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Resonant scattering of a single atom with gain: A wave-function-diagrammatic approach
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We characterize the optical response of a three-level atom subjected to an incoherent pump and continuously
illuminated with a weak quasiresonant probe field. To this end, we apply a wave-function approach based on
QED Hamiltonian perturbation theory which allows for a reduction of the atomic dynamics to that of an effective
two-level atom and for an implementation of the incoherent effects that respects unitarity. Using a diagrammatic
representation, we identify and classify all the radiative processes. This allows us to compute the scattered
power, the spontaneous emission, and the stimulated emission, as well as the total cross sections of extinction,
absorption, and scattering. We find that, besides a general enhancement of the linewidth and an attenuation of
the spectral amplitudes, the pump reduces the nonradiative losses and provides gains in the form of stimulated
emission and incoherent radiation. For sufficiently strong pump, gains and losses compensate, resulting in the
vanishing of extinction. In particular, for negligible nonradiative losses, extinction vanishes for a pumping rate
of (1 + √

5)/2 times that of the natural decay.
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I. INTRODUCTION AND MOTIVATION

The scattering of light by a free atomic dipole in its ground
state is a subject extensively studied within the standard QED
theory, in any regime of physical interest [1–3]. In order
to describe the scattering properties of a multilevel atom
semiclassically, it is also possible to characterize its optical
response to a weak field with an effective linear polarizability
[4–9] α(ω) within the framework of the linear response theory
and the T -matrix formalism. Operating this way, radiative
dissipation appears parametrized by a term proportional to
the imaginary part of the electromagnetic (EM)-field propa-
gator Im{G}, whereas its real part Re{G} is related to a shift
in the atomic transition frequency analogous to that of the
Lamb shift [4,7,8,10,11]. In addition, nonradiative losses are
accounted for in an effective manner by adding an imaginary
damping parameter on top of that proportional to Im{G} in
such a way that the resultant polarizability is compatible with
the optical theorem. When illuminated by an external field of
frequency ω, E0(ω), the nature of the radiation scattered by
the atom is interpreted on the basis of its classical response to
the external field. Thus, it is customary to refer to the scattered
power in phase with the expectation value of the atomic dipole
moment, 〈d(ω)〉 = α(ω) · E0(ω), as coherent scattered power,
Wcoh ∼Im{ω〈d(ω)〉 · E∗(ω)}, with E(ω) the field radiated by
the dipole itself [12]. Further, in regard to ensembles of atomic
dipoles, their internal energy as well as their collective optical
response to a weak field are derived out of the single-atom
polarizabilities applying multiple scattering techniques within
the framework of the linear response theory [4,8,10,13–18].
Finally, when the atoms are coherently driven by stronger
external fields, beyond the linear response theory, a nonlin-
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ear polarizability for single atoms [19–21] and a nonlinear
susceptibility for atomic ensembles [22,23] can be computed
within the density-matrix formalism.

Let us consider next an optical medium subjected to an in-
coherent pump. In order to incorporate the action of the pump
in the response of the medium to a weak probe field, inspired
by the manner that nonradiative losses are implemented in the
aforementioned linear polarizability of an atom, it is tempt-
ing to implement the gains by adding an imaginary damping
term to its semiclassical dielectric response, of opposite sign
with respect to that of the losses. While this procedure is
followed in some semiclassical systems (cf. Refs. [24,25]),
it does not apply to the case of an atomic medium, e.g., the
active medium of a laser subjected to an incoherent pump.1

On the contrary, as with the aforementioned losses, the period
of coherent evolution decreases with the incoherent gains for
an atomic system. This is confirmed by the computation of
the effective Bloch equations of a three-level atom subjected
to an incoherent pump, which can be reduced to those of
an effective two-level system integrating out the dynamics
of the unstable upper state [27,28]. Further, when the atom
is illuminated with an weak probe field E0(ω), an effective
polarizability α can be derived from the quantum compu-
tation of the induced dipole moment 〈d(ω)〉 = α(ω) · E0(ω)
[12,28]. Next, the computation of the scattered power lies in
the application of the aforementioned classical expression for
Wcoh [12] or in the application of the quantum regression

1The reason is that, while semiclassical media support bosonlike
excitations, the atomic excitations behave as fermions in the sense
that the population rates of the atomic states lie within the interval
[0, 1]. In turn this implies that the period of coherent evolution
increases with the gain for a bosonlike system, while it decreases
for an atomic system [26].
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theorem upon the dipole moment quadratic fluctuations
[21,29–31]. In either case only the dynamics of the atomic
states is treated quantum mechanically, while the scattered
power is a derivative product in which the actual nature of
the radiation is generally unclear.2 As a result, odd results like
the vanishing of the scattering cross section are obtained [28].

The aim of this article is to develop a wave-function–
diagrammatic approach to study the optical response of a
three-level atom to a quasiresonant probe field while subjected
to incoherent pumping. To this end we apply time-dependent
Hamiltonian perturbation theory, treating the atomic and pho-
tonic degrees of freedom on the same footing. This allows
us to track the dynamics of both atomic states and photons,
to identify and classify all the radiative processes, and to
compute cross sections and radiative power without appealing
to semiclassical expressions like that for Wcoh. We find that,
besides a general attenuation of the spectral amplitudes, the
pump reduces the nonradiative losses and provides gains in the
form of stimulated emission and incoherent radiation. In turn,
for a sufficiently strong pump, gains and losses compensate,
resulting in the vanishing of extinction, one of the necessary
conditions for parity-time-reversal (PT ) symmetry in an op-
tical system [25,33].

The latter finding is intended to pave the way for the exten-
sion of the present work to many-atom systems with gains and
losses [20,34]. In particular, we will ultimately be interested
in engineering the exceptional properties already displayed by
some semiclassical optical systems [35]. In a subsequent work
we plan to address the optical response of a pair of identical
atoms, with one of them continuously pumped, and the study
of the anomalies already found in analogous systems related
to PT symmetry [24,25,36].

The article is organized as follows. In Sec. II we describe
the fundamentals of the approach. In Sec. III we identify
diagrammatically all the radiative processes and compute the
corresponding cross sections and emitted power. In Sec. IV
we discuss the energetic balance and represent graphically the
cross sections in terms of the pump rate. In Sec. V we verify
that our results are compatible with unitarity. In passing, we
compare our results with those of a semiclassical calculation.
The conclusions are summarized in Sec. VI.

II. FUNDAMENTALS OF THE APPROACH

Let us consider a three-level atom, with g, e, and u the
ground state, the excited state, and the upper auxiliary state,
respectively, with energy intervals h̄ω0 between g and e, and
h̄ωu between e and u, and natural linewidths γ0 and γu, re-
spectively (see Fig. 1). The atom is continuously illuminated
by two linearly polarized monochromatic fields referred to as
pump and probe fields, of amplitudes, frequencies, momenta,
and polarization vectors E0, ω, k, ε and Ep, ωp, kp, εp, respec-

2In some particular scenarios, however, within the density-
functional formalism, the photonic dynamics is also addressed. That
is the case of, for instance, the dressed-atom formalism for an atom
interacting with a strong probe field [32] or the Jaynes-Cummings
model in cavity QED, where the spectrum of cavity modes is a
subject of study [26].

FIG. 1. Schematics of the system under study, consisting of a
three-level atom and two external fields. A pump field of strength
�p causes the transient excitation of the atom from the ground state
g to the upper level u, from which it decays, rapidly and incoherently,
to the intermediate level e at a rate γu, causing an effective pump rate
P = �2

p/γu. Energy intervals and dissipative channels are depicted.
The atom is illuminated by a weak probe field of strength �0 and
momentum k, quasiresonant with the g → e transition. Radiation of
momentum k′ is scattered.

tively. For the sake of simplicity, we consider the probe field
quasiresonant with the g → e transition, |ω − ω0| 	 γ0, and
the pump field resonant with the g → u transition, ωp ≈ ω0 +
ωu. Their corresponding Rabi frequencies are �0 = E0μ · ε

and �p = Epμ̃ · εp, where μ = 〈g|d|e〉 and μ̃ = 〈g|d|u〉 are
the dipole transition moments, with d the electric dipole op-
erator. Incoherent pumping is achieved for γu � �p, γ0, in
which case the fast dynamics of the auxiliary state can be
integrated out in an effective manner. Further, the probe field
interacts weakly with the effective two-level atom for �0 	
γ0. In the following we describe our Hamiltonian approach,
we quantify the incoherent processes that lead to the reduction
of the three-level dynamics to that of an effective two-level
atom, and we explain how to account for the quantum interac-
tion of the probe field with the resultant two-level atom.

A. Hamiltonian approach

Our wave-function-diagrammatic approach is based on the
time propagator of the atom–EM-field system U (t ). In terms
of the Hamiltonian of the system H , it reads

U (t − t0) = T -exp

(
−ih̄−1

∫ t

t0

dτ H (τ )

)
, (1)

where T -exp stands for time-ordered exponential. H contains
a free component H0 and an interaction term W . As for the
free Hamiltonian it reads

H0 = h̄ω0 |e〉 〈e| + h̄(ω0 + ωu) |u〉 〈u|

+
∑
k′,ε′

h̄ω′
(

a†
k′,ε′ak′,ε′ + 1

2

)
,

where the second term corresponds to the free EM Hamil-
tonian, with a†

k′,ε′ and ak′,ε′ the creation and annihilation
operators, respectively, of photons of momentum k′, fre-
quency ω′ = ck′, and polarization vector ε′. The atom-field
interaction is, in the electric dipole approximation,

W = −d · E(rA),
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where rA is the atomic center of mass. In Schrödinger’s pic-
ture, the electric-field operator can be expanded as a sum over
normal modes

E(r) = i
∑
k′,ε′

√
h̄ω′

2ε0V
[ε′ak′,ε′eik′ ·r − ε′∗a†

k′,ε′e−ik′ ·r]

=
∑
k′,ε′

[E(+)
k′,ε′ (r) + E(−)

k′,ε′ (r)]. (2)

Essential in our calculations is the vacuum expectation value
of the quadratic fluctuations of the electric field, which reads

∑
ε′

∫ 4π

0

d	k′

8π2
〈0| E(+)

k′,ε′ (r)E(−)
k′,ε′ (r′) |0〉

= −h̄c

ε0
ImG(r − r′; ω′).

Here G(r − r′; ω′) is the dyadic Green’s function of the elec-
tric field induced at r by an electric dipole of frequency ω′
located at r′,

G(R; ω′) = −k′eik′R

4π

[
P

k′R
+ iQ

(k′R)2
− Q

(k′R)3

]
, (3)

where the tensors P and Q read P = I − RR/R2 and Q =
I − 3RR/R2, with R = r − r′, and k′ = ω′/c. Considering W
as a perturbation to H0, the time propagator of the system
admits an expansion in powers of W which can be developed
from its time-ordered exponential expression

U (t − t0)

= U0(t ) T -exp

(∫ t

t0

−ih̄−1 dτ U†
0 (τ )WU0(τ − t0)

)
, (4)

where U0(t − t ′) is the unperturbed time propagator U0(t −
t ′) = exp[−iH0(t − t ′)].

B. Incoherent dynamics with the pump field:
Effective two-level atom

Let us consider first the action of the pump field alone
under the condition γu � �p, γ0. The corresponding quantum
state of the EM field is defined by

∣∣Nkp,εp

〉 = 1√
Nkp,εp!

(
a†

kp,εp

)Nkp,εp |0〉,

where Nkp,εp/V = ε0E2
p/h̄ωp is the pump-photon density, with

V a quantization volume, and |0〉 is the EM vacuum state.
The incoherent dynamics is determined by the rapid decay of
the atom from the state u to e after the action of the pump
upon the atom in state g [Fig. 2(a)], and by the slow decay
from the state e to g [Fig. 2(b)]. Considering these phenomena
as Markovian, they are the result of a series of consecutive
processes of emission and reabsorption of single photons. The
addition of all the diagrams in Fig. 2(a) yields, for the rate of

the incoherent pump transition P = d|〈e|U (t )|g〉|2/dt ,

P = −2
�2

p

γ 2
u

(ωu − ω0)2

h̄ε0c2
μ̂ · ImG(R; ωu − ω0) · μ̂

= �2
p

γu
, R → 0+, (5)

where μ̂ = 〈u|d|e〉 and in the last equality we identify

γu = −2(ωu − ω0)2

h̄ε0c2
μ̂ · ImG(R; ωu − ω0) · μ̂, R → 0+.

The reading of Fig. 2(a) in terms of quantum states and
operators is compiled in Appendix A 1. For the sake of com-
pleteness, the rate of spontaneous decay from e to g from the
diagrams in Fig. 2(b) is

γ0 = −2ω2
0

h̄ε0c2
μ · ImG(R; ω0) · μ, R → 0+. (6)

For γu � �p, γ0, the dynamics of the state u can be integrated
out adiabatically. In terms of the usual nomenclature of the
density functional formalism, this implies the approximation
Pρgg ≈ γuρuu, which leads to the following Bloch equations
for the effective two-level atom:

∂tρee = −γ ρee + Pρgg, (7)

∂tρgg = γ ρee − Pρgg, (8)

∂tρeg = −(γ + P )ρeg

2
− iω0ρeg. (9)

In these equations we have allowed for nonradiative contri-
butions to the decay rate from e to g, γnr , by introducing

FIG. 2. Diagrammatic representation of the processes that con-
tribute to the pump rate P and to the spontaneous decay rate γ0.
Time runs along the vertical axis towards the observation time t .
Interacting photons of the pump field with momentum kp are de-
picted with straight dash-dotted arrows. In the weak-coupling regime
�p 	 γu, we restrict ourselves to one-photon interactions. Vertical
dash-dotted lines stand for noninteracting-spectator photons, while
emitted photons of undefined momentum k′ appear as wavy lines.
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γ = γnr + γ0 in the place of γ0. Let us note that these equa-
tions take account of the effective dynamics of the atomic
degrees of freedom only, which are the ones of interest in
the incoherent dynamics. Equivalent equations are obtained
starting with Bloch’s equations for the three states [26–28].
When dealing with the photonic degrees of freedom in our
wave-function formalism, these equations will provide the
attenuating factors associated with the incoherent processes.
From Eq. (9) for the coherence element ρeg we read that the
pump attenuates the coherent evolution between the two levels
[26]. Defining � = γ + P , straightforward integration of the
above equations leads to the solutions

ρee(t ) = P
�

(1 − e−�t ) + Nee−�t , (10)

ρgg(t ) = γ

�
(1 − e−�t ) + e−�t (1 − Ne), (11)

ρeg(t ) =
√

Ne − N2
e e−iω0t e−�t/2, (12)

where Ne is the population of the excited state at t = 0. For
asymptotic times �t � 1, the atomic populations converge
to the steady values ρgg(t → ∞) = γ /� and ρee(t → ∞) =
P/�, while the coherence element vanishes at a rate � regard-
less of the initial conditions.

C. Wave-function approach with the probe field

Having parametrized the effective action of the pump field
with the pump rate P , we omit its contribution to the quantum
EM state hereafter and consider the contribution of the probe-
field photons only,

|Nk,ε〉 = 1√
Nk,ε!

(a†
k,ε)Nk,ε |0〉,

where Nk,ε/V = ε0E2
0 /h̄ω is the photon density and ε0cE2

0 /2
is the time-averaged intensity. Therefore, once the atomic state
has reached its steady state, the atom–EM-field state is a
mixed state made of the incoherent superposition of the pure
states

|0〉g =
√

γ /�|Nk,ε; g〉, |0〉e =
√
P/�|Nk,ε; e〉, (13)

where we have included the statistical weights
√

γ /� and√
P/�, respectively. It is upon the statistical mixture of these

states that quantum perturbation theory is to be applied in
the computation of the optical response. Thus, the physical
quantities to be calculated are statistical averages over the
quantum expectation values computed upon the pure states
|0〉g and |0〉e.

For a weak probe field �0 	 �, the optical response of the
atom at leading order involves terms of up to O(W 4) in U in
Eq. (4). They are represented diagrammatically in Fig. 3. In all
of them, except for diagram (5), two of the interaction vertices
W create or annihilate one photon of the probe field each.

Finally, from Eq. (9) we read that the coherent transi-
tions from steady to intermediate states, say, from |0〉g to
|Nk,ε, 1k′,ε′ ; e〉 or from |0〉e to |Nk,ε, 1k′,ε′ ; g〉 in a time interval
t , get attenuated in time at an effective rate �/2. That is, at
leading order in W , using Eq. (4), 〈Nk,ε, 1k′,ε′ ; e|U (t )|0〉g ∼√

γ /�
∫ t

0 dτ e−�(t−τ )/2e−i(ω0+ω′ )(t−τ )〈e|d|g〉.

FIG. 3. Diagrammatic representation of the seven processes that
contribute, at leading order, to the single-atom cross sections of
scattering [(1) and (2)] and absorption [(3) and (4)], as well as
to spontaneous emission (5)–(7). The symbol (γnr ) in diagram (3)
indicates that only nonradiative dissipation is to be accounted for
in that process. Time runs along the vertical axis towards the ob-
servation time t . Interacting photons of the incident probe field
with momentum k are depicted with straight dashed arrows. In the
weak-coupling regime �0 	 �, we restrict ourselves to one-photon
interactions. Vertical dashed lines stand for noninteracting-spectator
photons, while emitted photons of undefined momentum k′ appear
as wavy lines. The incoherent superposition of the states |0〉g and
|0〉e implies the absence of interference between the wave functions
of both states.

III. IDENTIFICATION OF RADIATIVE PROCESSES:
COMPUTATION OF POWER AND CROSS SECTIONS

Let us consider the atom in the steady state of Eq. (13), con-
tinuously illuminated by the weak and quasiresonant probe
field of strength �0 and frequency ω as outlined in Sec. II. In
the following we identify all the radiative and nonradiative
processes which contribute, at leading order in W , to the
scattered power, spontaneous emission, and cross sections of
extinction, absorption, and scattering. To this end, we expand
the time propagator of Eq. (4) up to terms of order W 4 and
represent diagrammatically the probabilities of the processes
〈 f

n |n(t )〉, i.e., Pn(t ) = |〈 f
n |n(t )〉|2. In this expression

the state |n(t )〉 results from the evolution of one of the
pure states |0〉g or |0〉e in a time interval t , |n(t )〉 =
U (t )|0〉g,e, and the state | f

n 〉 is that whose radiative content
is to be computed for the calculation of the radiative power.
Note that, in all the cases, the radiative content of | f

n 〉 differs
from that of the pure states |0〉g,e either in the net number of
photons or in the frequency, momentum, and polarization of
the photons. The corresponding processes are represented in
Fig. 3 and are labeled with the subscript n. Since the illumi-
nation is continuous, we will be interested in steady processes
for which we consider asymptotic times �t � 1.
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A. Scattering

Scattering involves processes in which the atomic state in
| f

n 〉 coincides with that in |n(0)〉, but one of the probe
photons in |n(0)〉 is replaced in | f

n 〉 with a scattered photon
of undefined frequency ω′, momentum k′, and polarization ε′
upon integration. That corresponds to diagrams (1) and (2) in
Fig. 3, which represent scattering from the pure ground state
and from the pure excited state, respectively, such that

|1(0)〉 = |0〉g,
∣∣ f

1

〉 =
∑
k′,ε′

|(N − 1)k,ε, 1k′,ε′ ; g〉,

|2(0)〉 = |0〉e,
∣∣ f

2

〉 =
∑
k′,ε′

|(N − 1)k,ε, 1k′,ε′ ; e〉.

In the former case the emission of the scattered photon follows
the absorption of the probe-field photon, whereas in the latter
emission precedes absorption. It is important to note that, in
the steady state and under continuous illumination �t � 1,
the process of absorption of a probe-field photon in diagram
(1) is followed without delay by the emission of a photon of
undefined momentum. Thus, the emission process does not
correspond to spontaneous emission but to continuous scatter-
ing [1]. Likewise, under continuous illumination, in diagram
(2) the emission of a photon of undefined momentum is fol-
lowed without delay by the absorption of a probe-field photon,
resulting in continuous scattering. Things would be different
if the probe field were a short pulse, in which case absorption
would be followed by spontaneous emission. Therefore, in
scattering processes the transition between atomic states is
just transient and the scattered power is the time derivative
of the EM energy,

Wsc =
2∑

n=1

d
dt

〈
n(t )

∣∣ f
n

〉〈
 f

n

∣∣HEM

∣∣ f
n

〉〈
 f

n

∣∣n(t )
〉

= h̄ω�2
0γω

4[(ω − ω0)2 + �2/4]
, �t � 1, (14)

where γω = −2ω2

c2ε0 h̄ μ · Im G(R; ω) · μ, R → 0+, and the scat-
tering cross section reads

σsc = 2h̄ω

cε0E2
0

d (P1 + P2)

dt
= μ2

‖ωγω/2h̄ε0c

(ω − ω0)2 + �2/4
, (15)

where μ‖ = μ · ε. The reading of the contribution of diagrams
(1) and (2) to Wsc in terms of quantum operators and states is
compiled in Appendix A 2.

B. Absorption, stimulated emission, and extinction

Generically, absorption processes are those in which states
|n(0)〉 and | f

n 〉 differ both in the atomic states and in the
number of probe-field photons. They are represented by dia-
grams (3) and (4) of Fig. 3. In diagram (3) the atom at time
t gets excited with respect to its initial state, while the EM
state contains one probe photon less than the initial state. In
diagram (4) the atom gets deexcited at time t while the EM

state contains one probe photon more than the initial state,

|3(0)〉 = |0〉g,
∣∣ f

3

〉 = |(N − 1)k,ε; e〉,
|4(0)〉 = |0〉e,

∣∣ f
4

〉 = |(N + 1)k,ε; g〉.

The former process contributes to positive absorption,
whereas the latter accounts for stimulated emission or
negative absorption. In the steady state, under continuous
illumination, the transition g ↔ e induced by the potential W
in either direction takes place at a constant rate �, as that is the
coherence time sets by the pump. Thus, the rate at which an
absorptive process takes place is � times the probability that
such a process takes place for asymptotic times �t � 1. Also,
since the states |0〉g and |0〉e are stationary, absorption is
necessarily followed by processes that take the atomic state
at time t back to the atomic state at time 0. In particular,
the state e decays into g either emitting a scattered photon
of frequency ω according to diagram (1) in Fig. 3 or by non-
radiative means. Therefore, in order not to double count the
probability of radiative decay, the contribution of diagram (1)
must be subtracted from that of diagram (3) in the calculation
of net absorption, resulting in nonradiative absorption only.
Likewise, the state g at time t in diagram (4) ends up transiting
to state e under the action of the pump which, according to
Fig. 2(a), is accompanied by the spontaneous emission of
photons of frequency approximately equal to ωu − ω0. Since
no other radiative processes are involved there, no double
counting is associated with the probability of the process in
diagram (4).

Thus, the power absorbed by the system is written as

Wabs = �

4∑
n=3

[〈n(0)|HEM |n(0)〉 − 〈
n(t )

∣∣ f
n

〉

× 〈
 f

n

∣∣HEM

∣∣ f
n

〉〈
 f

n

∣∣n(t )
〉] − d

dt

〈
1(t )

∣∣ f
1

〉
× 〈


f

1

∣∣HEM

∣∣ f
1

〉〈


f
1

∣∣1(t )
〉

= h̄ω�2
0

(
γ − P − γ

�
γω

)
4[(ω − ω0)2 + �2/4]

= h̄ω�2
0

(
γ

�
γnr − P

�
P

)
4[(ω − ω0)2 + �2/4]

, �t � 1, (16)

where the time-derivative term with a minus sign in front
stems from the subtraction of the scattered power from the
pure ground state. As for the absorption cross section,

σabs = 2h̄ω

cε0E2
0

[
�(P3 − P4) − dP1

dt

]

� μ2
‖ω

(
γ

�
γnr − P

�
P

)
/2h̄ε0c

(ω − ω0)2 + �2/4
, (17)

where the minus sign in front of P4 accounts for the negative
nature of the absorption associated with stimulated emission.
The reading of the contributions of diagrams (3) and (4) to
Wabs are compiled in Appendix A 2. Finally, the extinction
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cross section is the addition of σsc and σabs, which yields

σext � μ2
‖ω

(
γω + γ

�
γnr − P

�
P

)
/2h̄ε0c

(ω − ω0)2 + �2/4

= μ2
‖ω

[
γ − P

�
(γnr + P )

]
/2h̄ε0c

(ω − ω0)2 + �2/4
. (18)

C. Spontaneous emission

Finally, spontaneous emission, up to terms of order �2
0/�

2,
corresponds to the processes depicted by diagrams (5)–(7) in
Fig. 3. In all of them the atom transits from the excited state
at time 0 to the ground state at time t , and | f

n 〉 contains the
same number of probe-field photons as |n(0)〉, plus one more
photon of undefined frequency, momentum, and polarization
upon integration,

|5,6,7(0)〉 = |0〉e,
∣∣ f

5,6,7

〉 =
∑
k′,ε′

|Nk,ε, 1k′,ε′ ; g〉.

Diagram (5) is similar to those for the natural decay rate in the
absence of the probe field in Fig. 2(b), γ0, but for the fact that
the pump enhances the effective incoherence rate and thus the
width of the emission line. On the other hand, diagrams (6)
and (7) depict the influence of the probe field on spontaneous
emission. Note that, in contrast to the scattering diagram (2),
a probe-field photon in the final state is not effectively ab-
sorbed, as it reappears in the final state. As with absorption,
under steady conditions, the rate at which the spontaneous
emission processes take place is � times their probabilities for
asymptotic times �t � 1. Spontaneous emission is inherently
incoherent and its power reads

Winc = �

7∑
n=5

[〈
n(t )

∣∣ f
n

〉〈
 f

n |HEM

∣∣ f
n

〉〈
 f

n

∣∣n(t )
〉

− 〈n(0)|HEM |n(0)〉]

= P
�

{
h̄ω0γ0 − �2

0�
2/8

[(ω − ω0)2 + �2/4]2

×
[

h̄ωγω − h̄ω0γ0

2
+ 2h̄ω0γ0(ω − ω0)2

�2

]}

� h̄ω0γ0P
�

[
1 − �2

0�
2/16

[(ω − ω0)2 + �2/4]2

]
, �t � 1.

(19)

Note that the quasiresonant probe field in diagrams (6) and
(7) generates resonances at ω in addition to those at ω0 in
the spectrum of spontaneous emission. Further, in the limit
|ω − ω0|/� → 0, we obtain a probe-field-corrected sponta-
neous emission rate Pγ0(1 − �2

0/�
2)/�. The readings of the

contributions of diagrams (5)–(7) to Winc are compiled in
Appendix A 2.

IV. ENERGETICS: BALANCE BETWEEN GAIN AND LOSS

Regarding the energetic content of the radiative processes,
the interpretation is as follows. From the expression on the
right-hand side of the first equality in Eq. (18) for the extinc-
tion cross section we read that, in addition to the scattering

term proportional to γω, the nonradiative dissipative term,
proportional to the population rate of the ground state γ γnr/�,
accounts for positive losses, and the negative term, propor-
tional to the population rate of the excited state−P2/�, stems
from the stimulated emission fed by the pump. On the other
hand, from the expression on the right-hand side of the sec-
ond equality in Eq. (18), we read that the net action of the
pump on the probe field is that of reducing its extinction
in an amount proportional to −P (P + γnr )/�. That is, the
excited-state population contributes positively to probe-field
radiation through stimulated emission and reduces the nonra-
diative losses associated with the transition e → g after the
transient excitation caused by the probe field from the state
g to e. On top of that, the incoherent power of Eq. (19)
is proportional to the population rate of the excited state
too. In summary, Eq. (18) for σext differs from that of an
atom in its ground state not only in the enhancement of
its linewidth and the attenuation of its spectral amplitude,
but also in the diminishing of nonradiative losses and in
the gain provided by stimulated emission. Both effects are
proportional to the population of the excited state, being the
associated energy supplied by the pump. Finally, the incoher-
ent power of Eq. (19) associated with the spontaneous decay
from the excited to the ground state is supplied by the pump
too.

We finalize this section with the graphical representation
of the cross sections in terms of the parameters of gains and
losses, i.e., P and γ , respectively. From the expressions of
Eqs. (15), (17), and (18) for σsc, σabs, and σext we note that the
linewidth of all the spectra increases with gains and losses in
the same manner, � = γ + P , while the spectral amplitudes
decrease. However, for the case that either the nonradiative
decay rate or the pump rate becomes dominant, the scaling be-
haviors of the cross sections differ from one another. That is,
for γnr � γω,P , we find for scattering σsc ∼ 1/γ 2

nr , while for
absorption and extinction we get σabs, σext ∼ 1/γnr . Likewise,
for P � γnr, γω, we have σsc ∼ 1/P2 and σabs, σext ∼ 1/P .
Besides, while scattering is hardly affected by the relationship
between gains and losses, absorption and extinction are. In
particular, absorption vanishes for P = √

γ 2
nr + γnrγω, while

extinction does so for P = [γω + √
4γ 2

nr + 8γnrγω + 5γ 2
ω ]/2.

The latter equality determines the balance between gains and
losses which, in an effective manner, is a necessary condition
for PT symmetry [25,33,36]. In particular, for γnr 	 γω �
γ0, null extinction holds for P � γ0(1 + √

5)/2.
In Fig. 4 we represent the scattering, absorption, and ex-

tinction cross sections for different values of the pump rate.
The cross sections are expressed in units of σsc(ω = ω0, � =
γ0) ≡ σ0 = 2ω0μ

2
‖/cε0 h̄γ0, and the gain and loss rates are

given in units of γ0. In Fig. 5 we represent the cross sections
at exact resonance ω = ω0 in terms of the pump rate at a fixed
value of the nonradiative decay rate γnr = γ0/5. Extinction
becomes negative for P � 1.8γ0.

V. DISCUSSION

A. Unitarity and energy balance

On the one hand, our Hamiltonian approach allows us to
keep track of the atomic dynamics as well as all the radia-
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FIG. 4. Graphical representation of the scattering, absorption,
and extinction cross sections for a fixed value of the nonradiative de-
cay rate γnr = γ0/5 and different values of the pump rate (a) P = 0,
(b) P = 0.8γ0, (c) P = 1.9γ0, and (d) P = 4γ0. Cross sections are
expressed in units of σ0 = 2ω0μ

2
‖/cε0 h̄γ0. The detuning δ = ω − ω0

is given in units of γ0.

tive processes. On the other hand, incoherent processes are
accounted for in an effective manner that should be consistent
with unitarity. This means that, starting with the normalized
mixed steady state defined as the incoherent superposition of
the pure states in Eq. (13), the addition of the time derivatives
of the probabilities of all the processes which take the system
to a state different from |0〉g,e, P0�0 , and those which
take it back to |0〉g,e, P0→0 , must be identically zero. This
should be the case at all orders. In particular, at the order
�2

0/�, the time derivative of the probabilities of the radiative
processes computed in the preceding section amounts to

FIG. 5. Graphical representation of the scattering, absorption,
and extinction cross sections for a fixed value of the nonradiative
decay rate γnr = γ0/5 as a function of the pump rate P . Cross
sections are expressed in units of σ0 = 2ω0μ

2
‖/cε0 h̄γ0. The pump rate

is given in units of γ0.

FIG. 6. Diagrammatic representation of the four processes that,
together with their Hermitian conjugate versions (H.c.), contribute at
leading order to P0→0 and thus to the renormalization of the pure
steady states |0〉g,e. As explained in the text, since |0〉g,e are al-
ready normalized, the addition of the probabilities of these processes
to those of the processes depicted in Fig. 3 vanishes identically.

d

dt
P0�0 |O(�2

0/�)

= d

dt
(P1 + P2) + �(P3 + P4 + P6 + P7)

� �2
0

(
γ + P + P

�
γω − P

�
γ0

)
4[(ω − ω0)2 + �2/4]

� �2
0/�, |ω − ω0| 	 �,

(20)

whereas the processes of Fig. 6 give rise to an effective renor-
malization of the states |0〉g,e proportional to �2

0,

d

dt
P0→0 |O(�2

0/�) = 2
d

dt
(P8 + P10 + P11)

� −�2
0(γ + P )

4[(ω − ω0)2 + �2/4]
� −�2

0/�, |ω − ω0| 	 �,

(21)

yielding d
dt (P0�0 + P0→0 )O(�2

0/�) = 0, as expected. Note
that the contributions of diagrams (5) and (9) have been dis-
carded in Eqs. (20) and (21), respectively, as they are of orders
γ0 and γ0�

2
0/ω

2 instead.

B. Semiclassical computation of the coherent scattered power

In semiclassical approaches based on the density-
functional formalism [21,28,29] and linear response theory
[12,25], it is customary to refer to coherent scattered power
as that in phase with the steady oscillations of the expectation
value of the atomic dipole moment 〈d(t )〉. In order to interpret
the coherent power in terms of our Hamiltonian approach, let
us consider the probe field as classical. The Hamiltonian of
the interaction between the atomic dipole and the probe field
comes to depend on time and is written W = W̃ (t ) + W̃ †(t ),
with W̃ = d · εE0e−iωt/2i, and the probe-field photons are to
be dropped from the steady state of the system in Eq. (13),
which becomes now an incoherent superposition of the states
|̃0〉g = √

γ /�|g〉 and |̃0〉e = √
P/�|e〉. Next, let us use

a complex-valued representation for the expectation values
such that the physical values correspond to their real parts.
Applying standard time-dependent perturbation theory, the
complex-valued averaged expectation value of the total dipole
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FIG. 7. Diagrammatic representation of the four processes that
contribute, at leading order, to the expectation values 〈g|d(t )|g〉 [(1)
and (2)] and 〈e|d(t )|e〉 [(3) and (4)]. Dashed arrows depicts the action
of the interaction potential W̃ , while black closed circles represent
the action of the dipole moment operator at the observation time t . In
diagram (5) we represent one of the terms of Wcoh in Eq. (25), pro-
portional to γP/�2, where several expectation values are combined.
The wavy line represents the time propagator of the electric field.

moment reads, in the steady state �t � 1,

〈d(t )〉 = γ

�
〈g|d(t )|g〉 + P

�
〈e|d(t )|e〉

= P − γ

�

ie−iωt�0μ

ω − ω0 + i�/2
≡ 〈d(ω)〉e−iωt , (22)

where the two terms on the right-hand side of the first equality
are represented by diagrams (1) and (4) of Fig. 7 and off-
resonant components have been discarded. From Eq. (22) the
effective polarizability can be readily identified with [28]

α(ω) = P − γ

�

μμ

h̄(ω − ω0 + i�/2)
(23)

such that 〈d(ω)〉 = α(ω) · εE0. Note that the effective polariz-
ability vanishes for equal population rates P = γ and so does
the expectation value of the dipole moment.

Further, applying semiclassical linear response theory, the
complex-valued coherent field created at position r and time t
by the atomic dipole reads

E(r, ω) = −k2ε−1
0 G(r − rA; ω)〈d(ω)〉, (24)

where G(r, rA, ω) is given in Eq. (3), which is the retarded
time Fourier transform of the vacuum commutator of the elec-
tric field [11] G(r − rA; t − t ′) ∝ i〈0|[E(r, t ), E(rA, t ′)]|0〉,
t � t ′. Correspondingly, the power emitted by the coherent
dipole is defined as the time-average rate of the interaction of
the induced dipole with its own electric field [12],

Wcoh = −ω

2
Im{〈d(ω)〉 · E∗(rA, ω)}

= − ω3

c2ε0
〈d(ω)〉 · ImG(R; ω) · 〈d∗(ω)〉

= −(P − γ )2

�2

ω3�2
0μ · ImG(R; ω) · μ

2c2ε0[(ω − ω0)2 + �2/4]
, R → 0+,

(25)

which, oddly enough, vanishes for P = γ . Our fully Hamil-
tonian and quantum computation of Eqs. (A3), (A4), and (14)
yields instead

Wsc = − ω3�2
0μ · ImG(R; ω) · μ

2c2ε0[(ω − ω0)2 + �2/4]
, R → 0+, (26)

which differs from the semiclassical calculation of Wcoh in
the factor (P − γ )2/�2. More importantly, we note that while
Wsc corresponds to the time derivative of the quantum ex-
pectation value of the electromagnetic energy according to
Eq. (14), Wcoh in Eq. (25) does not correspond to the quantum
expectation value of any observable but to the product of
several expectation values inspired by classical formulas [12].
The fact that no term within Wsc is quadratic in the population
rates [see Eqs. (A3) and (A4) in Appendix A 2] suggests that
the semiclassical calculation is not a good approximation.
Hence, the term in Wcoh proportional to γP/�2 is the result
of the coupling between g〈̃0|d(t )|̃0〉g and e〈̃0|d(t )|̃0〉e,
which are mutually incoherent indeed (see Fig. 7).

VI. CONCLUSION

Based on QED Hamiltonian perturbation theory, we have
developed a wave-function approach to characterize the opti-
cal response of a three-level atom subjected to an incoherent
pump and illuminated by a continuous, weak, and quasireso-
nant probe field. In the first place, we integrate adiabatically
the dynamics of the upper atomic state and incorporate the
incoherent dynamics associated with the pump and the spon-
taneous emission in exponentially attenuating factors which
accompany the Hermitian time propagator. We have verified
that our approach is compatible with unitarity.

We have identified all the radiative processes which con-
tribute to scattering, absorption, and spontaneous emission
and have depicted them diagrammatically. We have found
that, generically, the pump enhances the linewidth and at-
tenuates the amplitude of the spectra. In addition, extinction
differs from that of a free atom in its ground state in the di-
minishing of the nonradiative losses and in the compensation
of the losses by stimulated emission [Eq. (18)]. Both effects
are proportional to the steady population of the excited state,
being the associated energy supplied by the pump. Finally, the
incoherent power of Eq. (19), associated with the spontaneous
decay from the excited to the ground state, is supplied by the
pump too.

Extinction becomes negative for sufficiently strong pump-
ing rate, vanishing for P = [γω + √

4γ 2
nr + 8γnrγω + 5γ 2

ω ]/2.
At this point gains and losses compensate, satisfying one
of the necessary conditions for PT symmetry in an optical
system.

In passing, we have shown that a semiclassical calculation
fails in providing a good estimate of the scattered power.

Our development paves the way for its extension to
many-atom systems with gains and losses. In this respect,
prospective work could characterize the optical response
of a pair of identical atoms, with one of them con-
tinuously pumped, in order to study its PT -symmetry
properties.
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APPENDIX: DIAGRAM READING AND QUANTUM EXPRESSIONS

In this Appendix we compile the complete expressions of the quantum processes represented diagrammatically in the main
text, in terms of quantum states and operators.

1. Incoherent transition rates

The expression corresponding to the diagrams of Fig. 2(a) for the incoherent pump transition rate of Eq. (5) reads

P = d
dt

∑
k′,ε′

{· · · }† ·
{

h̄−2
∫ t

0
dτ

∫ τ

0
dτ ′U0(t − τ )

∣∣1k′,ε′ , (N − 1)kp,εp ; e
〉〈

1k′,ε′ , (N − 1)kp,εp ; e
∣∣d

· E(−)
k′,ε′ (rA)

∣∣(N − 1)kp,εp ; u
〉〈

(N − 1)kp,εp ; u
∣∣U0(τ − τ ′)e−γu(τ−τ ′ )/2

∣∣(N − 1)kp,εp ; u
〉

× 〈(N − 1)kp,εp ; u|d · E(rA)
∣∣Nkp,εp ; g

〉〈
Nkp,εp ; g

∣∣U0(τ ′)
∣∣Nkp,εp ; g

〉}

= �2
pRe

d

dt

∫ ∞

0

−dk′ck′2

ε0h̄π
μ · ImG(R; k′) · μ

∣∣∣∣
∫ t

0
dτ e−i(t−τ )(ω′+ω0 )

∫ τ

0
dτ ′e−i(τ−τ ′ )ωu e−(τ−τ ′ )γu/2e−iτ ′ωp

∣∣∣∣
2

� �2
pc

2πε0h̄
Re

∫ ∞

0
dk′i

k′2μ · ImG(R; k′) · μeit (ω′−ωu+ω0 )

(ω′ − ωu + ω0)
[
(ω′ − ωu + ω0)2 + γ 2

u /4
] , γut � 1, R → 0+, (A1)

where {· · · }† is the conjugate transpose of the state whose expression appears within curly brackets on its right-hand side after
the dot product symbol. The exponential factor e−γu (τ−τ ′ )/2 stems from the addition of all the one-photon emission-reabsorption
intermediate processes in Fig. 2(a), and the rapid decay from u to e is accounted for by the condition γut � 1. As for the diagrams
of Fig. 2(b) corresponding to the spontaneous emission rate from state e, they read

γ0 = d
dt

∑
k′,ε′

{· · · }† ·
{

h̄−1
∫ t

0
dτ U0(t − τ )

∣∣1k′,ε′ , Nkp,εp ; g
〉〈

1k′,ε′ , Nkp,εp ; g
∣∣d · E(−)

k′,ε′ (rA)|Nkp,εp ; e〉〈Nkp,εp ; e
∣∣U0(τ )e−γ τ/2

∣∣Nkp,εp ; e
〉}

= d

dt

∫ ∞

0

−dk′ck′2

ε0h̄π
μ · ImG(R; k′) · μ

∣∣∣∣
∫ t

0
dτ e−i(t−τ )ω′

e−iτω0 e−τγ /2

∣∣∣∣
2

�
∫ ∞

0

dk′c
ε0h̄π

k′2μ · ImG(R; k′) · μ[eit (ω′−ω0 )[γ /2 − i(ω′ − ω0)] + e−it (ω′−ω0 )[γ /2 + i(ω′ − ω0)] − γ ]

(ω′ − ω0)2 + γ 2/4
, γ t 	 1, R → 0+,

(A2)

where the exponential factor e−γ τ/2 stems from the addition of all the explicit one-photon emission-reabsorption intermediate
processes as well as the implicit nonradiative decay channels in Fig. 2(b). Slow decay is implicit in the condition γ t 	 1.

2. Scattered, absorbed, and incoherent emission powers

The expressions of the scattered power corresponding to diagrams (1) and (2) in Fig. 3 according to Eq. (14) read, respectively,

W (1) = d
dt

〈
1(t )

∣∣ f
n

〉〈


f
1

∣∣HEM

∣∣ f
1

〉〈


f
1

∣∣1(t )
〉

= γ

�

d
dt

∑
k′,ε′

h̄ω′{· · · }† ·
{

h̄−2
∫ t

0
dτ

∫ τ

0
dτ ′ak′,ε′U0(t − τ )|1k′,ε′ , (N − 1)k,ε; g〉〈1k′,ε′ , (N − 1)k,ε; e|d

· E(−)
k′,ε′ (rA)|(N − 1)k,ε; e〉〈(N − 1)k,ε; e|U0(τ − τ ′)e−�(τ−τ ′ )/2|(N − 1)k,ε; e〉〈(N − 1)k,ε; e|d

· E(rA)|Nk,ε; g〉〈Nk,ε; g|U0(τ ′)|Nk,ε; g〉
}

= �2
0γ

�
Re

d

dt

∫ ∞

0

−dk′c2k′3

ε0π
μ · ImG(R; k′) · μ

∣∣∣∣
∫ t

0
dτ e−i(t−τ )ω′

∫ τ

0
dτ ′e−i(τ−τ ′ )ω0 e−(τ−τ ′ )�/2e−iτ ′ω

∣∣∣∣
2
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� −�2
0c2γ

2πε0�
Im

∫ ∞

0
dk′ k′3μ · ImG(R; k′) · μeit (ω′−ω)

(ω′ − ω)(ω′ − ω0 − i�/2)(ω − ω0 + i�/2)

= −�2
0c2γ

4ε0�

2ω3μ · ImG(R; ω) · μ

(ω − ω0)2 + �2/4
, �t � 1, R → 0+, (A3)

W (2) = d
dt

〈
2(t )

∣∣ f
2

〉〈


f
2

∣∣HEM

∣∣ f
2

〉〈


f
2

∣∣2(t )
〉

= P
�

d
dt

∑
k′,ε′

h̄ω′{· · · }† ·
{

h̄−2
∫ t

0
dτ

∫ τ

0
dτ ′ak′,ε′U0(t − τ )|1k′,ε′ , (N − 1)k,ε; e〉〈1k′,ε′ , (N − 1)k,ε; e|d

· E(rA)|1k′,ε′ , Nk,ε; g〉〈1k′,ε′ , Nk,ε; g|U0(τ − τ ′)|1k′,ε′ , Nk,ε; g〉〈k′, Nk,ε; g|d

· E(−)
k′,ε′ (rA)|Nk,ε; e〉〈Nk,ε; e|U0(τ ′)|Nk,ε; e〉

}

= �2
0P

4�

d

dt

∫ ∞

0

−dk′c2k′3

ε0π
μ · Im G(R; k′) · μ

∣∣∣∣
∫ t

0
dτ e−i(t−τ )(ω′+ω0 )

∫ τ

0
dτ ′e−i(τ−τ ′ )(ω′+ω)e−(τ−τ ′ )�/2e−iτ ′(ω0+ω)

∣∣∣∣
2

� −�2
0c2P

2πε0�
Im

∫ ∞

0
dk′ k′3μ · ImG(R; k′) · μeit (ω′−ω)

(ω′ − ω)(ω′ − ω0 − i�/2)(ω − ω0 + i�/2)

= −�2
0P

4c2ε0�

2ω3μ · ImG(R; ω) · μ

(ω − ω0)2 + �2/4
, �t � 1, R → 0+. (A4)

The contributions of diagrams (3) and (4) of Fig. 3 to the power absorbed by the atom according to Eq. (16) are, respectively,

W (3) = �
[〈
3(0)

∣∣HEM

∣∣3(0)
〉 − 〈

3(t )
∣∣ f

3

〉〈


f
3

∣∣HEM

∣∣ f
3

〉〈


f
3

∣∣3(t )
〉]

= �
γ

�

∑
k′,ε′

〈Nk,ε; g|h̄ω′a†
k′,ε′ak′,ε′ |Nk,ε; g〉 − �

γ

�

∑
k′,ε′

h̄ω′{· · · }† ·
{

h̄−1
∫ t

0
dτak′,ε′U0(t − τ )

× e−�(t−τ )/2|(N − 1)k,ε; e〉〈(N − 1)k,ε; e|d · E(rA)|Nk,ε; g〉〈Nk,ε; g|U0(τ )|Nk,ε; g〉
}

= h̄ωγ�2
0

4

∣∣∣∣
∫ t

0
dτ e−i(t−τ )ω0 e−(t−τ )�/2e−iτω

∣∣∣∣
2

, (A5)

W (4) = �
[〈4(0)|HEM |4(0)〉 − 〈

4(t )
∣∣ f

4

〉〈


f
4

∣∣HEM

∣∣ f
4

〉〈


f
4 |4(t )

〉]
= �

P
�

∑
k′,ε′

〈Nk,ε; e|h̄ω′a†
k′,ε′ak′,ε′ |Nk,ε; e〉 − �

P
�

∑
k′,ε′

h̄ω′{· · · }† ·
{

h̄−1
∫ t

0
dτ ak′,ε′U0(t − τ )

× e−�(t−τ )/2|(N + 1)k,ε; g〉〈(N + 1)k,ε; g|d · E(rA)|Nk,ε; e〉〈Nk,ε; e|U0(τ )|Nk,ε; g〉
}

= − h̄ωP�2
0

4

∣∣∣∣
∫ t

0
dτ e−2i(t−τ )ωe−(t−τ )�/2e−iτ (ω+ω0 )

∣∣∣∣
2

. (A6)

Finally, the contributions of diagrams (5)–(7) of Fig. 3 to the incoherent power emitted spontaneously by the atom according to
Eq. (19) are, respectively,

W (5) = �
[〈
5(t )

∣∣ f
5

〉〈


f
5

∣∣HEM

∣∣ f
5

〉〈


f
5

∣∣5(t )
〉 − 〈5(0)|HEM |5(0)〉]

= �
P
�

∑
k′,ε′

h̄ω′{· · · }† ·
{

h̄−1
∫ t

0
dτ ak′,ε′ |U0(t − τ )e−�(t−τ )/2|1k′,ε′ , Nk,ε; g〉〈1k′,ε′ , Nk,ε; g|d · E(−)

k′,ε′ (rA)|Nk,ε; e〉

× 〈Nkp,εp ; e|U0(τ )|Nkp,εp ; e〉
}

= P
∫ ∞

0

−dk′c2k′3

ε0π
μ · ImG(R; k′) · μ

∣∣∣∣
∫ t

0
dτ e−i(t−τ )ω′

e−(t−τ )�/2e−iτω0

∣∣∣∣
2

� −P
∫ ∞

0

dk′c2

ε0π

k′3μ · ImG(R; k′) · μ

(ω′ − ω0)2 + �2/4
, �t 	 1, R → 0+, (A7)
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W (6) + W (7) = �

7∑
n=6

[〈
n(t )

∣∣ f
n

〉〈
 f

n

∣∣HEM

∣∣ f
n

〉〈
 f

n

∣∣n(t )
〉 − 〈n(0)|HEM |n(0)〉]

= �
−2P

�
Re

∑
k′,ε′

h̄ω′h̄−4
∫ t

0
dξ 〈Nk,ε; e|U†

0 (ξ )|Nk,ε; e〉〈Nk,ε; e|d

· E(+)
k′,ε′ (rA)|1k′,ε′ , Nk,ε; g〉〈1k′,ε′ , Nk,ε; g|a†

k′,ε′U
†
0 (t − ξ )e−�(t−ξ )/2

×
∫ t

0
dτ

∫ τ

0
dτ ′

∫ τ ′

0
dτ ′′ ak′,ε′U0(t − τ )e−�(t−τ )/2|1k′,ε′ , Nk,ε; g〉〈1k′,ε′ , Nk,ε; g|d · E(rA)|1k′,ε′ , (N − 1)k,ε; e〉

× 〈1k′,ε′ , (N − 1)k,ε; e|U0(τ − τ ′)|1k′,ε′ , (N − 1)k,ε; e〉〈1k′,ε′ , (N − 1)k,ε; e|d · E(rA)|1k′,ε′ , Nk,ε; g〉
× 〈1k′,ε′ , Nk,ε; g|U0(τ ′ − τ ′′)e−�(τ ′−τ ′′ )/2|1k′,ε′ , Nk,ε; g〉〈1k′,ε′ , Nk,ε; g|d · E(−)

k′,ε′ (rA)|Nk,ε; e〉〈Nk,ε; e|U0(τ ′′)|Nk,ε; e〉

= �2
0P Re

∫ ∞

0

−dk′c2k′3

2πε0
μ · ImG(R; k′) · μ

∫ t

0
dτ e−i(t−τ )(ω′+ω)e−�(t−τ )/2

∫ τ

0
dτ ′e−i(τ−τ ′ )(ω′+ω0 )e−(τ−τ ′ )�/2

×
∫ τ ′

0
dτ ′′e−i(τ ′−τ ′′ )(ω′+ω)e−(τ ′−τ ′′ )�/2e−iτ ′′(ω+ω0 )

∫ t

0
dξ ei(t−ξ )(ω′+ω)e−�(t−ξ )/2eiξ (ω+ω0 )

� �2
0Pc2

2πε0
Re

∫ ∞

0
dk′k′3μ · ImG(R; k′) · μ

e−it (ω′−ω) − 1

(ω′ − ω)(ω′ − ω0 − i�/2)2(ω′ − ω0 + i�/2)
, �t � 1, R → 0+.
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