatic excitation of the atomic system together with
its quasistationary dynamics. Further, Refs. [19–23,32]
have proved that a fully stationary treatment is insufficient
to account for the dissipative effects that accompany the
computation of the level shift in an excited metastable
system.

More recently, the time-dependent approaches of
Refs. [20,22,23] have computed the vdW forces on excited
systems out of the expectation values of the interaction
energies 〈WA〉 and 〈WB〉. In the quasistationary limit, or
considering an adiabatic excitation otherwise, they have
found that the forces on each atom differ in spatially
oscillating terms, resulting in the apparent violations of the
classical action-reaction principle and the conservation of
total momentum, which is in clear contradiction with the
invariance of the system under global spatial translation.
This apparent contradiction was solved in Ref. [31], where
it was shown that the missing momentum was carried by
the virtual photons which mediate the interaction, i.e.,
∂T 〈Pγ

⊥〉 + 〈FA〉 + 〈FB〉 = 0. Moreover, it was proved that the
momentum carried by the virtual photons while the atoms
are excited is equivalent to the asymmetric momentum which
is found along the interatomic axis in the emission of actual
photons in the deexcitation process, causing the directionality
of spontaneous emission. Both phenomena, namely, the
nonreciprocity of the forces and the directionality of the
emission, are thus closely related, and can be interpreted as
a consequence of the absence of parity symmetry along the
interatomic axis of a binary system which is asymmetrically
excited.

As for the specific case of identical atoms, with one of
them initially excited, an analogous reasoning applies and
analogous results are to be expected. However, the fact that
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FIG. 1. Diagrammatic representation of twelve of the processes
which contribute to 〈FA〉T . Solid straight lines stand for propagators
of atomic states, while wavy lines stand for photon propagators. In
diagram (a), atomic and photon states are indicated explicitly. The
atoms A and B are separated by a distance R along the horizontal
direction, whereas time runs along the vertical. The big circles in
black on the left of each diagram stand for the insertion of the
Schrödinger operator −∇AWA whose expectation value is computed.
Each diagram contributes with two terms, one from each of the oper-
ators inserted. They are sandwiched between two time propagators,
U(T ) and U†(T ) (depicted by vertical arrows), which evolve the
initial state |�(0)〉 towards the observation time at which −∇AWA

applies.

the system is degenerate implies that the vdW forces are
explicitly time dependent, since no adiabatic approximation

FIG. 2. Diagrammatic representation of processes which con-
tribute to the fully off-resonant component of 〈FA〉T . In contrast to
the diagrams in Fig. 1, the self-interacting photon on atom A leads the
spontaneous emission from the excited atom. The omitted diagrams
are analogous to those in Fig. 1.

can be taken. Note that the stationary approach suggested in
Ref. [27], based on degenerate stationary perturbation theory,
is not appropriate. The reason is the nonstationary character
of the state |A+, B−〉, whose dynamics comprises both the
coherent transfer of the excitation between the atoms and the
incoherent decay of the excited atoms. Further comments on
this issue can be found in Sec. V.

III. vdW FORCES ON A BINARY SYSTEM OF DISSIMILAR
ATOMS AFTER A SUDDEN EXCITATION

A perturbative development of Eq. (6) shows that, up to
terms involving two-photon exchange processes, 24 diagrams
contribute to 〈FA〉T for a two-level atom. They are depicted in
Figs. 1 and 2. Note that those in Fig. 2 just differ with respect
to those of Fig. 1 by the photon embracing the two exchanged
photons, which accounts for the deexcitation of the system via
spontaneous emission from atom A. For the sake of illustration
we give below the expression of diagram (a) in Fig. 1, which
contributes to 〈FA〉T in the form

1

h̄3

∫ ∞

0

Vk2dk

(2π )3

∫ ∞

0

Vk′2dk′

(2π )3

∫ 4π

0
d�

∫ 4π

0
d�′

{[
i〈A+, B−, 0γ |ei�∗

aT |A+, B−, 0γ 〉
∫ T

0
dt

∫ t

0
dt ′

∫ t ′

0
dt ′′

× 〈A+, B−, 0γ | − ∇A[dA · E(−)
k (RA)]|A−, B−, γk〉e−iω(T −t )〈A−, B−, γk|dB · E(+)

k (RB)|A−, B+, 0γ 〉
× e−i�b(t−t ′ )〈A−, B+, 0γ |dB · E(−)

k′ (RB)|A−, B−, γk′ 〉e−iω′(t ′−t ′′ )〈A−, B−, γk′ |dA · E(+)
k′ (RA)|A+, B−, 0γ 〉e−i�at ′′] + [k ↔ k′]†

}
,

(7)

where it is implicit that the causality condition T � R/c holds at the time of observation. In this equation |A+, B−, 0γ 〉 is the
initial two-atom-EM-vacuum state, with atom A excited at time 0, |γk〉 is a one-photon state of momentum k and frequency
ω = ck, the complex time exponentials are the result of the application of the free time-evolution operator U0(t ) = e−ih̄−1H0t

between the interaction vertices WA,B, with �a = ωA − i�A/2 and �b = ωB − i�B/2, where the dissipative imaginary terms
account for radiative emission in the Weisskopf-Wigner approximation and ωA,B include the contribution of the free-space Lamb
shift. After integrating in time and solid angles, one arrives at

c2h̄−1

π2ε2
0

Re
∫ ∞

0
dk′k′2∇A[μA · ImG(k′R) · μB]

∫ ∞

0
dk k2μB · ImG(kR) · μA ei�∗

aT

[
e−i�aT − e−iωT

(ω′ − �a)(�b − �a)(ω − �a)

− e−i�bT − e−iωT

(ω′ − �a)(�b − �a)(ω − �b)
+ e−iω′T − e−iωT

(ω′ − �a)(ω′ − �b)(ω − ω′)
− e−i�bT − e−iωT

(ω′ − �a)(ω′ − �b)(ω − �b)

]
, (8)

where μA = 〈A−|dA|A+〉, μB = 〈B−|dB|B+〉, and G(kR) is the dyadic Green’s function of the electric field induced at R by an
electric dipole of frequency ω = ck placed at the origin. It reads

G(kR) = k eikR

−4π
[α/kR + iβ/(kR)2 − β/(kR)3], (9)

where the tensors α and β read α = I − R̂R̂, β = I − 3R̂R̂, with R̂ = R/R.
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Operating in an analogous fashion with the rest of the terms derived from the diagrams of Figs. 1 and 2, upon integration in
k and k′ in the complex plane, using the identity ∇B = −∇A = −∇R, we arrive at

〈FA〉T = −2ω4
Ae−�AT

c4ε2
0 h̄�AB

[μA · ReG(kAR) · μB∇R[μA · ReG(kAR) · μB] − μA · ImG(kAR) · μB∇R[μA · ImG(kAR) · μB]]

+ 2ω4
Be−(�A+�B )T/2

c4ε2
0 h̄�AB

[μA · ReG(kBR) · μB∇R[μA · ReG(kBR) · μB] − μA · ImG(kBR) · μB∇R[μA · ImG(kBR) · μB]]

× cos(�ABT ) − 2ω4
Be−(�A+�B )T/2

c4ε2
0 h̄�AB

[μA · ReG(kBR) · μB∇R[μA · ImG(kBR) · μB]

+ μA · ImG(kBR) · μB∇R[μA · ReG(kBR) · μB]] sin(�ABT )

+ 2ω4
Ae−�AT

c4ε2
0 h̄(ωA + ωB)

[μA · ReG(kAR) · μB∇R[μA · ReG(kAR) · μB] − μA · ImG(kAR) · μB∇R[μA · ImG(kAR) · μB]]

− 2ω2
Be−(�A+�B )T/2

c3ε2
0 h̄

[∇R[μA · ReG(kBR) · μB] cos(�ABT ) − ∇R[μA · ImG(kBR) · μB] sin(�ABT )]

×
∫ ∞

0

dq

π

(q2 − kAkB)q2μA · G(iqR) · μB

(q2 + k2
A)(q2 + k2

B)
+ 4ωAωB(1 − 2e−�AT )

c3ε2
0 h̄

∫ ∞

0

dq

π

q4μA · G(iqR) · μB

(q2 + k2
A)(q2 + k2

B)
∇R[μA · G(iqR) · μB].

(10)

In this equation, negligible and unobservable terms have been discarded. These are off-resonant terms whose integrands are
attenuated in time as e−cT q and whose contribution is (R/cT )3 � 1 times smaller, and fast oscillating secular terms of frequency
ωA + ωB which average to zero upon observation. The origin of the terms in Eq. (10) is as follows. The first three terms, which
scale as ∼1/�AB, are fully resonant and involve the evaluation of the two residues associated to simple poles in k and k′ in
the integrals stemming from diagram (a). The fourth term, which scales as ∼ 1/(ωA + ωB), fully resonant too, results from the
two resonant photons of diagram (g), which contains a two-photon intermediate state. The semiresonant terms, which entail
evaluating the residue associated to a simple pole in k or k′ only, oscillate in time at frequency �AB. They stem from diagrams
(c,d,e,f). Finally, the last term is the result of the addition of the off-resonant contributions coming from the twelve diagrams of
Figs. 1 and 2 together. The discarded fast oscillating terms, resonant and semi-resonant, are associated with diagrams (i,k) and
(i,j,k,l), respectively, which contain two-photon intermediate states. In the far field we can approximate

〈FA〉T ≈ k7
Ae−�AT (μA · α · μB)2

8π2ε2
0 h̄�AB

[
cos(2kAR)

(kAR)3
+ sin(2kAR)

(kAR)2

]
R̂.

Analogous diagrams hold for 〈FB〉T , but for the evaluation of the operator −∇BWB at atom B; see Figs. 3 and 4:

〈FB〉T = 2ω4
Ae−�AT

c4ε2
0 h̄�AB

[μA · ReG(kAR) · μB∇R[μB · ReG(kAR) · μA] + μA · ImG(kAR) · μB∇R[μB · ImG(kAR) · μA]]

− 2ω2
Bω2

Ae−(�A+�B )T/2

c4ε2
0 h̄�AB

[μA · ReG(kBR) · μB∇R[μB · ReG(kAR) · μA] + μA · ImG(kBR) · μB∇R[μB · ImG(kAR) · μA]]

× cos(�ABT ) − 2ω2
Bω2

Ae−(�A+�B )T/2

c4ε2
0 h̄�AB

[μA · ReG(kBR) · μB∇R[μB · ImG(kAR) · μA]

− μA · ImG(kBR) · μB∇R[μB · ReG(kAR) · μA]] sin(�ABT )

− 2ω4
Ae−�AT

c4ε2
0 h̄(ωA + ωB)

[μA · ReG(kAR) · μB∇R[μB · ReG(kAR) · μA] + μA · ImG(kAR) · μB∇R[μB · ImG(kAR) · μA]]

+ 2ω2
Ae−(�A+�B )T/2

c3ε2
0 h̄

[∇R[μB · ReG(kAR) · μA] cos(�ABT ) + ∇R[μB · ImG(kAR) · μA] sin(�ABT )]

×
∫ ∞

0

dq

π

(q2 − kAkB)q2μA · G(iqR) · μB(
q2 + k2

A

)(
q2 + k2

B

) − 4ωAωB(1 − 2e−�AT )

c3ε2
0 h̄

∫ ∞

0

dq

π

q4μA · G(iqR) · μB(
q2 + k2

A

)(
q2 + k2

B

)∇R[μB · G(iqR) · μA].

(11)
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FIG. 3. Diagrammatic representation of twelve of the processes
which contribute to 〈FB〉T . The big circles in gray on the right of each
diagram stand for the insertion of the Schrödinger operator −∇BWB

whose expectation value is computed.

In the far field, its approximate expression is

〈FB〉T ≈ −k7
Ae−�AT (μA · α · μB)2

8π2ε2
0 h̄�AB

R̂
(kAR)3

.

Note that, as anticipated after Eq. (6), the conservative vdW
forces cannot be written in the form −∇R〈WA,B〉T /2 due
to the functional dissymmetry of the time-dependent terms

FIG. 4. Diagrammatic representation of processes which con-
tribute to the fully off-resonant component of 〈FB〉T . In contrast to
the diagrams in Fig. 3, the self-interacting photon on atom A leads the
spontaneous emission from the excited atom. The omitted diagrams
are analogous to those in Fig. 3.

proportional to ReG(kA,BR)ImG(kA,BR); for comparison, see
also the expressions for 〈WA,B〉T in the Appendix.

Comparing Eqs. (10) and (11), we observe that the only
term which is common to both expressions is that involving
off-resonant photons, which is proportional to (2e−�AT − 1).
That implies that it changes sign at an observation time T ≈
ln 2/�A. As for the rest of the terms, some fully resonant
and semiresonant terms, either stationary or oscillating at
frequency �AB, differ in sign. Those terms constitute nonre-
ciprocal forces and amount to a net force on the two-atom
system. The stationary nonreciprocal forces were shown in
Ref. [31] to result from the excess of momenta stored in the
virtual photons which mediate the resonant interaction in
the processes depicted by diagrams (a) and (g). In addition,
the slowly oscillating non-reciprocal forces arise after a sud-
den excitation only, and their associated momentum variation
is supplied by the resonant photons of diagrams (a,c,d,e,f).
Assuming that |�AB| � ωA,B for the oscillating forces to be
observable, the net force on the atomic system reads

〈FA + FB〉T 	 8e−�AT k4
A

ε2
0 h̄

ωB

ω2
A − ω2

B

μA · ImG(kAR) · μB∇R[μB · ImG(kAR) · μA]

+ 2e−(�A+�B )T/2k2
B

ε2
0 h̄�AB

{
μA · ReG(kBR) · μB∇R

[
k2

BμB · ReG(kBR) · μA − k2
AμA · ReG(kAR) · μB

]
− μA · ImG(kBR) · μB∇R

[
k2

BμB · ImG(kBR) · μA + k2
AμA · ImG(kAR) · μB

]}
cos (�ABT )

− 2e−(�A+�B )T/2k2
B

ε2
0 h̄�AB

{
μA · ReG(kBR) · μB∇R

[
k2

BμB · ImG(kBR) · μA + k2
AμA · ImG(kAR) · μB

]
+ μA · ImG(kBR) · μB∇R

[
k2

BμB · ReG(kBR) · μA − k2
AμA · ReG(kAR) · μB

]}
sin (�ABT )

− 2e−(�A+�B )T/2

c3ε2
0 h̄

∫ ∞

0

dq

π

(q2 − kAkB)q2μA · G(iqR) · μB(
q2 + k2

A

)(
q2 + k2

B

) [∇R
[
ω2

BμA · ReG(kBR) · μB − ω2
AμA · ReG(kAR) · μB

]

× cos(�ABT ) − ∇R
[
ω2

BμA · ImG(kBR) · μB + ω2
AμA · ImG(kAR) · μB

]
sin(�ABT )

]
, (12)

where the first nonoscillating term coincides with the net force for the case of an adiabatic excitation [22]. Its asymptotic form
in the far field reads

〈FA + FB〉T ≈ k7
Ae−�AT (μA·α·μB )2

8π2ε2
0 h̄�AB

[ cos(2kAR)−1
(kAR)3 + sin(2kAR)

(kAR)2

]
R̂.

In what follows we study the directionality of one-photon spontaneous emission and show its relationship with the net force.
Directionality is provided by the asymmetry in the emission rate of one of the resonant exchanged photons of the diagrams
(a,c,d,e,f) depicted in Fig. 5. Hence, the resultant formula for the directional emission rate as a function of the solid angle,
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d�dir/d�, is not invariant under parity inversion. Hence, the asymmetry is maximum along the interatomic axis. The evaluation
of the one-photon emission diagrams in Fig. 5 yields

d�dir

d�
= μA · (I − k̂ ⊗ k̂) · μB

2(πε0h̄)2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−(�A+�B )T/2k5
B

�AB
[cos(�ABT )[cos(kBR cos θ )μA · ReG(kBR) · μB − sin(kBR cos θ )

×μA · Im G(kBR) · μB] − sin(�ABT )[cos(kBR cos θ )μA · Im G(kBR) · μB

+ sin(kBR cos θ )μA · ReG(kBR) · μB]]

− e−�AT k5
A

�AB
[cos(kAR cos θ )μA · ReG(kAR) · μB − sin(kAR cos θ )μA · Im G(kAR) · μB]

−e−(�A+�B )T/2k3
B[cos(�ABT ) cos(kBR cos θ ) − sin(�ABT ) sin(kBR cos θ )]

× ∫ ∞
0 c dq

π

q2(q2−kAkB )
(q2+k2

A )(q2+k2
B )

μA · G(iqR) · μB for cos θ ∈ (0, 1],

e−(�A+�B )T/2k2
Bk3

A
�AB

[cos(�ABT )[cos(kAR cos θ )μA · ReG(kBR) · μB − sin(kAR cos θ )

×μA · Im G(kBR) · μB] − sin(�ABT )[cos(kAR cos θ )μA · Im G(kBR) · μB

+ sin(kAR cos θ )μA · ReG(kBR) · μB]]

− e−�AT k5
A

�AB
[cos(kAR cos θ )μA · ReG(kAR) · μB − sin(kAR cos θ )μA · Im G(kAR) · μB]

−e−(�A+�B )T/2k3
A[cos(�ABT ) cos(kAR cos θ ) − sin(�ABT ) sin(kAR cos θ )]

× ∫ ∞
0 c dq

π

q2(q2−kAkB )
(q2+k2

A )(q2+k2
B )

μA · G(iqR) · μB for cos θ ∈ [−1, 0).

(13)

In this equation parity symmetry is manifestly broken by
the difference between the terms defined in each interval of
cos θ . In particular, those applicable to cos θ ∈ (0, 1] con-
tribute to FA upon integration of Eq. (14), while those for
cos θ ∈ [−1, 0) contribute to FB, respectively.

FIG. 5. Diagrammatic representation of the processes which
contribute to the one-photon directional emission rate, d�dir/d�.
The time evolution of the initial state, both from the bottom and from
the top of each diagram, is indicated in diagram (a) with vertical ar-
rows that meet at the observation time T , where the horizontal dotted
line cuts each diagram along the final state, |�(T )〉 = U (T )|�(0)〉.
That final state contains the emitted photon and the ground states of
both atoms

Under the condition |�AB| � ωA,B and considering ωA 	
ωB for simplicity, we can write the time derivative of the
transverse EM momentum as

〈Ṗγ

⊥〉T 	 h̄kA

∫ 4π

0
d� k̂

d�dir

d�
. (14)

Straight integration of this equation leads to Eq. (12)—up
to two-photon emission terms—except for a negative sign
in front, proving that 〈FA + FB〉T = −〈Ṗγ

⊥〉T , in agreement
with the conservation of the momentum K defined in Eq. (4).
Physically this implies that, while excited, the atomic sys-
tem accelerates as a whole whereas the virtual photons
which mediate the vdW interaction store a corresponding
momentum in the opposite direction. That momentum is
ultimately carried by the real photon which is emitted in
the deexcitation process. On average, that momentum deter-
mines the directionality of the spontaneous emission from the
binary system.

IV. THE IDENTICAL-ATOM LIMIT IN THE
WEAK-INTERACTION REGIME

We proceed to take the identical-atom limit upon the
equations obtained in the previous section. That is, we con-
sider ωB → ωA = ω0, �B → �A = �0, μA = μB. Note that,
in order for the perturbative computations of Sec. III to re-
main valid in this limit, the observation time T must be
small in comparison to the time that it takes for the exci-
tation to be transferred from atom A to atom B, i.e., k2

0μA ·
ReG(k0R) · μB � h̄ε0/T [2,33]. This is the weak-interaction
regime, which implies that the original atomic states are qua-
sistationary despite the degeneracy of the system. In this limit,
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the vdW forces read

〈FA〉T = −2ω4
0e−�0T

c4ε2
0 h̄

T [μA · ReG(k0R) · μB∇R[μA · ImG(k0R) · μB] + μA · ImG(k0R) · μB∇R[μA · ReG(k0R) · μB]]

− 2e−�0T

c4ε2
0 h̄

∂

∂ω
[ω4μA · ReG(kR) · μB∇R[μA · ReG(kR) · μB] − ω4μA · ImG(kR) · μB∇R[μA · ImG(kR) · μB]]ω=ω0

+ ω3
0e−�0T

c4ε2
0 h̄

[μA · ReG(k0R) · μB∇R[μA · ReG(k0R) · μB] − μA · ImG(k0R) · μB∇R[μA · ImG(k0R) · μB]]

− 2ω2
0e−�0T

c3ε2
0 h̄

∇R[μA · ReG(k0R) · μB]
∫ ∞

0

dq

π

(
q2 − k2

0

)
q2μA · G(iqR) · μB(
q2 + k2

0

)2

+ 4ω2
0(1 − 2e−�0T )

c3ε2
0 h̄

∫ ∞

0

dq

π

q4μA · G(iqR) · μB

(q2 + k2
0 )2

∇R[μA · G(iqR) · μB], (15)

〈FB〉T = −2ω4
0e−�0T

c4ε2
0 h̄

T [μA · ReG(k0R) · μB∇R[μB · ImG(k0R) · μA] − μA · ImG(k0R) · μB∇R[μB · ReG(k0R) · μA]]

+ 2e−�0T ω2
0

c4ε2
0 h̄

[
∂

∂ω
[ω2μA · ReG(kR) · μB]ω=ω0∇R[μB · ReG(k0R) · μA]

+ ∂

∂ω
[ω2μA · ImG(kR) · μB]ω=ω0∇R[μB · ImG(k0R) · μA]

]

− ω3
0e−�0T

c4ε2
0 h̄

[μA · ReG(k0R) · μB∇R[μB · ReG(k0R) · μA] + μA · ImG(k0R) · μB∇R[μB · ImG(k0R) · μA]]

+ 2ω2
0e−�0T

c3ε2
0 h̄

∇R[μB · ReG(k0R) · μA]
∫ ∞

0

dq

π

(
q2 − k2

0

)
q2μA · G(iqR) · μB(
q2 + k2

0

)2

− 4ω2
0(1 − 2e−�0T )

c3ε2
0 h̄

∫ ∞

0

dq

π

q4μA · G(iqR) · μB(
q2 + k2

0

)2 ∇R[μB · G(iqR) · μA], (16)

with asymptotic values in the far field

〈FA〉T ≈ −k7
0e−�0T (μA · α · μB)2T

8π2ε2
0 h̄

[
cos(2k0R)

(k0R)2
− sin(2k0R)

(k0R)3

]
R̂,

〈FB〉T ≈ −k7
0e−�0T (μA · α · μB)2T

8π2ε2
0 h̄

R̂
(k0R)2

.

Likewise, the net force upon the atomic system is

〈FA + FB〉T = −4e−�0T

c4ε2
0 h̄

{
ω4

0T [μA · ReG(k0R) · μB∇R[μB · ImG(k0R) · μA]] − ω4
0

∂

∂ω
[μA · ImG(kR) · μB]ω=ω0

× ∇R[μB · ImG(k0R) · μA] + ω4
0

2
[μA · ReG(k0R) · μB

∂

∂ω
[∇R[μB · ReG(kR) · μA]]ω=ω0

− μA · ImG(k0R) · μB
∂

∂ω
[∇R[μB · ImG(kR) · μA]]ω=ω0 ] − 5ω3

0

2
μA · ImG(k0R) · μB

× ∇R[μB · ImG(k0R) · μA] + ω3
0μA · ReG(k0R) · μB∇R[μB · ReG(k0R) · μA]

}
, (17)

which contains fully resonant terms only. The leading terms in Eqs. (15)-(17) are the first ones on the right hand side of each
equation, which scale linearly with T . Its asymptotic expression reads

〈FA + FB〉T ≈ −k7
0e−�0T (μA · α · μB)2T

8π2ε2
0 h̄

[
1 + cos(2k0R)

(k0R)2
− sin(2k0R)

(k0R)3

]
R̂.
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As for the one-photon directional emission rate, taking the identical-atom limit on Eq. (13), we arrive at

d�dir

d�
= −μA · (I − k̂ ⊗ k̂) · μBe−�0T

2(πε0h̄)2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T k5
0[cos(k0R cos θ )μA · Im G(k0R) · μB + sin(k0R cos θ )μA · ReG(k0R) · μB]

+5c−1k4
0[cos(k0R cos θ )μA · ReG(k0R) · μB − sin(k0R cos θ )μA · Im G(k0R) · μB]

−c−1k5
0R cos θ [cos(k0R cos θ )μA · Im G(k0R) · μB

+ sin(k0R cos θ )μA · ReG(k0R) · μB]
+k5

0[cos(k0R cos θ ) ∂
∂ω

[μA · ReG(kR) · μB]ω=ω0− sin(k0R cos θ ) ∂
∂ω

[μA · Im G(kR) · μB]ω=ω0
]

+k3
0 cos(k0R cos θ )

∫ ∞
0 c dq

π

q2
(

q2−k2
0

)
(q2+k2

0 )(q2+k2
0 )

μA · G(iqR) · μB for cos θ ∈ (0, 1],

T k5
0[cos(k0R cos θ )μA · Im G(k0R) · μB + sin(k0R cos θ )μA · ReG(k0R) · μB]

+2c−1k4
0[cos(k0R cos θ )μA · ReG(k0R) · μB − sin(k0R cos θ )μA · Im G(k0R) · μB]

+k5
0[cos(k0R cos θ ) ∂

∂ω
[μA · ReG(kR) · μB]ω=ω0− sin(k0R cos θ ) ∂

∂ω
[μA · Im G(kR) · μB]ω=ω0

]

+k3
0 cos(k0R cos θ )

∫ ∞
0 c dq

π

q2
(

q2−k2
0

)
(q2+k2

0 )(q2+k2
0 )

μA · G(iqR) · μB for cos θ ∈ [−1, 0).

(18)

The nonreciprocal terms of Eq. (18), i.e., those which are not
common for cos θ ∈ (0, 1] and cos θ ∈ [−1, 0) and those pro-
portional to sin(k0R cos θ ), are in correspondence with those
in Eq. (17), except for a two-photon emission contribution
neglected in Eq. (18), such that

〈FA + FB〉T = −〈Ṗγ

⊥〉T 	 −h̄k0

∫ 4π

0
d�k̂

d�dir

d�
. (19)

Two-photon emission terms together with those terms propor-
tional to ω3

0 in Eq. (17) are indeed negligible in comparison
to the term linear in T . In Fig. 6 we represent the net
force on a binary system of identical atoms as a function of
the interatomic distance, once normalized as indicated. For
simplicity, the dipole moments are chosen isotropic, μx

A,B =
μ

y
A,B = μz

A,B. Note that, in order to preserve the perturbative
nature of our calculation, the following inequality must be
satisfied, cos (k0R) � k0R/�0T . Considering the lower bound
value of this inequality, �0T ∼ 1, it implies for isotropic

FIG. 6. Graphical representation of the net force on a binary
system of identical atoms according to Eq. (17) as a function of

k0R, 〈FA + FB〉idem: solid curve, normalized to N1 = |μA|2 |μB |2ω7
0T

10−3c7 h̄ε2
0

;

and net force on a binary system of dissimilar atoms according to
Eq. (12) and Ref. [31], 〈FA + FB〉diss: dashed curve, normalized to

N2 = |μA|2 |μB |2ω7
A

10−3c7 h̄ε2
0 �AB

, with ωA ≈ ω0.

dipoles k0R � 1, as indicated with the vertical straight line in
Fig. 6. For comparison, we represent the net force on a binary
system of dissimilar atoms—see Eq. (12) and Ref. [31]—
which is of the order of 1/�ABT times smaller. The force
on dissimilar atoms presents a maximum at k0R ≈ 1.3, which
coincides approximately with the value at which the force on
the identical atoms vanishes for the first time.

V. DISCUSSION AND CONCLUSIONS

In the first place, starting with the perturbative time-
dependent computation of the dipole-dipole interaction be-
tween two dissimilar atoms, up to two-photon exchange
processes, with one of the atoms suddenly excited, we have
shown that the dipole-dipole forces contain two components.
These are the conservative forces identifiable with the ordi-
nary van der Waals forces, and nonconservative forces which
derive from the time variation of the longitudinal EM momen-
tum. In contrast to previous quasistationary computations we
find that, generally, the time-dependent vdW forces cannot be
written as the gradients of the expectation values of the inter-
action potentials, but as the expectation values of the gradients
of the interaction potentials only. As for the nonconservative
forces, they will be computed in a separate publication [40].

Second, we have taken the identical-atom limit upon the
perturbative expressions for the vdW forces on dissimilar
atoms. That compels us to constrain ourselves to the weak-
interaction regime. We find that, at leading order, the van der
Waals forces are fully resonant and grow linearly in time,
being different on each atom. Besides, in addition to the famil-
iar off-resonant vdW forces, which change direction at T =
ln 2/�0, semiresonant reciprocal forces arise; see Eqs. (15)
and (16).

The resultant net force on the two-atom system is related to
the directionality of spontaneous emission, which results from
the violation of parity symmetry and is in agreement with total
momentum conservation; see Eqs. (17), (18), and (19).

We may explain now why a stationary approach is not
suitable for this computation. In the first place, note that level
shifts δE can be only attributed to (quasi)stationary states
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upon which the identification of δE in the time-exponential
factor of their wave functions can be made; cf. Ref. [22].
In the present case, that identification applies to the sym-
metric and antisymmetric Dicke states, |±〉 = (|A+, B−〉 ±
|A−, B+〉)/

√
2, with δE+,− = ∓h̄�R, respectively, and �R =

k2
0μA · ReG(k0R) · μB being the Rabi frequency of the excita-

tion transfer. In first approximation, reciprocal forces on the
atoms in Dicke’s states can be computed, FA,B = ±h̄∇�R.
However, the state |A+, B−〉 is not stationary, both because
it is an excited state and also because it oscillates at frequency
�R between the symmetric and antisymmetric states. That
is, if |�(0)〉 = |A+, B−〉 = (|+〉 + |−〉)/

√
2, at leading order

in perturbation theory one finds |�(T )〉 = e−iω0t (ei�Rt |+〉 +
e−i�RT |−〉)/

√
2. Therefore, its level shift is not a well-defined

quantity and, at best, one only could make the identifica-
tion δE� = 〈�(T )|W |�(T )〉 = (δE+ + δE−)/2 = 0. Hence,
at any time, 〈�(T )|WA,B|�(T )〉 = 0. On the other hand, it is
known from the works of Refs. [19–23,31,32] that the cor-
rect calculation of the resonant interactions between excited
atoms, even in the adiabatic limit, requires the appropriate in-
troduction of the dissipative factors e−�t within the framework

of time-dependent perturbation theory. Hence, it can be shown
that it is by this means that the Rabi frequency becomes com-
plex, cf. Refs. [41–43], �̃R = k2

0μA · G(k0R) · μB, yielding
in that case 〈�(T )|WA,B|�(T )〉 ∼ Im{�̃R} sin (2Re{�̃R}T )
which, for Re{�̃R}T � 1, renders the leading order term of
the resonant interactions in Eqs. (15)–(17).

Thus, beyond the weak-interaction regime the calcula-
tion of the vdW forces between identical atoms becomes
nonperturbative as a result of degeneracy. That implies that
nonperturbative time-evolution propagators are to be com-
puted [41,42]. Their calculation will be addressed in a separate
publication, together with a proposal for the experimental
observation of the net force on a binary system of Rydberg
atoms.
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APPENDIX: INTERACTION ENERGIES

In this Appendix we compile the expressions for the interaction energies on each atom. Their diagrammatic representations
are analogous to those in Figs. 1–4, except for the replacement of the operators −∇AWA and −∇BWB at the observation time T
with WA and WB, respectively:

〈WA〉T = 2ω4
Ae−�AT

c4ε2
0 h̄�AB

[[μA · ReG(kAR) · μB]2 − [μA · ImG(kAR) · μB]2]

− 2ω4
Be−(�A+�B )T/2

c4ε2
0 h̄�AB

[[μA · ReG(kBR) · μB]2 − [μA · ImG(kBR) · μB]2] cos(�ABT )

+ 4ω4
Be−(�A+�B )T/2

c4ε2
0 h̄�AB

[μA · ReG(kBR) · μBμB · ImG(kBR) · μA] sin(�ABT )

− 2ω4
Ae−�AT

c4ε2
0 h̄(ωA + ωB)

[[μA · ReG(kAR) · μB]2 − [μA · ImG(kAR) · μB]2]

+ 2ω2
Be−(�A+�B )T/2

c3ε2
0 h̄

[μA · ReG(kBR) · μB cos(�ABT ) − μA · ImG(kBR) · μB sin (�ABT )]

×
∫ ∞

0

dq

π

(q2 − kAkB)q2(
q2 + k2

A

)(
q2 + k2

B

)μB · G(iqR) · μA − 4ωAωB(2e−�AT − 1)

c3ε2
0 h̄

∫ ∞

0

dq

π

q4[μA · G(iqR) · μB]2(
q2 + k2

A

)(
q2 + k2

B

) , (A1)

〈WB〉T = 2ω4
Ae−�AT

c4ε2
0 h̄�AB

[[μA · ReG(kAR) · μB]2 + [μA · ImG(kAR) · μB]2]

− 2ω2
Aω2

Be−(�A+�B )T/2

c4ε2
0 h̄�AB

[μA · ReG(kAR) · μBμA · ReG(kBR) · μB + μA · ImG(kAR) · μBμA · ImG(kBR) · μB]

× cos(�ABT ) − 2ω2
Aω2

Be−(�A+�B )T/2

c4ε2
0 h̄�AB

[μA · ReG(kAR) · μBμB · ImG(kBR) · μA

− μA · ImG(kAR) · μBμB · ReG(kBR) · μA] sin(�ABT )

− 2ω4
Ae−�AT

c4ε2
0 h̄(ωA + ωB)

[[μA · ReG(kAR) · μB]2 + [μA · ImG(kAR) · μB]2]

+ 2ω2
Ae−(�A+�B )T/2

c3ε2
0 h̄

[μA · ReG(kAR) · μB cos(�ABT ) + μA · ImG(kAR) · μB sin (�ABT )]
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×
∫ ∞

0

dq

π

(q2 − kAkB)q2(
q2 + k2

A

)(
q2 + k2

B

)μB · G(iqR) · μA − 4ωAωB(2e−�AT − 1)

c3ε2
0 h̄

∫ ∞

0

dq

π

q4[μA · G(iqR) · μB]2(
q2 + k2

A

)(
q2 + k2

B

) . (A2)

Straight comparison with Eqs. (10) and (11) reveals that −∇A,B〈WA,B〉T /2 �= −〈∇A,BWA,B〉T /2 = 〈FA,B〉T , up to two-photon
exchange processes.
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