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Abstract. We extend previous works on the study of a particle subject to a three-dimensional spherical
singular potential including a δ-δ′ contact interaction. In this case, to have a more realistic model, we add
a Coulombic term to a finite well and a radial δ-δ′ contact interaction just at the edge of the well, which
is where the surface of the nucleus would be. We first prove that the we are able to define the contact
potential by matching conditions for the radial function, fixing a self-adjoint extension of the non-singular
Hamiltonian. With these matching conditions, we are able to find analytic solutions of the wave function
and focus the analysis on the bound state structure characterizing and computing the number of bound
states. For this approximation for a mean-field Woods-Saxon model, the Coulombic term enables us to
complete the previous study for neutrons analyzing the proton energy levels in some doubly magic nuclei.
In particular, we find the appropriate δ′ contribution fitting the available data for the neutron and proton
level schemes of the nuclei 208Pb, 40Ca, and 16O.

PACS. 02.30.Em Potential theory – 03.65.–w Quantum mechanics

1 Introduction

The present work generalizes the model introduced in a recent publication in which the energy levels of neutrons in
doubly magical nuclei were studied [1]. The analysis carried out there is taken a step further by introducing a Coulombic
term so that we can study the neutron and proton level scheme. Both models are based on the introduction of singular
potentials supported on a sphere of radius R, indeed a δ-δ′ contact interaction which generalizes the Dirac δ. Within
the Woods-Saxon model, the aforementioned interaction arises if we make the parameter that describes the surface
diffuseness of the nucleus go to zero, which naturally leads to the description of the spin-orbit coupling by the Dirac δ
potential. To improve the approximation on surface diffuseness, the δ′ interaction will be adapted to fit the available
data for nucleon energy levels. Within this framework, we can avoid numerical methods for calculating wave functions
and we can study the properties of the energy level scheme using the characteristics of the special functions that are
the solutions of the corresponding Schrödinger equation. Another approach to obtain analytic solutions is based on the
Nikiforov–Uvarov method, applied in [2] to obtain the neutron level scheme. In this case the approximation consists
in the expansion of the centrifugal and Woods-Saxon terms of the potential in a series of exponentials and keeping the
terms up to second order.

The main advantage of these contact potentials is that they can often be resolved exactly, which gives a good insight
of some quantum properties. This is why these interactions have a large number of applications in the modeling of real
physical systems, some of which are listed in [1] and the references quoted therein [3–13]. In this regard, it is worth
mentioning a recent work in which the vacuum interaction energy of a three-dimensional scalar field is calculated in
the presence of two concentric spheres defined by the aforementioned contact interaction [14], so that the δ′ term leads
to positive Casimir interaction energies, which are unattainable only with the Dirac δ.

In our work, the δ′ term will be used as part of the phenomenological potential, its definition being fully justified
in the text, based on the fact that spherically symmetric three-dimensional Schrödinger equations admit a one-
dimensional counterpart for each value of the orbital angular momentum. When working with this radial equation,
the δ-δ′ interaction supported on the sphere becomes a one-dimensional interaction supported on a point. Regarding
the δ-δ′ interaction, it is constructed by establishing a self-adjoint determination of the Hamiltonian without the
singular term [15]. The determination of the self-adjoint extension, that is, the definition of the δ-δ′ interaction, is
given by the use of suitable matching conditions for the wave functions at the radius. In this sense, although the δ
interaction is universally accepted, the same is not the case for the δ′ term, for which there are at least two definitions
that are consistent with its desirable properties [16, 17]. These matching conditions determine a domain in which the
Hamiltonian with the δ′ interaction is self-adjoint [18]. In this paper, following the lines developed in [15, 19], we will
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use the so called local δ′ interaction since it is compatible with the δ potential when both interactions are supported
on the same point. This condition arises naturally from the proposed model and furthermore, this interaction can be
seen as a generalization of the Robin boundary conditions, which can be obtained as a finite limit case [20].

Although the formalism developed here is valid for any non-relativistic particle subject to a three-dimensional
spherical potential consisting of a Coulombic term, a finite well, and a radial δ-δ′ contact interaction at the edge of
the well, our main motivation is to analyze the already mentioned nuclear mean field potential. In fact, the Dirac
δ interaction has been used for the calculation of resonant parameters and energy spectrum in [21], and it has also
been employed to study the spectral function of the unbound nucleus 25O [22]. Following the work [1], we now study
the energy levels of protons and compare them with those of neutrons in the previous paper. As we will see, the
general properties of the structure of the level scheme are maintained, although there are certain differences due to
the Coulombic term.

The article is organized as follows. In Section 2, we introduce the potential under consideration, which is written to
be well suited for future application to a nuclear model. The radial δ and δ′ terms appear here explicitly. In Section 3,
we derive the secular equation for which the solutions give the bound states. In Section 4, we study the existence and
localization of bound states, the energy levels, and we will see that the general properties of spherical potentials hold
with respect to quantum numbers. These findings are tested with available data of the nucleus 208Pb in Section 5,
where we explicitly compare the proton level scheme with the neutron level scheme. We also calculate the coupling
of the δ′ interaction that best fits the data available for this nucleus. The same procedure can be applied to other
doubly magic nuclei and therefore in Appendix A we provide useful data for all known doubly magic nuclei and in
Appendix B the level scheme and the optimized value of the δ′ coupling for the isotopes 16O and 40Ca. The article
ends with some final remarks.

2 Model and motivation

In this section we introduce the model under study. Although we have used a suitable notation for possible applications
in nuclear physics, as in [1], any non-relativistic quantum particle can be analyzed within this framework. The starting
point is the following single-particle three-dimensional Hamiltonian, written with respect to the coordinates of the
center of mass of the system,

H(r) = − ~2

2µ
∇2

r + U0(r) + Uso(r)(L · S) + Uq(r) + VC(r), (1)

where µ is the reduced mass and U0(r), Uso(r), and Uq(r) are, essentially, the Woods-Saxon potential [23], its first
and second derivative, respectively:

U0(r) = −V0 f(r) = −V0
1

1 + e(r−R)/a
, (2)

Uso(r) =
Vso
~2

f ′(r) = − Vso
a~2

e(r−R)/a(
1 + e(r−R)/a

)2 , (3)

Uq(r) = Vq f
′′(r) = −Vq

a2
e(r−R)/a

(
1− e(r−R)/a

)(
1 + e(r−R)/a

)3 . (4)

The Coulombic potential is the static Coulomb potential of a uniformly charged sphere of radius R and therefore
depends on the radial variable differently inside and outside the nucleus:

VC(r) =
Ze2

4πε0


3− (r/R)2

2R
, r ≤ R,

1

r
, r > R,

(5)

where Z is the number of protons. As already mentioned, in Ref. [1] only neutron energy levels were studied, so this
Coulombic potential (5) was not included in the Hamiltonian. We now study the connection between the strength
which appears in the radial interaction (2)-(4) and real physical parameters [24–26]. Note that the strengths of the
Woods-Saxon potential (V0) and the spin-orbit term (Vso) must be positive defined to reproduce the experimental
magic numbers [27]. However, the sign and value of Vq can be selected to fit the available data, as we will see later in
Sec. 5. Here we will use the usual parametrization of the nuclear radius R, which for this phenomenological potential is
given as a function of the nuclear mas A = N +Z as R = r0A

1/3, being r0 a constant and N the number of neutrons.
The parameter a gives the thickness of the surface of f(r). A typical value for this parameter is a = 0.7 fm [28].
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Following the same steps as in [1], we first substitute the Laplacian in the Hamiltonian (1) in terms of the orbital
angular momentum L and the radial coordinates,

− ~2

2µ
∇2

r = − ~2

2µ

[
1

r2
∂

∂r

(
r2
∂

∂r

)
− L2/~2

r2

]
. (6)

Then, as usual, the eigenfunctions of the corresponding stationary three-dimensional Schrödinger equation are factored
into a radial part un`j(r)/r and an angular part Y`jm(θ, φ). The latter fulfills

L2Y`jm(θ, φ) = ~2 `(`+ 1)Y`jm(θ, φ), (L · S)Y`jm(θ, φ) = ~2 ξ`j Y`jm(θ, φ). (7)

The function Y`jm(θ, φ), a linear combination of spherical harmonics Y`m(θ, φ), is a simultaneous eigenfunction of the
operators L2, S2, J2 = (L + S)2 and Jz [28]. We have also introduced the constants ξ`j = 1

2 (j(j + 1)− `(`+ 1)− 3
4 ):

ξ`j =

{
`/2 for j = `+ 1

2 ,

−(`+ 1)/2 for j = `− 1
2 ,

(8)

where ` takes values in the non-negative integers N0. For ` = 0 the only possibility is j = 1/2 so ξ0j = 0. Using the
previous relationships, the radial part fulfills Hun`j(r) = En`j un`j(r), where

H =
−~2

2µ

[
d2

dr2
− `(`+ 1)

r2

]
− V0f(r) + Vsoξ`jf

′(r) + Vqf
′′(r) + VC(r). (9)

Finally, to arrive at the explicit form of the effective potential that will be used later, we take here the limit a→ 0+.
First, note that

lim
a→0+

U0(r) =


−V0 if r < R

−V0/2 if r = R

0 if r > R

 = V0 [θ(r −R)− 1], (10)

where θ(x) is the Heaviside step function. The function f(r) can be seen as a distribution in a certain space of test
functions, such as the Schwartz space. Then, if ψ(r) is an arbitrary function of this space, we denote the action of the
distribution f(r) on ψ(r) by 〈ψ(r)|f(r)〉 =

∫∞
0
ψ∗(r) f(r) dr. For the first derivative of f(r) we obtain the limit

lim
a→0+

〈
ψ(r)

∣∣∣∣ d

dr
f(r)

〉
= − lim

a→0+
〈ψ′(r)|f(r)〉 = −〈ψ′(r)|1− θ(r −R)〉 = 〈ψ(r)| − δ(r −R)〉. (11)

This is valid since, from the point of view of distributions, the Dirac δ is the derivative of the Heaviside step function.
Hence,

lim
a→0+

Vso ξ`j f
′(r) = −Vso ξ`j δ(r −R) . (12)

In the same way, we obtain the following expression for the second derivative of f(r):

lim
a→0+

Uq(r) = lim
a→0+

Vq f
′′(r) = −Vq δ′(r −R) . (13)

In view of these considerations, the Hamiltonian (9) in the limit a→ 0+ becomes

Hsing = − ~2

2µ

[
d2

dr2
− `(`+ 1)

r2

]
+ V0[θ(r −R)− 1]− Vsoξ`jδ(r −R)− Vqδ′(r −R) + VC(r), (14)

where the singular (contact) terms are already included. Taking into account that R� a, we can consider the simplified
one-dimensional Hamiltonian (14) above as a mean-field potential to describe the energy levels of protons and neutrons.
The main advantage of using (14) is that the eigenvalue equation Hsing un`j(r) = En`j un`j(r) can be solved exactly
for the wave function in terms of hypergeometric functions Hereinafter, for simplicity and when no confusion arises,
we will use as shorthand notation u` ≡ un`j .

As explained in the first appendix of [1], the δ-δ′ perturbation in (14) is defined using the formalism of self-adjoint
extensions of symmetric (formally Hermitian) operators with equal deficiency indices. This gives two options for the
meaning of δ′ term. One is a δ′ which is often called the non-local δ′ [16], but this choice is incompatible with the Dirac
δ [17]. The other possibility, the one we will adopt, is called local δ′ and is defined by matching conditions established
at the point supporting the interaction.
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3 Solutions of the singular Schrödinger equation

In this section we determine the eigenfunctions corresponding to the bound states of the singular Hamiltonian (14),[
− d2

dr2
+
`(`+ 1)

r2
− 2µE

~2
+

2µV0
~2

(θ(r −R)− 1) +
2µ

~2
VC(r) + α`jδ(r −R) + βδ′(r −R)

]
u`(r) = 0, (15)

where we have defined the new parameters

α`j = −2µVso ξ`j/~2, β = −2µVq/~2 . (16)

It should be noted that we can consider the parameters α`j and β as two independent coefficients, unrelated to any
future application to a nuclear model. Therefore, the equation (15) can be analyzed for a generic quantum particle
subjected to a spherical well, with a δ-δ′ interaction at the edge and a Coulombic term. The radial Schrödinger equation
(15) is defined on the interval 0 ≤ r < ∞. To solve it, due to the presence of the contact potential, we divide this
semi-axis into two regions: 0 ≤ r < R and R < r. We will obtain the wave function in each region and then apply the
appropriate matching conditions on r = R, thus defining the singular part of the Hamiltonian.

3.1 Interior wave equation

For the study of solutions in the region 0 ≤ r < R, we consider energy values E > −V0. Hence, we must solve the
differential equation [

− d2

dr2
+
`(`+ 1)

r2
− 2µ(E + V0)

~2
+

2µ

~2
Ze2

4πε0

3− (r/R)2

2R

]
u`(r) = 0. (17)

First, we make the following changes to the parameters that appear in (17),

g ≡

√
µZe2R

4π~2ε0
, κ ≡ R2

4g

[
2µ(E + V0)

~2
− 3g2

R2

]
, z ≡ (−ig/R2)r2, (18)

and then, based on the asymptotic behavior of the solutions of (17), we propose the following change in the unknown
wave function:

u`(r) = r`+1 exp

(
igr2

2R2

)
ω`(z), (19)

With this, Eq. (17) is transformed into a Kummer differential equation:

z
d2ω`(z)

dz2
+

(
`+

3

2
− z
)

dω`(z)

dz
−
[

1

2

(
`+

3

2

)
− iκ

]
ω`(z) = 0. (20)

For each particular value of the orbital angular momentum `, the general solution of (20) is given by

ω`(z) = A` 1F1 (a, c; z) +B` z
1−c

1F1 (a+ 1− c, 2− c; z) , (21)

where 1F1 denotes the Kummer function, A`, B` are arbitrary constants, and

a ≡ 1

2

(
`+

3

2

)
− iκ, c ≡ `+

3

2
. (22)

Note that the two solutions are linearly independent since c /∈ Z for any `. In fact, the second solution is not square
integrable near zero due to the factor z1−c. On the other hand, from the definition of 1F1 it is obvious that this function
is equal to one at the origin and therefore it is square integrable on the finite interval considered. Consequently, the
admissible solutions are precisely

u`(r) = A` r
`+1eigr

2/2R2

1F1

(
1

2

(
`+

3

2

)
− iκ, `+

3

2
;
−igr2

R2

)
, 0 ≤ r < R. (23)
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3.1.1 Neutron case

Let us investigate now the limit Z → 0 as a consistency test of Eq. (23), that can be rewritten as [29]

u`(r) = A`r
`+1eigr

2/2R2
∞∑
k=0

(
1
2

(
`+ 3

2

)
− iκ

)
k(

`+ 3
2

)
k
k!

(
− ig

R2

)k
r2k, (24)

where (x)n denotes the Pochhammer symbol. Consequently, we can evaluate

lim
Z→0

u`(r) = A`

∞∑
k=0

r`+1

(
−σ

2

22

)k
(
`+ 3

2

)
k
k!
r2k =

[
2`+1 A`Γ

(
`+ 3

2

)
σ`+1

] ∞∑
k=0

(−1)
k

Γ
(
`+ 3

2 + k
)
k!

(σr
2

)2k+`+1

. (25)

On the other hand, the solution obtained in [1] for r < R was

y`(r) = A′`
√
σr J`+ 1

2
(σr), σ =

√
µ(E + V0)/~, (26)

where Jν denotes the Bessel function of the first kind. From its definition as a power of series, (26) is equivalent to

y`(r) =
√

2 A′`

∞∑
k=0

(−1)k

Γ (k + `+ 3
2 )k!

(σr
2

)2k+`+1

. (27)

Therefore, the limit of u`(r) in (34) is essentially the result obtained in [1], as expected.

3.2 Exterior wave equation

For values of r such that R < r, we have to solve the Schrödinger equation (15) for V0 = 0. Since we are looking for
bound states, we require E < 0. We should solve

d2u`(r)

dr2
+

[
2µE

~2
− 2g2

rR
− `(`+ 1)

r2

]
u`(r) = 0. (28)

First of all we proceed to make the change of variables x = ηr, u`(r) ≡ v`(x), being

η ≡
√

8µ|E|
~2

, λ ≡ −2g2

ηR
= −

√
µZe2

2π~ε0
√

8|E|
. (29)

With this, equation (28) becomes a Whittaker differential equation

d2v`(x)

dx2
+

[
λ

x
− 1

4
− `(`+ 1)

x2

]
v`(x) = 0. (30)

For each particular value of the orbital angular momentum `, its general solution is given by

u`(r) = C`Mλ,`+ 1
2
(ηr) +D`Wλ,`+ 1

2
(ηr), (31)

where Mχ,γ and Wχ,γ denote the Whittaker functions [29], with C` and D` being arbitrary constants. Again, if we are
looking for square integrable solutions, we need to know the asymptotic behaviors of these functions for large values
of r, which are,

Mλ,`+ 1
2
(ηr) ∼ Γ (2 + 2`)e

1
2ηr(ηr)−λ/Γ (1 + `− λ) , Wλ,`+ 1

2
(ηr) ∼ e− 1

2ηr(ηr)λ. (32)

Consequently, the solution (31) is square integrable if, and only if, C` = 0. In this way, the only possible contribution
comes from the second term, so that

u`(r) = D`Wλ,`+ 1
2
(ηr), r > R. (33)
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3.2.1 Neutron case

Again, we investigate the limit Z, λ→ 0 as a consistency test of Eq. (33), giving

lim
Z→0

u`(r) = D`W0,`+ 1
2
(ηr). (34)

On the other hand, the solution obtained in [1] for r > R was

u`(r) = D`

√
ηr

2
K`+ 1

2

(ηr
2

)
, (35)

where Kν denotes the modified Bessel function of the second kind, which fulfills [29]√
2z

π
Kν(z) = W0,ν(2z), (36)

so it coincides with the limit just obtained in (34), as expected.

3.3 Matching conditions

Once we have obtained the inner and outer solutions, we need to link both at r = R in a proper way. As established by
the standard literature on the subject [18], there are requirements for the reduced radial function at the point r = R
that fix a self-adjoint determination of the operator

Hr ≡ −
d2

dr2
+
`(`+ 1)

r2
+

2µV0
~2

[θ(r −R)− 1] +
2µ

~2
VC(r) , (37)

thus defining the final Hamiltonian of Eq. (15). These requirements are given by matching conditions that relate the
values of the function u`(r) and its first derivative at R, and can be written in terms of a SL(2,R) matrix as [20,30,31]u`(R

+)

u′`(R
+)

 =


2 + β

2− β
0

4α`j
4− β2

2− β
2 + β


u`(R

−)

u′`(R
−)

 , where u`(R
±) = lim

x→R±
u`(x). (38)

The function u`(r) is given by (23) and (33). There is a rigorous discussion on the self-adjointness of Hr with Z = 0 in
Appendix A of [1]. In the latter, the appropriate domain in which the one-dimensional operator (37) with Z = 0 admits
a four parameter family of self-adjoint extensions for a fixed value of ` is found. With this in mind, this Hamiltonian
plus the δ-δ′ interaction was defined using the formalism of self-adjoint extensions of symmetric operators with equal
deficiency indices. The same procedure is valid for Z > 0. To show that adding VC(r) to the aforementioned Hamiltonian
in [1] does not change the self-adjointness, we use the Kato-Rellich theorem. More precisely, since VC(r) is bounded
and Hermitian, we can state that the complete Hamiltonian is self-adjoint [32].

It should be noted that for β = ±2, the above matching conditions are no longer applicable and in this case
the respective self-adjoint extensions of the radial Hamiltonian are given by the following boundary conditions at
r = R [30]

u`(R
+)− 4

α`j
u′`(R

+) = 0, u`(R
−) = 0, if β = 2 ,

u`(R
−) +

4

α`j
u′`(R

−) = 0, u`(R
+) = 0, if β = −2 .

(39)

Using (23) and (33), the matrix relation (38) yields the following secular equation:

4iag

3 + 2`
1F1(a+ 1, b+ 1; −ig)

1F1(a, b; −ig)
= 1 + `+ ig +

w`j
(2− β)2

− (2 + β)2

(2− β)2

[
ηR

2
− λ−

Wλ+1,`+ 1
2
(ηR)

Wλ,`+ 1
2
(ηR)

]
, (40)

where we have introduced the dimensionless quantities v0, w`j , ε and the constant g, already defined in Eq. (18):

v0 ≡
√

2µR2V0
~2

, w`j ≡ 4α`jR, ε =
|E|
V0
∈ (0, 1), g ≡

√
µZe2R

4π~2ε0
. (41)
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Then previously handled variables can be rewritten based on these as

κ =
v20
4g

(1− ε)− 3

4
g, a =

1

2

(
`+

3

2

)
− i

4

(
v20
4g

(1− ε)− 3g

)
, η =

2v0
R

√
ε, λ = − g2

v0
√
ε
. (42)

We will denote the left side of (40) by ϕ`(ε) and the right side by φ`(ε) (which also depends on j and β), that is,

ϕ`(ε) ≡
4iag

3 + 2`

1F1(a+ 1, `+ 5
2 ; −ig)

1F1(a, `+ 3
2 ; −ig)

, (43)

φ`(ε) ≡ 1 + `+ ig +
w`j

(2− β)2
− (2 + β)2

(2− β)2

[
ηR

2
− λ−

Wλ+1,`+ 1
2
(ηR)

Wλ,`+ 1
2
(ηR)

]
. (44)

Note that Im[φ`] = g since the Whittaker functions are real, and therefore Im[ϕ`] = g for the left side of (40). In the
situation we are analyzing, the first difference with the neutron case [1] is precisely the imaginary part that appears in
the secular equation (40), although, as we will see, this fact does not alter the solutions obtained from the real part.
In order to prove it, we first derive the following result on Kummer’s functions.

Proposition 1 For any x, y, z ∈ R, the following relation holds

Re

[
(x+ iy) 1F1(x+ iy + 1, 2x+ 1; −iz)

x 1F1(x+ iy, 2x; −iz)

]
= 1, (45)

being 1F1 the Kummer function.

Proof Using Kummer’s first transformation formula [29], we have

1F1(a, b; z) = ez1F1(b− a, b;−z). (46)

If we define M(x, y, z) ≡ 1F1(x+ iy, 2x; −iz), from the previous equation we obtain

M(x, y, z) ≡ 1F1(x+ iy, 2x; −iz) = e−iz1F1(x− iy, 2x; iz) ≡ e−izM∗(x, y, z), (47)

where w∗ denotes complex conjugation. Consequently, lnM − lnM∗ = −iz and[
d

dz
lnM

]
−
[

d

dz
lnM

]∗
= 2i Im

[
d

dz
lnM

]
= −i. (48)

Therefore

Re

[
2i

d

dz
ln 1F1(x+ iy, 2x; −iz)

]
= 1. (49)

The proof is concluded noting that the logarithmic derivative of this function satisfies [29]

2i
d

dz
ln 1F1(x+ iy, 2x; −iz) =

(x+ iy) 1F1(x+ iy + 1, 2x+ 1; −iz)
x 1F1(x+ iy, 2x; −iz)

. � (50)

In our case, taking

z = g, x =
1

2

(
`+

3

2

)
=
b

2
, y = −κ, ⇒ a = x+ iy, (51)

the left side of the secular equation can be written as

ϕ`(ε) =
4iag

3 + 2`
1F1(a+ 1, b+ 1;−ig)

1F1(a, b;−ig)
= g

i (x+ iy) 1F1(x+ iy + 1, 2x+ 1; −iz)
x1 F1(x+ iy, 2x; −iz)

.

Finally, from Proposition 1:

Im[ϕ`] = −Re[iϕ`] = gRe

[
(x+ iy) 1F1(x+ iy + 1, 2x+ 1; −iz)

x1F1(x+ iy, 2x; −iz)

]
= g. (52)

Consequently, the energy of the bound states will be determined by Re[ϕ`(ε)] = Re[φ`(ε)]. This equation does not
admit solutions in closed form but they will be analyzed in the next section.
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4 General properties of the bound state structure

In the previous section we have established the matching conditions that radial wave functions must fulfill so that the δ
and the local δ′ interactions are well defined. From that, in this section we consider the complete Hamiltonian (15) and
we will draw some relevant conclusions as to the existence and properties of bound states from the secular equation
(40). In this secular equation, divergent terms appear for values of the dimensionless energy ε ∈ (0, 1) when either
Wλ, 12+`

(ηR) = 0 or when 1F1(a, ` + 3
2 ; −ig) = 0. Therefore, it is necessary to analyze the zeros of these functions.

Next, we will show that φ`(ε), essentially a combination of Whittaker functions, has no singularities for ε ∈ (0, 1)
because the Whittaker function in its denominator has no zeros, and we will also give a good approximation for the
zeros of the Kummer function that appears in the denominator of ϕ`(ε).

4.1 Zeros of the hypergeometric functions

First we want to show that φ`(ε) in (44) is a continuous function when ε ∈ (0, 1), for which we must show that
Wλ, 12+`

(ηR) = 0 has no solution in the mentioned interval. Since the Whittaker function can be written in terms of

the Tricomi function as

Wχ,γ(z) = e−
1
2 z z

1
2+γ U

(
1

2
+ γ − χ, 1 + 2γ; z

)
, (53)

the zeros of Wχ,γ(z) are those of U
(
1
2 + γ − χ, 1 + 2γ, z

)
. To prove the absence of positive zeros we use the first

theorem of [33], which states that there are no positive zeros zν of U(a1, a2; zν) = 0, if the two real parameters satisfy
2a1 − a2 > −1. In the present case we have Wλ,`+ 1

2
(ηr), and therefore 2a1 − a2 = −2λ > −1 since λ < 0, so we can

conclude that the function φ`(ε) is continuous for each value of the angular momentum in the interval ε ∈ (0, 1).
On the other hand, the function ϕ`(ε) defined in (43) will not be continuous in the interval ε ∈ (0, 1) due to the

zeros of 1F1(a, `+ 3
2 ; −ig), the dependence on ε entering only through a defined in (42). As a good approximation to

the a-zeros of this function, 1F1(an, c; z) = 0, is given by [29]

an = −π
2

4z

(
n2 +

(
c− 3

2

)
n

)
− 1

16z

((
c− 3

2

)2

π2 +
4

3
z2 − 8c(z − 1)− 4c2 − 3

)
+O

(
n−1

)
, n ∈ N, (54)

even for low values of n. In the present case c = `+ 3
2 , z = −ig, and a tedious calculation takes us from (42) and the

truncated form of (54) to the following definition

εn` ≡ 1− 8g2

3v02
+

`

v20
− ` n π2

v20
− n2π2

v20
−
`2
(
π2 − 4

)
4v20

< 1. (55)

Therefore, the function ϕ`(ε) will present a finite number of discontinuities in ε ∈ (0, 1), which are approximately
given by εn`. The typical behavior of the real parts of the ϕ`(ε) and φ`(ε) functions is shown in Figure 1, where the ε
values at the intersections of the blue curves with the orange curve correspond to the solutions of the secular equation
(40).

0.5 1
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50

100

150

200

250

Fig. 1: Bound states from the secular equation (40) for ` = 1, v0 = 30, w`j = −20, g = 3.5, and β = 4. The dashed vertical
lines correspond to the values of εn` given in (55).

The monotonicity properties of the curves shown in Fig. 1 are due to the fact that

dϕ`(ε)

dε
< 0,

dφ`(ε)

dε
> 0. (56)
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The first inequality holds for all the intervals delimited by the zeros of the function 1F1(an, `+ 3
2 ; −ig) = 0. We have

shown the inequalities of (56) for the particular case g = 0 in Appendix B.1 of [1], where we have also proved that
ϕ`(ε) is one to one and onto as a function

ϕ`(ε) : In ⊂ (0, 1) 7→ R, n ∈ N, (57)

being In the interval delimited by two consecutive zeros of 1F1(a, ` + 3
2 ; −ig). With the approximation given in (55)

we have In ≡ (εn+1 `, εn`), the interval (ε1`, 1) not being considered, see Fig. 1. In all the examples shown in this
work, particularly those necessary for the nuclear model, these properties have been verified (although not rigorously
demonstrated). From now on, we will assume that the two inequalities in Eq. (56) are valid.

4.2 Angular momentum dependence

The objective of this section is to study some properties of the number of bound states with angular momentum `,
denoted by n`. Strictly speaking, the total number of bound states is given by (2` + 1)n` when we take degeneracy
into account. As we can see in Fig. 2, n`+1 ≤ n`. In addition, there appears to be a certain `max such that

n`max
> 0 and n`′ = 0 ∀`′ ≥ `max + 1. (58)

This behavior is typical of spherical potentials [34] and was proven for g = 0 in [1]. In our case we will use the a-zeros
given in (54). Specifically, we analyze the behavior of εn` with respect to `.
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(a) ` = 0.
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(b) ` = 1.
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(c) ` = 2.
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(d) ` = 3.

Fig. 2: Bound states from the secular equation (40), ϕ`(ε) = φ`(ε), for v0 = 20, w`j = 20, g = 2 and β = 1. Note that w`j is
fixed for all values of `.

We can state that for any ` ≤ `max the number of bound states is given by

n` = M +m−m′, (59)

where M is the number of finite discontinuities of ϕ`(ε) for ε ∈ (0, 1) and

m ≡

{
1 if ϕ`(0) > φ(0),

0 if ϕ`(0) < φ`(0),
m′ ≡

{
1 if φ`(1) < ϕ`(1),

0 if φ`(1) > ϕ`(1).
(60)

This result, analogous to Theorem 1 in [1], can be proved using the approximation εn` in (55). First of all, note that the
cases ϕ`(0) = φ`(0) and ϕ`(1) = φ`(1) are excluded since we are considering energies ε ∈ (0, 1). Due to the properties



10 Mart́ın-Mozo, Nieto & Romaniega: A Solvable Contact Potential Based on a Nuclear Model

of ϕ`(ε) and φ`(ε), the number of bound states is primarily determined by the number of discontinuities. For a fixed
` these are given by the last value of n such that εn` > 0. Therefore, solving εn` = 0 we obtain

M = max

{⌊
−3π`+

√
−24g2 + 9(`+ `2 + v20)

6π

⌋
, 0

}
, (61)

where we have assumed −24g2+9(`+`2+v20) ≥ 0 and b·c denotes the floor function so εn` ≥ 0. Note that ϕ`(0) > φ(0)
implies the existence of an additional bound state whose energy is the closest to ε = 0. On the other hand, if
φ`(1) < ϕ`(1) there is one less bound state.

The above result is based on approximation (54). In Table 1 we compare approximation (55) with the value obtained
by numerically solving 1F1(a(ε), `+ 3

2 ; −ig) = 0. In Table 5 of Appendix A we have included similar information for
most of the known doubly magic nuclei, verifying that εn` gives a correct approximation. Furthermore, we have verified
for these nuclei that the inequality

− 24g2 + 9(`+ `2 + v20) ≥ 0, (62)

assumed in the previous proof, is also true.

εn`
n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

Num. App. Num. App. Num. App. Num. App. Num. App. Num. App.

` = 0 0.9482 0.9487 0.8745 0.8746 0.7512 0.7513 0.5785 0.5785 0.3565 0.3565 0.0851 0.0851

` = 1 0.9233 0.9228 0.8243 0.8241 0.6761 0.6761 0.4787 0.4787 0.2320 0.2319 – –

` = 2 0.8914 0.8896 0.767 0.7663 0.5939 0.5935 0.3717 0.3715 0.1002 0.1001 – –

` = 3 0.8528 0.8491 0.7027 0.7011 0.5046 0.5037 0.2576 0.2569 – – – –

` = 4 0.8079 0.8013 0.6318 0.6285 0.4084 0.4065 0.1364 0.1351 – – – –

` = 5 0.7567 0.7461 0.5542 0.5487 0.3054 0.3019 0.0082 0.0059 – – – –

Table 1: Comparison between the approximate values of εn` that come out of Eq. (55) and the values obtained solving
numerically 1F1(a(ε), `+ 3

2 ; −ig) = 0, for v0 = 20, w`j = 20, g = 2 and β = 1.

In Eq. (59), we have assumed the existence of an upper bound for the angular momentum, `max. Bargmann
inequality [35]

n` <
1

2 `+ 1

∫ ∞
0

r|V−(r)| dr, V−(r) = min({V (r), 0}), (63)

ensures the existence of this upper bound for spherically symmetric potentials satisfying∫ ∞
0

|V (r)| rt dr <∞ for t = 1, 2. (64)

As explained in [1], due to the δ′ interaction, it is not clear how to interpret (63) and Bargmann result can not be
used. In any case, using εn` we can give an approximate value for the maximum value of the angular momentum.
Specifically, we investigate the first zero for a given value of the angular momentum, that is, we solve ε1` = 0 for `.
We got

`max = max

{⌈
6− 6π2 + 2

√
(9π2 − 36) v20 + 9 (2π2 + 1)− 24 (π2 − 4) g2

3 (π2 − 4)

⌉
, 0

}
. (65)

This result is analogous to Theorem 2 of [1]. It is worth noting that an increase of v0, V0 and R tend to increase `max.
However, if we boost g, the maximum value of the angular momentum diminish due to the repulsive character of the
Coulombic potential. The existence of `max was proved for g = 0 in [1]. For the previous example, illustrated in Fig. 2
and Table 1, we have `max = d13.34e = 14. As it is shown in Fig. 3, in this case the approximation is exact. Note that
we have assumed that the inequality(

9π2 − 36
)
v20 + 9

(
2π2 + 1

)
− 24

(
π2 − 4

)
g2 ≥ 0 (66)

holds, which can be verified in Table 6 of Appendix B for all doubly magic nuclei.
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(a) ` = 14.
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(b) ` = 15.

Fig. 3: Plots of Re[ϕ`(ε)] (blue) and Re[φ`(ε)] (orange), for v0 = 20, w`j = 20, g = 2 and β = 1. In (a), for ` = 14, there is an
intersection that is a solution of the secular equation, but this does not happen in (b) for ` = 15. Hence, `max = 14.

Now, let us focus on the order of the bound states. For spherically symmetric potentials, it can be proved using
spectral properties of the Hamiltonian [34] that the energies of bound states characterized by n and ` satisfy

En` < E(n+1)` < E(n+1)(`+1), n, ` ∈ N0. (67)

We extend this result to our case, in which the additional quantum number j is present and, from now on, will be
displayed using nuclear spectroscopic notation n`j ≡ n`j . If there are bound states with relative energies εn`j , ε(n+1)`j ,
and εn(`+1)j for n, ` ∈ N0, the following inequalities hold:

(a) − εn`j < −ε(n+1)`j , (b) − εn`j < −εn(`+1)j , (c) − εn``+1/2
< −εn``−1/2

, (68)

a result that was proved for g = 0 in [1]. Note that the first inequality is trivial. The second one, which only applies
to j = `+ 1/2, follows from the behavior of ϕ`(ε) and φ`(ε) with respect to `. Firstly, if we have `1 = ` and `2 = `+ 1,
we need j1 = `1 + 1

2 = `+ 1
2 and j2 = `2 − 1

2 = `+ 1
2 . Consequently,

w`1j1 = −2µ

~2
Vso` ≤ 0, w`2j2 =

2µ

~2
Vso(`+ 2) > 0, (69)

since Vso > 0 [28]. Now, we study how ϕ`(ε) and φ`(ε) vary with respect to `. The generic behavior is illustrated in
Fig. 4 for a particular case.

0
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(a) ϕ`(ε) for n = 0.
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(b) φ`(ε).

Fig. 4: Variation of the two functions defining the secular equation Re[ϕ`(ε)] = Re[φ`(ε)] with respect to ` for v0 = 20, w`j = 20,
g = 2 and β = 1. In Fig. 4a we have only shown the behavior for n = 0, but the same pattern is valid for n ≥ 1 as can be seen
in Figs. 2 and 5.

We analyze the points of intersection between ϕ`(ε) and y = y0 > 0 for two values of `:

ϕ`(ε) = y0, ϕ`′(ε
′) = y0. (70)

Note that for all the proton cases considered in this paper we have φ`(ε) > 0 in ε ∈ (0, 1). This also holds for the
nucleus 132Sn used in [1]. Due to the monotonicity and the behavior shown in Fig. 4a, we conclude that ` < `′ implies
that ε > ε′. Now, taking into account the Eq. (69) and that φ`+1(ε) > φ`(ε) for any ` and ε ∈ (0, 1), see Fig. 4b, it
follows that the inequality −εn`j < −εn(`+1)j is necessarily fulfilled. Note that in Fig. 4b we assumed a constant w`j .
For `2, w`2j2 >0 and for `1, w`1j1 < 0, then the quantity φ`+1(ε)− φ`(ε) is even greater than that shown in Fig. 4b.

Finally, the third inequality in (68) is easily proved considering that the dependence on j only enters through
w`j/(2− β)2, being w`j− > 0, w`j+ < 0, where we are considering ` > 0 and j± ≡ `± 1/2.
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4.3 Low-lying energy states

As it can be seen from the examples shown in Figs. 1 and 2, εn` can be reasonably well approximated by the value of
the bound state, specially for the first values of n and `:

εn`j ≡ εn` = 1− 8g2

3v02
+

`

v20
− ` n π2

v20
− n2π2

v20
−
`2
(
π2 − 4

)
4v20

. (71)

We must bear in mind that this approach only considers the a-zeroes of 1F1(an, ` + 3
2 ; −ig), so it does not depend

on w`j , that is, on j. However, this dependence can be introduced by considering the complete secular equation
ϕ`(ε) = φ`(ε) so Eq. (71) can be used to give an easy and analytical proof of the inequalities (68):

◦ The inequality −εn`j < −ε(n+1)`j can be shown from (71), as it is clear that εn+1` < εn` since the term

− ` n π2

v20
− n2π2

v20
(72)

decreases with n. Consequently, since we are considering εn` ' εn`j , the inequality is proved.
◦ The inequality −εn`j < −εn(`+1)j is also trivial from Eq. (71) since the terms depending on ` are

`

v20
− ` n π2

v20
−
`2
(
π2 − 4

)
4v20

= −
`
(
π2n− 1

)
v20

−
`2
(
π2 − 4

)
4v20

, (73)

and this quantity decreases with `.
◦ Let us consider finally the inequality −εn``+1/2

< −εn``−1/2
. As mentioned before, the dependence on j only enters

through w`j/(2− β)2, being w`j > 0 for j = `− 1
2 and w`j < 0 for j = `+ 1

2 . Since we are considering ` > 0, it is
clear that we can write

− εn``+1/2
. −εn``−1/2

. (74)

Note that the approximation of Eq. (71) could be no longer valid if w`j � 0 such that φ`(1) ≈ 0.

5 Proton and neutron energy levels of 208Pb

This section is dedicated to applying the above framework to a realistic physical situation. To do this, we choose the
free parameters values of our potential that have been shown in order to mimic certain nuclei. In particular, for this
phenomenological potential the usual parametrization is [28]

R = r0A
1/3 = 1.27A1/3 fm, V0 =

(
51± 33

N − Z
A

)
MeV, Vso = 0.44V0 fm, (75)

where the + sign is for a proton and the − sign for a neutron. This model is particularly useful for doubly magic
nuclei. Consequently, we will exemplify the procedure with the nucleus 208Pb. In Appendix B the same procedure is
applied to 40Ca and 16O. We have illustrated with Pb since it has the largest number of bound states. Our objective
is to show that the low-lying bound states level scheme obtained from our model is quite reasonable for the isotopes
considered. A high-precision numerical fit is beyond the purpose of the model.

To begin with, in Table 2 we show the physical constants and dimensionless quantities needed for these three
nuclei. The parameter β, the intensity of the δ′ term, is not fixed and in fact we will use it to adjust the results to fit
the data available for the above isotopes.

Next, for 208Pb we determine the neutron and proton energy levels for ` = 0, 1 setting β = 0. In Fig. 5 we show
the points of intersection in this case. Using nuclear spectroscopic notation we compare the data obtained here with
the neutron and proton energy levels found in [36], where the usual parameters of the Woods-Saxon (WS) model are
optimized to obtain the best fit with the available experimental data. The results are shown in Table 3. From the
results on this table, we see the inequalities demonstrated in Sec. 4 are valid for both cases:

|E(ns1/2)| > |E(np1/2)|, |E(np3/2)| > |E(np1/2)|. (76)

We also observe that the energy values decrease with n. In general, for all the isotopes considered in this work we have
|E(n``−1/2)| < |E(n``+1/2)|, as expected from Eq. (68). It should be mentioned that this is the opposite behavior to
that found for electrons. In fact, the nucleon that is aligned with the orbital angular momentum is attracted more
strongly. The explanation of all the experimental magic number was finally possible when the spin-orbit interaction
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208Pb 40Ca 16O

Proton Neutron Proton Neutron Proton Neutron

R/fm 7.542 4.343 3.200

V0/MeV 57.98 44.02 51.00 51.00

Vso/MeV fm 25.51 19.36 22.44 22.44

w`j
w`j+ −18.43 ` −13.99 ` −9.361 ` −6.897 `

w`j− 18.43(`+ 1) 13.99(`+ 1) 9.361(`+ 1) 6.897(`+ 1)

g 4.621 0 1.730 0 0.939 0

v0 12.56 10.94 6.797 5.008

Table 2: Physical constants and dimensionless quantities needed to calculate the proton and neutron level scheme of
the three isotopes 208Pb, 40Ca and 16O.
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Fig. 5: Bound states for 208Pb from the secular equation (40), Re[ϕ`(ε)] = Re[φ`(ε)], with β = 0. As can be seen, the bound
states of a neutron are more deeply bound than those of a proton. Precise values are shown in Table 3.

was included in the mean-field shell model. It is also worth noting that the energy values of neutron are deeper than
those of protons as we can see in Fig. 5. This can be partly explained by Coulomb’s repulsive term in the potential.
However, since N > Z for this nucleus, note that V0 is larger for protons, as can be see in (75). The latter is the result of
the average nucleon-nucleon potential, which is stronger for the proton-neutron interaction than the neutron-neutron
or proton-proton case. Consequently, Vso is also different for protons and neutrons. For other nuclei without a neutron
excess, 40Ca or 16O, protons will not feel a stronger potential well than neutrons.

Now we are going study the effect of the δ′ term for 208Pb. From a phenomenological point of view, it can be used
to improve the level scheme given by our model with just the Dirac δ. We denote by Eβ(n`j) the energy of the state
characterized by {n, `, j, β}, being EWS(n`j) the corresponding energy arising from the optimized Woods-Saxon model
in [36]. To measure the amount of dispersion for this set of values we define

σβ ≡

√√√√ 1

N

∑
n`j

[Eβ(n`j)− EWS(n`j)]
2
, (77)



14 Mart́ın-Mozo, Nieto & Romaniega: A Solvable Contact Potential Based on a Nuclear Model

State
Eneutr./MeV. Eprot./MeV.

β = 0 WS β = 0 WS

0s1/2 −40.98 −39.62 −34.30 −31.73

1s1/2 −31.94 −29.19 −25.02 −21.26

2s1/2 −17.25 −14.81 −10.04 −6.58

0p3/2 −38.25 −36.01 −32.63 −28.71

1p3/2 −27.03 −23.22 −20.58 −15.19

2p3/2 −10.61 −7.97 −3.57 −

0p1/2 −37.37 −35.05 −31.14 −27.82

1p1/2 −24.53 −22.22 −17.57 −14.42

2p1/2 −6.01 −6.93 − −

Table 3: Proton and neutron level scheme of 208Pb arising from our model with β = 0 compared to that of the
optimized Woods-Saxon model developed in [36].

where N is the number of states. In Fig. 6 we have represented this quantity as a function of β and it is obvious that
there are values of β that minimize this variation. We have focused on the values that minimize σβ and the results

-20 -10 10 20

1

2

3

4

5

(a) Neutron.

-20 -10 10 20

1

2

3

4

5

6

7

(b) Proton.

8.6 8.8 9.0 9.2 9.4

1.275

1.276

1.277

1.278

1.279

1.280

(c) Neighborhood of the value minimizing
σβ for neutrons.

0.6 0.8 1.0 1.2 1.4

1.45

1.50

1.55

1.60

1.65

1.70

1.75

(d) Neighborhood of the value minimizing
σβ for protons.

Fig. 6: Values of the dispersion σβ (77) for the nucleus 208Pb.

are shown in Table 4. Note that the values β = 0 and β = 1 correspond to Vq = 0 and Vq = −20.83 MeV fm2,
respectively. It is clear that the introduction of a non-trivial β allows us to better reproduce the level scheme found
with the Woods-Saxon model.

6 Concluding remarks

In this work, we have extended a previous study on a nuclear model based on an interaction due to a three-dimensional
Dirac δ and local δ′, allowing the presence of the Coulombic term due to the electromagnetic interaction between
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State
Eneutr./MeV. Eprot./MeV.

β = 0 β = 8.9 WS β = 0 β = 0.85 WS

0s1/2 −40.97 −40.65 −39.62 −34.30 −33.46 −31.73

1s1/2 −31.93 −30.67 −29.19 −25.02 −22.95 −21.26

3s1/2 −17.25 −14.81 −14.81 −10.03 −5.84 −6.58

0p3/2 −38.25 −37.14 −36.01 −32.63 −30.53 −28.71

1p3/2 −27.03 −24.02 −23.22 −20.58 −16.34 −15.19

2p3/2 −10.61 −6.25 −7.97 − − −

0p1/2 −37.37 −37.13 −35.05 −31.14 −30.37 −27.82

1p1/2 −24.53 −23.95 −22.22 −17.57 −15.82 −14.42

2p1/2 −6.09 −6.02 −6.93 − − −

Table 4: Proton and neutron level scheme of 208Pb arising from our model with β = 0 and the optimal β compared to
that of the optimized Woods-Saxon model developed in [36].

protons. From a mathematical point of view, this contact potential has been precisely defined using suitable matching
conditions satisfied by the radial wave functions. We have obtained general properties relative to the number and
behavior of bound states of the aforementioned nuclear potential. As expected from what we know about spherically
symmetric potentials, the eigenstates are less bound if we increase n or the angular momentum, the other quantum
numbers being fixed. We have also shown that there is a maximum value of `, so that consequently there is a finite
number of bound states, since the number of them, for a given value of `, is finite. We have given an estimate of these
two quantities, `max and n`. We have analyzed the effect of the spin-orbit interaction, obtaining that the state with
j = `+ 1/2 is more bounded than the one with j = `− 1/2, as expected from considerations on the shell model. For
the lowest energy states, those near the bottom of the well, all these properties have been analytically tested.

In the last section we used this model to approximately describe the single-particle neutron and proton energy
levels of the doubly magic nucleus 208Pb. We have shown that the Hamiltonian (14), based on the Woods-Saxon
potential with the surface diffuseness going to zero, provides a fair approximation for the low-lying bound states.
The δ term gives the nuclear spin-orbit contribution. The aim of the additional interaction, given by the local δ′, is
providing a correction such that the results of the proposed model better fit to the available data. In these sense, we
have determined which is the best value of the δ′ coupling, β, for the nucleon and proton energy levels in the three
nuclei 208Pb, 40Ca and 16O. In particular, we have focused on 208Pb, comparing our level scheme for nucleons with
a Woods-Saxon model in which the free parameters as a and r0 are not the usual, but those optimized in order to
fit with the available experimental data. As we have seen, the introduction of the δ′ interaction does not change the
fundamental properties of the level scheme. This interaction is initially justified for the construction of a self-adjoint
extension of the Hamiltonian but, as we have seen, it can be used to improve numerical precision. This justifies the
choice of the so called local δ′ interaction. Note that the other possible choice for the δ′ interaction is not compatible
with the Dirac δ if both are supported at r = R. We have proved that the latter is a requirement when the starting
point is Woods-Saxon potential.

This simplified model could be used to gain insight into the proton and neutron energy levels for doubly magic
nuclei. In this sense, the case studied in [1] could be seen as a particular case, Z = 0, of the present model. In both
cases, the main advantage over the Woods-Saxon potential is that the eigenfunction equation can be solved exactly,
obtaining analytic properties of the spectrum using well-known features of special functions: for Z 6= 0 the solution is
given in terms of hypergeometric functions with complex arguments, while for Z = 0 the solution reduces to the usual
Bessel functions. In the latter, it is easier to take advantage of known results in order to prove the desired properties
of the bound state structure, as was done in [1]. However, hypergeometric functions with complex arguments are not
as well studied in the scientific literature, so a rigorous analysis of the Z 6= 0 case has not been possible and a more
qualitative study has been carried out instead.

Acknowledgments

We are really very grateful to M. Gadella and R.M. Id Betan for the fruitful discussions that have led to this work, and
Prof. M.L. Glasser for his help with the proof of Proposition 1. C.R. is grateful to MINECO for the FPU fellowships
programe (FPU17/01475). This work is supported by the Spanish MICINN with grant PID2020-113406GB-I00.



16 Mart́ın-Mozo, Nieto & Romaniega: A Solvable Contact Potential Based on a Nuclear Model

Appendix A

In this appendix we compute several quantities appearing in the text for all the known doubly magic nuclei. We begin
with the approximation made for the a-zeros of 1F1(an, `+

3
2 ; −ig) in (55), the points where the function φ`(ε) presents

a finite number of discontinuities in ε ∈ (0, 1). As we see in Table 5, this is a fair approximation for the isotopes we
are interested in. The isotope 4O is not included since εn` < 0 for all cases. From the approximation given in Table 5

εn`
n = 1 n = 2

Num. App. Num. App.
10O ` = 0 0.07440 0.07524 – –

16O
` = 0 0.5110 0.5127 – –

` = 1 0.1027 0.1006 – –

40Ca

` = 0 0.6106 0.6136 – –

` = 1 0.3930 0.3899 – –

` = 2 0.1152 0.1026 – –

48Ca

` = 0 0.6023 0.6056 – –

` = 1 0.3868 0.3835 – –

` = 2 0.1112 0.09829 – –

48Ni

` = 0 0.6203 0.6238 0.1103 0.1114

` = 1 0.4486 0.4449 – –

` = 2 0.2281 0.2153 – –

56Ni

` = 0 0.6095 0.6131 0.0999 0.1011

` = 1 0.4383 0.4344 – –

` = 2 0.2181 0.2048 – –

78Ni

` = 0 0.5918 0.5958 0.0922 0.09352

` = 1 0.4247 0.4204 – –

` = 2 0.2094 0.1953 – –

100Sn

` = 0 0.5611 0.5658 0.2159 0.2178

` = 1 0.4504 0.4443 – –

` = 2 0.3047 0.2883 – –

` = 3 0.1268 0.09789 – –

132Sn

` = 0 0.5367 0.5416 0.1965 0.1986

` = 1 0.4285 0.4218 – –

` = 2 0.2856 0.2681 – –

` = 3 0.1108 0.08042 – –

208Pb

` = 0 0.439 0.4436 0.1926 0.1962

` = 1 0.3678 0.3572 0.02930 0.02738

` = 2 0.2695 0.2463 – –

` = 3 0.1471 0.1109 – –

` = 4 0.0020 0.0490 – –

Table 5: Values of εn` for all the double-magic nuclei.

we have derived that the maximun number of bound states for a given value of the angular momentum is mainly
given by M in (61). We have found that the maximum value of the angular momentum allowed in the system can be
approximated by

`max = max

{⌈
6− 6π2 + 2

√
(9π2 − 36) v20 + 9 (2π2 + 1)− 24 (π2 − 4) g2

3 (π2 − 4)

⌉
, 0

}
.

Both depend on the dimensionless quantities v0 and g, which are also calculated for these nuclei. Note that both
radicands

r1 ≡ −24g2 + 9(`+ `2 + v20), r2 ≡
(
9π2 − 36

)
v20 + 9

(
2π2 + 1

)
− 24

(
π2 − 4

)
g2, (A.1)
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must be positive, which is in effect shown in Table 6 for all isotopes considered here.

Nucleus Z N v0 (proton) v0 (neutron) g R/ fm r1 r2

4
2He 2 2 3.155 3.155 0.372 2.016 86.254 692.930
10
2He 2 8 5.045 3.349 0.434 2.736 96.429 752.656
16
8O 8 8 5.008 5.008 0.939 3.200 204.568 1387.390

40
20C 20 20 6.797 6.797 1.730 4.343 343.957 2205.540
48
20Ca 20 28 7.603 6.823 1.784 4.615 342.555 2197.320
48
28Ni 28 20 6.823 7.602 2.110 4.615 413.283 2612.460
56
28Ni 28 28 7.604 7.604 2.165 4.858 407.827 2580.430
78
28Ni 28 50 9.235 7.678 2.288 5.426 404.871 2563.080
100
50Sn 50 50 9.225 9.225 3.187 5.894 522.076 3251.030

132
50Sn 50 82 10.885 9.292 3.338 6.466 509.584 3177.710

208
82Pb 82 126 12.557 10.940 4.612 7.524 566.677 3512.820

Table 6: Dimensionless quantities and radius for all the doubly magic nuclei. As we can see, r1, r2 > 0.

Appendix B Proton and neutron energy levels of 40Ca and 16O

The same procedure as in Sec. 5 can be applied to the doubly magic nuclei 40Ca and 16O. We will use the usual
parametrization [28]: R = r0A

1/3 = 1.27A1/3 fm, V0 = 51 MeV, and Vso = 0.44V0 fm. From Table 6 we see that,
contrary to 208Pb, the number of protons and neutrons is the same for these two isotopes, so we use the same potential
depth, V0 = 51 MeV, for both level schemes. From this table we can also obtain the dimensionless quantities necessary
for the calculation of the bound states:

40Ca : v0 ≈ 6.797, g ≈ 1.730 and w`j = −8µR

~2
Vso ξ`j ≈ −18.723 ξ`j ,

16O : v0 ≈ 5.008, g ≈ 0.939 and w`j = −8µR

~2
Vso ξ`j ≈ −13.795 ξ`j .

In this case we will compare with the data obtained from the usual Woods-Saxon model [28], and not with an optimized
one as in Sec. 5. We can evaluate σβ , which was defined in Eq. (77) and is represented in Figs. 7 and 8. In both cases,
σβ is similar for protons and neutrons. Unlike 208Pb, the best value of β for neutrons is obtained before the peak
at β = 2 and after this peak for protons. Remember that for the values β = ±2 the matching conditions (38) are
ill-defined and we have to use the conditions (39). It is observed that, as happened in Section 5, negative values of β
give rise to greater dispersion. Once we have obtained the best values of β we can compare the resulting level scheme
with the one in the absence of the δ′ term (β = 0), and with the one that arises from the regular Woods-Saxon model,
which is done in Tables 7 (40Ca) and 8 (16O). For these nuclei, the inequalities with respect to the three quantum
numbers derived in Sec. 4, Eq. (68), hold. Specifically, with respect to n we get:

|E(0s1/2)| > |E(1s1/2)|, |E(0p3/2)| > |E(1p3/2)|.

For 16O there are no bound states to prove the second inequality. Regarding `, in both cases we obtain |E(0s1/2)| >
|E(0p1/2)|. Note that the inequality |E(1s1/2)| > |E(1p1/2)| can not be tested since there are no bound states with

n = 1, ` = 1 and j = 1/2. For 208Pb this states are present, as can be seen in Table 3. With respect to j, we obtain
the expected result for the nucleon that is aligned with the orbital angular momentum ` = 1: |E(0p3/2)| > |E(0p1/2)|.
As with the previous results, note that for 208Pb it is also possible to test the above inequality for n = 1, see Table 3.
This is why we have used this nucleus to test our model based on the δ-δ′ contact interaction in Sec. 5.
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