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We compute the nonconservative electric dipole forces between two atoms, one of which is initially
excited. These forces derive from the time variation of the longitudinal electromagnetic momentum.
In contrast to the conservative van-der-Waals forces, the nonconservative forces posses components
orthogonal to the interatomic axis. Thus, despite being several orders of magnitude smaller than van-
der-Waals’, they might be accessible experimentally for the case of two identical atoms. In addition,
as with the van-der-Waals forces, the nonconservative forces present nonreciprocal constituents
which result in a net force on the two-atom system. We offer an estimate of the spatial displacement
caused by the nonconservative forces on a binary system of Hydrogen atoms.

I. INTRODUCTION

Dispersion forces between neutral atoms in the electric
dipole approximation are generally referred to as van-
der-Waals (vdW) forces [1–8]. They are the result of
the coupling of the quantum fluctuations of the electro-
magnetic (EM) field in its vacuum state with the dipole
fluctuations of the atomic charges in stable or metastable
states. For a system of atoms in its ground state the vdW
forces can be computed applying the usual techniques of
stationary quantum perturbation theory. Those forces
are conservative and reciprocal, and can be expressed in
terms of the atomic polarizabilities [3–8]. In contrast,
when atoms are excited, it has been proved in Refs.[9–
16] that a fully stationary treatment is insufficient to ac-
count for the incoherent dynamics of a metastable sys-
tem. In particular, for a system of two dissimilar atoms
with one of them initially excited, the time-dependent ap-
proaches of Refs.[10, 13, 16], in the adiabatic limit, have
shown that while the resonant component of the vdW
force upon the excited atom oscillates in space, the res-
onant force on the de-excited atom decreases monoton-
cially with the interatomic distance. The nonreciprocity
of the vdW forces results in an apparent violation of the
classical action-reaction principle and the conservation of
total momentum, which would be in contradiction with
the invariance of the system under global spatial transla-
tion. This apparent contradiction was solved in Ref.[17],
where it was shown that the missing momentum was car-
ried by the photons which mediate the interaction which,
ultimately, causes the directioality of spontaneous emis-
sion when the system gets de-excited. The vdW forces
between dissimilar atoms, either resonant or off-resonant,
are all quasi-stationary for an adiabatic excitation, and
can be expressed in terms of the gradients of the expec-
tation values of the interaction potentials [16, 17], hence
reflecting their conservative nature.

As for the case of a binary system of identical atoms,
with one of them initially excited, it has been shown
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in Ref.[18] that the vdW forces are inherently time-
dependent and grow linearly with time in the perturba-
tive regime. This is so because, on the one hand, the sys-
tem is degenerate and an adiabatic excitation is not fea-
sible. In fact, a sudden excitation is generally a good ap-
proximation to model the preparation of the initial state
of the system. On the other hand, that excited state is
highly nonstationary since its dynamics comprises both
the coherent transfer of the excitation between the atoms
and its incoherent decay through spontaneous emission.

Besides, it was found in Ref.[18] that, still in the elec-
tric dipole approximation, in addition to the conservative
vdW forces nonconservative forces may arise from the
time variation of the EM longitudinal momentum [19–
24]. Since the interaction between two atoms becomes
time-dependent when one of them is excited nonadiabat-
ically, so does the EM longitudinal momentum of the
system. Thus, nonconservative forces arise in a binary
system if excited nonadiabatically and, as for the case of
the conservative vdW forces, their strength is greater for
the case of identical atoms.

In this article we aim at computating the nonconser-
vative forces on a binary system of identical two-level
atoms. We will show that they contain components or-
thogonal to the interatomic axis which might be accessi-
ble experimentally. We will estimate the spatial displace-
ment caused by the nonconservative dipole forces on a
binary system of Hydrogen atoms. In addition, we will
show that such forces posses nonreciprocal terms which
result in a net nonconservative force upon the two-atom
system.

II. FUNDAMENTALS OF THE APPROACH

Let us take a system of two two-level atoms, A and
B, located a distance R apart. In the first place, let us
consider dissimilar atoms with resonance frequencies ωA
and ωB , detuning ∆AB = ωA − ωB , natural linewidths
ΓA and ΓB , with the excited level of atom B being n-
fold degenerate. Since we are ultimately interested in
the identical atoms limit, |∆AB | � ΓA, ΓA → ΓB , atom
A is assumed to be suddenly excited with an external
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field of strength Ω � |∆AB |. Thus, the state of the
system at time 0 is |Ψ(0)〉 = |A+〉 ⊗ |B−〉 ⊗ |0γ〉, where
|A+〉 is the excited state of atom A, |(A,B)−〉 denote
the ground states of the atoms A and B, respectively,
|0γ〉 is the EM vacuum state, and the states of the n-fold
degenerate excited state of atom B will be denoted by
{|b〉}. At time T > 0 the state of the two-atom-EM field
system writes |Ψ(T )〉 = U(T )|Ψ(0)〉, where U(T ) denotes
the time propagator in the Schrödinger representation,

U(T ) = T-exp
{
−i~−1

∫ T

0

dt H
}
, (1)

H = T +HA +HB +HEM +W.

In this equation T = mA|ṘA|2/2 +mB |ṘB |2/2 is the ki-
netic energy of the center of mass of the atomic system,
with mA,B being the atomic masses and RA,B the posi-
tion vectors of the centers of mass of each atom. HA+HB

is the free Hamiltonian of the internal atomic states,
~ωA|A+〉〈A+| +

∑
b ~ωB |b〉〈b|, while the Hamiltonian of

the free EM field is HEM =
∑

k,ε ~ω(a†k,εak,ε + 1/2),
where ω = ck is the photon frequency, and the operators

a†k,ε and ak,ε are the creation and annihilation opera-
tors of photons with momentum ~k and polarization ε,
respectively. Finally, the interaction Hamiltonian in the
electric dipole approximation reads W = WA+WB , with

WA,B = −dA,B ·E(RA,B) +
[
PA,B · [dA,B ×B(RA,B)]

+ [dA,B ×B(RA,B)] ·PA,B
]
/2mA,B . (2)

The first term on the right hand side of this equation
is the usual EM interaction of an electric dipole with
the electric field, whereas the second term is the so-
called Röntgen’s term, which accounts for the coupling
of the canonical conjugate momentum of each atom,
PA,B , to the electromagnetic vector potential, A, in
the electric dipole approximation [22–24]. The electric
dipole operators are denoted by dA,B , and E(RA,B),
B(RA,B) are the quantum electric and magnetic field op-
erators in Schrödinger’s representation, respectively. In
terms of the EM vector potential, the electric and mag-
netic fields, E(RA,B) = −∂tA(RA,B , t)|t=0, B(RA,B) =
∇A,B×A(RA,B)|t=0, can be written as sums over normal
modes [3, 7],

E(RA,B) =
∑
k

E
(−)
k (RA,B) + E

(+)
k (RA,B)

= i
∑
k,ε

√
~ck
2Vε0

[εak,εe
ik·RA,B − ε∗a†k,εe

−ik·RA,B ],

B(RA,B) =
∑
k

B
(−)
k (RA,B) + B

(+)
k (RA,B)

= i
∑
k,ε

√
~

2ckVε0
k× [εak,εe

ik·RA,B − ε∗a†k,εe
−ik·RA,B ],

where V is a generic volume and E
(∓)
k , B

(∓)
k denote the

annihilation/creation electric and magnetic field opera-

tors of photons of momentum ~k, respectively. Hereafter
we will drop Röntgen’s term from Eq.(2), for its contribu-
tions to Eq.(1) as well as to any time-dependent expecta-

tion value are of orders ṘA,B/c and dA,B ·E(RA,B)/mA,B

smaller than the contributions of the first term in Eq.(2)
[25].

Next, considering W as a perturbation to the
free Hamiltonians, the unperturbed time propaga-
tor for atom and free photon states is U0(t) =
exp [−i~−1(T +HA +HB +HEM )t]. In terms of W and
U0, U(T ) admits an expansion in powers of W which can
be developed out of its time-ordered exponential expres-
sion,

U(T ) = U0(T ) T-exp

∫ T

0

(−i/~)U†0(t)W U0(t)dt, (3)

which can be written as U(T ) = U0(T )+
∑∞
n=1 δU(n)(T ),

with δU(n) being the term of order Wn.
The system posseses a conserved total momentum,

K = PA + PB + Pγ⊥, with Pγ⊥ =
∑

k,ε ~k a
†
k,εak,ε being

the transverse EM momentum, which satisfies [H,K] = 0
[19, 20, 22]. Further, if the charges {qi} within the atoms
are considered individually at positions {ri}, the total
canonical conjugate momentum can be written as

PA + PB = mAṘA +mBṘB +
∑
i

qiA(ri), (4)

where the first two terms are the kinetic momenta of the
centers of mass of each atom, and the momentum within
the summation symbol is referred to as longitudinal EM
momentum [19, 20], Pγ‖ =

∑
i qiA(ri). This is the EM

momentum which results from the combination of the
Coulomb electric field and the magnetic field generated
by the internal motion of the atomic charges [19, 35].
Lastly, in the electric dipole approximation, Pγ‖ reads

Pγ‖ ' −dA ×B(RA)− dB ×B(RB) [23, 24].

Following Refs.[17, 25], the electric dipole force on each
atom is computed applying the time derivative to the
expectation value of the kinetic momenta of the centers
of mass of each atom. Writing the latter in terms of
the canonical conjugate momenta and the longitudinal
EM momentum, in the electric dipole approximation, we
arrive at

〈FA,B〉T = ∂T 〈mA,BṘA,B〉T (5)

= −i~∂T 〈Ψ(0)|U†(T )∇A,BU(T )|Ψ(0)〉
+ ∂T 〈Ψ(0)|U†(T )dA,B ×B(RA,B)U(T )|Ψ(0)〉
= −〈∇A,BWA,B〉T + ∂T 〈dA,B ×B(RA,B)〉T .

The first term on the right hand side of the last equality
corresponds to the conservative vdW forces along the in-
teratomic axis, already computed in Ref.[18]. The second
term corresponds to the nonconservative forces we are
interested in, 〈FncA,B〉T = ∂T 〈dA,B × B(RA,B)〉T , which
equal the time derivatives of the components of the lon-
gitudinal EM momentum, with opposite signs.
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III. COMPUTATION OF THE
NONCONSERVATIVE FORCES

In what follows we compute the nonconservative forces,
in the identical atoms limit, including up to two-photon
exchange processes. These are depicted diagrammati-
cally for 〈FncA 〉T in Fig.1. Analogous diagrams contribute
to 〈FncB 〉T . The contributions of each process to 〈FncA 〉T
and 〈FncB 〉T are analogous to those of the vdW forces com-
puted in Ref.[18], but for the replacement of the operators
−∇A,BWA,B with ∂TdA,B × B(RA,B) acting upon one
of the exchanged photons.

FIG. 1: Diagrammatic representation of the twelve processes
which contribute to 〈Fnc

A 〉T . Thick straight lines stand for
propagators of atomic states, while wavy lines stand for pho-
ton propagators. In diagram (a), atomic and photon states
are indicated explicitly. The atoms A and B are separated
by a distance R along the horizontal direction, whereas time
runs along the vertical. The big circles in black on the left of
each diagram stand for the insertion of the Schrödinger oper-
ator dA×B(RA) whose expectation value is computed. Each
diagram contributes with two terms, one from each of the
operators inserted. They are sandwiched between two time
propagators, U(T ) and U†(T ) (depicted by vertical arrows),
which evolve the initial state |Ψ(0)〉 towards the observation
time at which dA ×B(RA) applies.

Their complete expressions are compiled in the Ap-
pendix A, where the origin of each contribution is ex-
plained in terms of the diagrams in Fig.1. In particular,
the dominant terms arise from diagram (a). Further, con-
sidering the identical atoms limit, ΓA → ΓB ≡ Γ0, ωA →
ωB ≡ ω0, ∆AB/Γ0 → 0, and defining the transition
dipole moments as µA = 〈A−|dA|A+〉, µb = 〈B−|dB |b〉,
the leading order terms of the nonconservative forces on

each atom read,

〈FncA 〉T =
2ω4

0(1− Γ0T )e−Γ0T

−c5ε0~
∑
b

[
µ
‖
Aµ
⊥
b − µ⊥Aµ⊥b R̂

]
× µA · [ReG(k0R)ImG(k0R) + ImG(k0R)ReG(k0R)] · µb,

〈FncB 〉T =
2ω4

0(1− Γ0T )e−Γ0T

−c5ε0~
∑
b

[
µ
‖
bµ
⊥
A − µ⊥Aµ⊥b R̂

]
× µA · [ReG(k0R)ImG(k0R)− ImG(k0R)ReG(k0R)] · µb,

(6)

where R = RA − RB , R̂ = R/R; G(kr) is the dyadic
Green’s function of the electric field induced at r by an
electric dipole of frequency ck at the origin,

G(kr) =
k eikr

−4π
[α/kr + iβ/(kr)2 − β/(kr)3], (7)

with α = I − r̂r̂, β = I − 3r̂r̂; µ
‖
A,b = µA,b · R̂, µ⊥A,b =

α · µA,b; and G(kr)E · r̂ is the dyadic Green’s tensor of
the magnetic field induced at r by an electric dipole of
frequency ck at the origin (cf. Ref.[25] and Appendix A),
with E being the 3-dimensional Levi-Civita tensor and

G(kr) = −ke
ikr

4π

(
1

kr
+

i

(kr)2

)
. (8)

Substituting Eqs.(7) and (8) into Eq.(6) one obtains that,
as with the conservative vdW forces, 〈FncA 〉T oscillates in
space with wavelength π/k0,

〈FncA 〉T =
k6

0(1− Γ0T )e−Γ0T

−8π2ε0~c
∑
b

[
µ
‖
Aµ
⊥
b − µ⊥Aµ⊥b R̂

]
× µA ·

[ α

(k0R)2

(
sin(2k0R) +

cos(2k0R)

k0R

)
+

β

(k0R)3

×
(

cos(2k0R)− 2 sin(2k0R)

k0R
− cos(2k0R)

(k0R)2

)]
· µB , (9)

whereas 〈FncB 〉T decreases monotonically with R,

〈FncB 〉T =
k6

0(1− Γ0T )e−Γ0T

−8π2ε0~c
∑
b

[
µ
‖
bµ
⊥
A − µ⊥Aµ⊥b R̂

]
× µA ·

[
β − α
(k0R)3

+
β

(k0R)5

]
· µB . (10)

In contrast to the conservative vdW forces, the most
remarkable feature of the nonconservative forces is the
presence of components which are perpendicular to the
interatomic axis (⊥). Also, as with the vdW forces, non-
conservative forces posses reciprocal and non-reciprocal
components [16–18]. The former, ±〈FncA −FncB 〉T /2, sat-
isfy the ordinary action reaction principle; while the
latter amount to a net force on the two atom system,
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〈FncA + FncB 〉T ,

〈FncA + FncB 〉T =
2ω4

0(1− Γ0T )

−c5ε0~eΓ0T

∑
b

[
µ
‖
Aµ
⊥
b + µ

‖
bµ
⊥
A

−2µ⊥Aµ
⊥
b R̂
]
µA · ReG(k0R)ImG(k0R) · µb

+
[
µ
‖
Aµ
⊥
b − µ

‖
bµ
⊥
A

]
µA · ImG(k0R)ReG(k0R) · µb, (11)

which oscillates in space as ∼ sin (2k0R)/(k0R)2 in the
retarded regime.

FIG. 2: Pictorial representation of the action of the orthogo-
nal components of the nonconservative forces upon a binary
atomic system which causes the displacements of the atoms
in a direction orthogonal to the interatomic axis, S⊥A,B .

The strength of the nonconservative forces, in the per-
turbative regime, are of an order Γ0/ω0 weaker than the
vdW forces [18]. Hence, the components along the in-
teratomic axis are hardly distinguishable experimentally.
On the contrary, their orthogonal components, absent in
the vdW forces, might be observed. The orthogonal com-
ponents of the reciprocal forces generate a torque around
the center of mass, while the net force of Eq.(11) displaces
the center of mass as illustrated in Fig.2.

We finalize with the estimate of the displacement
caused on an excited binary system of Hydrogen atoms
by the orthogonal components of the nonconservative
forces. Considering the atom A initially excited to the
state |A+〉 = (2px + 2pz)/

√
2, and that the atoms are

placed a distance R apart along the ẑ axis –see Fig.2,
the displacement S⊥A,B of each atom along the x̂ axis in a
lifetime ∼ 1.6 ns as a function of the interatomic distance
is

S⊥A ' 0.15 fm
(2v2 − 1) cos 2v − (2v − v3) sin 2v

v5
x̂,

S⊥B ' −0.3 fm
1 + v2

v5
x̂, v ≡ 2πR/λ0, (12)

for λ0 ' 121.6 nm. In order for our computation to re-
main perturbative, v & 1, meaning that the maximum
values of the perpendicular displacements are of the or-
der of 1 fm in the perturbative regime –see Fig.3. Note
also that for R . 50 nm both atoms move in the same
direction, meaning that the nonreciprocal components of
the forces dominate there.

FIG. 3: Graphical representation of the perpendicular dis-
placements along the −x-axis caused by the nonconservative
dipole forces on a binary system of Hydrogen atoms, with one
of them, A, initially excited to the state (2px + 2pz)/

√
2, as a

function of the interatomic distance R along the z-axis. The
solid line in red represents S⊥A , while the dashed line in blue
is for S⊥B , according to Eq.(12).

IV. CONCLUSIONS AND OUTLOOK

We have computed the nonconservative dipole forces
between two two-level identical atoms, one of which is ini-
tially excited. We have found that these forces are of an
order Γ0/ω0 weaker than the vdW forces. Nonetheless,
they posses components orthogonal to the interatomic
axis that might be experimentally accessible. Our per-
turbative computation on a binary system of Hydrogen
atoms shows that the orthogonal displacement of the
atoms is of the order of a fermi in the middle-far field
regime. A nonperturbative computation would be neces-
sary in the near field, where the displacement is expected
to be greater. In this respect, in order to facilitate its
observation, Rydberg atoms present themselves as good
candidates [26–32].

As with the vdW forces, the leading terms of the non-
conservative forces are fully resonant, and contain non-
reciprocal components that generate a net displacement
of the two-atom system. However, in contrast to the net
vdW force, the net nonconservative force is not related
to directionality of spontaneous emission, but equals it-
self the time variation of the longitudinal EM momentum
[33].
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Appendix A: Complete formulas of the nonconservative forces

In this Appendix we compile the complete expressions of the nonconservative electric dipole forces between two
atoms, A and B, one which, say A, is initially excited. In the first place, we address the calculation for dissimilar
atoms. Later, we consider the identical atoms limit which leads to the equations included in the main text.

1. Nonconservative forces on dissimilar atoms

In terms of the nomenclature used in the main text, the atoms A and B are said dissimilar if |∆AB | � ΓA,B .
Following the time-dependent perturbative approach outlined in the Sec.II, we compute the contribution of each of
the diagrams in Fig.1. Since we are ultimately interested in the identical atoms limit, we restrict ourselves to the
sudden excitation approximation used in Ref.[18].

In the first place, we illustrate the calculation with the detailed reading of the contribution of diagram (a) to 〈FncA 〉T .
It reads

1

~3

∂

∂T

∫ ∞
0

Vk2dk

(2π)3

∫ ∞
0

Vk′2dk′

(2π)3

∫ 4π

0

dΘ

∫ 4π

0

dΘ′
{[
i〈A+, B−, 0γ |eiΩ

∗
aT |A+, B−, 0γ〉

∫ T

0

dt

∫ t

0

dt′
∫ t′

0

dt′′

×
∑
b

〈A+, B−, 0γ |dA ×B
(−)
k (RA)|A−, B−, γk〉e−iω(T−t)〈A−, B−, γk|dB ·E(+)

k (RB)|A−, b, 0γ〉

× e−iΩb(t−t′)〈A−, b, 0γ |dB ·E(−)
k′ (RB)|A−, B−, γk′〉e−iω

′(t′−t′′)〈A−, B−, γk′ |dA ·E(+)
k′ (RA)|A+, B−, 0γ〉e−iΩat

′′
]

+ [k ↔ k′]†
}
, (A.1)

where |A+, B−, 0γ〉 is the initial two-atom-EM-vacuum state, with atom A excited at time 0, |γk〉 is a one-photon state

of momentum k and frequency ω = ck, V is the volume of quantization to be taken eventually to infinity, Θ and Θ
′

are
the solid angle variables, and the complex time-exponentials are the result of the application of the free time-evolution

operator U0(t) = e−i~
−1H0t between the interaction vertices WA,B , with Ωa = ωA−iΓA/2 and Ωb = ωB−iΓb/2, where

the dissipative imaginary terms account for radiative emission in the Weisskopf-Wigner approximation. Integrating
in time and solid angles the expression of Eq.(A.1), one obtains

−c
~π2ε20

∂

∂T

∑
b

Re

∫ ∞
0

ikdk µA ×∇A × ImG(kR) · µb
∫ ∞

0

dk′k
′2µB · ImG(k′R) · µA eiΩ

∗
aT
[ e−iΩaT − e−iωT

(ω′ − Ωa)(Ωb − Ωa)(ω − Ωa)

− e−iΩbT − e−iωT

(ω′ − Ωa)(Ωb − Ωa)(ω − Ωb)
+

e−iω
′T − e−iωT

(ω′ − Ωa)(ω′ − Ωb)(ω − ω′)
− e−iΩbT − e−iωT

(ω′ − Ωa)(ω′ − Ωb)(ω − Ωb)

]
, (A.2)

where the notation is that of the main text.

Operating in a similar manner with the rest of the diagrams of Fig.1 for 〈FncA 〉T and their analogous for 〈FncB 〉T ,
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and upon integration in k and k′ in the complex plane, we arrive at

〈FncA 〉T =
∑
b

{
2ω3

AΓAe
−ΓAT

c4ε20~∆AB

[
µA ×∇× ReG(kAR) · µbµb · ImG(kAR) · µA + µA ×∇× ImG(kAR) · µbµb · ReG(kAR) · µA

]
+
ω3
B [2∆AB − (ΓA + Γb)] e

−(ΓA+Γb)T/2

c4ε20~∆AB

×
[
µA ×∇× ReG(kBR) · µbµb · ImG(kBR) · µA + µA ×∇× ImG(kBR) · µbµb · ReG(kBR) · µA

]
cos(∆ABT )

− ω3
B [2∆AB + (ΓA + Γb)] e

−(ΓA+Γb)T/2

c4ε20~∆AB

×
[
µA ×∇× ReG(kBR) · µbµb · ReG(kBR) · µA − µA ×∇× ImG(kBR) · µbµb · ImG(kBR) · µA

]
sin(∆ABT )

− 2ω3
AΓAe

−ΓAT

c4ε20~(ωA + ωB)

[
µA ×∇× ReG(kAR) · µbµb · ImG(kAR) · µA + µA ×∇× ImG(kAR) · µbµb · ReG(kAR) · µA

]
+
ωB(ΓA + Γb)e

−(ΓA+Γb)T/2

c3ε20~

[
µA ×∇× ImG(kBR) · µb cos(∆ABT ) + µA ×∇× ReG(kBR) · µb sin(∆ABT )

]
×
∫ ∞

0

dq

π

(q2 − kAkB)q2µA ·G(iqR) · µb
(q2 + k2

A)(q2 + k2
B)

+
2ωB∆ABe

−(ΓA+Γb)T/2

c3ε20~

[
µA ×∇× ImG(kBR) · µb sin(∆ABT )− µA ×∇× ReG(kBR) · µb cos(∆ABT )

]
×
∫ ∞

0

dq

π

(q2 − kAkB)q2µA ·G(iqR) · µb
(q2 + k2

A)(q2 + k2
B)

}
, (A.3)

〈FncB 〉T =
∑
b

{
− 2ω3

AΓAe
−ΓAT

c4ε20~∆AB

[
µb ×∇× ReG(kAR) · µAµb · ImG(kAR) · µA − µb ×∇× ImG(kAR) · µAµb · ReG(kAR) · µA

]
− ωAω

2
B [2∆AB − (ΓA + Γb)] e

−(ΓA+Γb)T/2

c4ε20~∆AB

×
[
µb ×∇× ReG(kAR) · µAµb · ImG(kBR) · µA − µb ×∇× ImG(kAR) · µAµb · ReG(kBR) · µA

]
cos(∆ABT )

+
ωAω

2
B [2∆AB + (ΓA + Γb)] e

−(ΓA+Γb)T/2

c4ε20~∆AB

×
[
µb ×∇× ReG(kAR) · µAµb · ReG(kBR) · µA + µb ×∇× ImG(kAR) · µAµb · ImG(kBR) · µA

]
sin(∆ABT )

+
2ω3

AΓAe
−ΓAT

c4ε20~(ωA + ωB)

[
µb ×∇× ReG(kAR) · µAµb · ImG(kAR) · µA − µb ×∇× ImG(kAR) · µAµb · ReG(kAR) · µA

]
+
ωA(ΓA + Γb)e

−(ΓA+Γb)T/2

c3ε20~

[
µb ×∇× ImG(kAR) · µA cos(∆ABT )− µb ×∇× ReG(kAR) · µA sin(∆ABT )

]
×
∫ ∞

0

dq

π

(q2 − kAkB)q2µA ·G(iqR) · µb
(q2 + k2

A)(q2 + k2
B)

+
2ωA∆ABe

−(ΓA+Γb)T/2

c3ε20~

[
µb ×∇× ImG(kAR) · µA sin(∆ABT ) + µb ×∇× ReG(kAR) · µA cos(∆ABT )

]
×
∫ ∞

0

dq

π

(q2 − kAkB)q2µA ·G(iqR) · µb
(q2 + k2

A)(q2 + k2
B)

}
. (A.4)

The origin of each term is as follows. The time oscillating terms of frequency ∆AB arise from diagram (a). They contain
the dominant contribution, together with terms of an order ΓA,b/∆AB smaller. In addition, the quasi-stationary terms
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of an order ΓA,b/ωA,B less come from diagram (g), and semi-resonant terms arise from diagrams (c) and (d). Fast
oscillating spurious terms of frequency (ωA + ωB) which arise from diagrams (k) and (l) are neglected. Note that, in
contrast to the conservative vdW forces, there are no fully off-resonant components.

2. Nonconservative forces on identical atoms

Next, considering the identical atoms limit upon the expressions in Eqs.(A.3) and (A.4), ΓA → Γb ≡ Γ0, ωA →
ωB ≡ ω0, ∆AB/Γ0 → 0, the nonconservative forces on each atom read,

〈FncA 〉T =
∑
b

{
2Γ0e

−Γ0T

c4ε20~
∂

∂ω

[
ω3[µA ×∇× ReG(kR) · µbµb · ImG(kR) · µA + µA ×∇× ImG(kR) · µbµb · ReG(kR) · µA]

]
ω=ω0

+
2ω3

0(1− Γ0T )e−Γ0T

c4ε20~

[
µA ×∇× ReG(k0R) · µbµb · ReG(k0R) · µA − µA ×∇× ImG(k0R) · µbµb · ImG(k0R) · µA

]
− 2ω2

0Γ0e
−Γ0T

c4ε20~

[
µA ×∇× ReG(k0R) · µbµb · ImG(k0R) · µA + µA ×∇× ImG(k0R) · µbµb · ReG(k0R) · µA

]
+

2ω0Γ0e
−Γ0T

c3ε20~
µA ×∇× ImG(k0R) · µb

∫ ∞
0

dq

π

(q2 − k2
0)q2µA ·G(iqR) · µb

(q2 + k2
0)2

}
, (A.5)

〈FncB 〉T =
∑
b

{
−2Γ0ω0e

−Γ0T

c4ε20~

[
µb ×∇× ReG(kR) · µA

∂

∂ω

[
ω2µb · ImG(kR) · µA

]
ω=ω0

+ µb ×∇× ImG(kR) · µA
∂

∂ω

[
ω2µb · ReG(kR) · µA

]
ω=ω0

]
− 2ω3

0(1− Γ0T )e−Γ0T

c4ε20~

[
µb ×∇× ReG(k0R) · µAµb · ReG(k0R) · µA + µb ×∇× ImG(k0R) · µAµb · ImG(k0R) · µA

]
+

2ω2
0Γ0e

−Γ0T

c4ε20~

[
µb ×∇× ReG(k0R) · µAµb · ImG(k0R) · µA − µb ×∇× ImG(k0R) · µAµb · ReG(k0R) · µA

]
+

2ω0Γ0e
−Γ0T

c3ε20~
µb ×∇× ImG(k0R) · µA

∫ ∞
0

dq

π

(q2 − k2
0)q2µA ·G(iqR) · µb

(q2 + k2
0)2

}
. (A.6)

The dominant terms of these equations are those in Eq.(6) of the main text, while the rest are higher order corrections
of strengths Γ0/ω0 and R/cT times smaller. Finally, the following identities have been used in the Letter in order to
differentiate the axial components from the orthogonal components in the nonconservative forces,

ik G(kR)E · R̂ = ∇×G(kR), µA,b ×∇×G(kR) · µb,A = ik(µ
‖
A,bµ

⊥
b,A − µ⊥Aµ⊥b R̂)G(kR),

where G(kr) is the dyadic Green’s function of the electric field induced at r by an electric dipole of frequency ck at
the origin; G(kr)E · r̂ is the dyadic Green’s tensor of the magnetic field induced at r by an electric dipole of frequency
ck at the origin, with E being the three dimensional Levi-Civita tensor. Their imaginary parts correspond to the
vacuum expectation values of the quadratic fluctuations of the electromagnetic field which appear in Eq.(A.2),∫

dΘk〈0γ |E(−)
k (r) E

(+)
k (0)|0γ〉 = −8π2~c

ε0
Im G(kr),∫

dΘk〈0γ |B(−)
k (r) E

(+)
k (0)|0γ〉 = −8π2i~

ε0k
∇R × Im G(kr).
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