
Vol. 88 (2021) REPORTS ON MATHEMATICAL PHYSICS No. 2

THE QUANTUM HARMONIC OSCILLATOR AND CATALAN’S CONSTANT

S. Fassaria

Department of Higher Mathematics, ITMO University, S. Petersburg, Russian Federation
CERFIM, PO Box 1132, CH-6601 Locarno, Switzerland

Università degli Studi Guglielmo Marconi, Via Plinio 44, I-00193 Rome, Italy
(e-mail: silvestro.fassari@uva.es)

L. M. Nietob

Departamento de Física Teórica, Atómica y Óptica,
and IMUVA, Universidad de Valladolid, 47011 Valladolid, Spain

(e-mail: luismiguel.nieto.calzada@uva.es)

F. Rinaldic

Dipartimento di Scienze Ingegneristiche, Università degli Studi
Guglielmo Marconi, Via Plinio 44, I-00193 Rome, Italy

(e-mail: f.rinaldi@unimarconi.it)

and

C. San Millánd

Departamento de Física Teórica, Atómica y Óptica,
Universidad de Valladolid, 47011 Valladolid, Spain
(e-mail: carlos.san-millan@alumnos.uva.es)

(Received March 1, 2021 — Revised May 18, 2021)

In this note we provide a representation of Catalan’s constant in terms of a series involving
the values at the origin of the even eigenfunctions of the quantum harmonic oscillator.

Keywords: quantum harmonic oscillator, eigenfunctions, Hermite polynomials, Catalan’s constant.
2000 Mathematics Subject Classification: Primary 11M36.

aORCID: 0000-0003-3475-7696
bORCID: 0000-0002-2849-2647
cORCID: 0000-0002-0087-3042
dORCID: 0000-0001-7506-5552

[195]

http://orcid.org/0000-0003-3475-7696
http://orcid.org/0000-0002-2849-2647
http://orcid.org/0000-0002-0087-3042
http://orcid.org/0000-0001-7506-5552


196 S. FASSARI, L. M. NIETO, F. RINALDI and C. SAN MILLAN

1. Introduction
As is well known, Catalan’s constant, denoted by 𝐺 throughout our paper, as is

customary nowadays, is defined by (see, e.g., [1, 2])

𝐺 =

∞∑︁
𝑛=0

(−1)𝑛
(2𝑛 + 1)2 = 1 − 1

9
+ 1
25

+ · · · ≈ 0.91597. (1)

Catalan’s constant appears in the number theory, combinatorics, and different areas
of mathematical analysis, but is not so frequent in applied fields, and in particular
in the quantum realm, where only scarce and abstruse references are found: it
appears when studying finite-size effects in two-dimensional lattice six vertex models
working with relativistic string models [3]; it also comes out when evaluating form
factors as auxiliary objects in order to compute correlation functions in homogeneous
sine-Gordon models [4]; the so-called “quantum deformations” of Catalan’s constant
were studied [5], although the name “quantum” is purely ornamental; finally, 𝐺
emerges when solving an integral that originates from the use of hyperbolic geometry
in quantum field theory and also from the reduction of a multidimensional Feynman
integral in [6].
As pointed out in [2], what is remarkable about 𝐺 is that it is not yet known

whether this number is irrational. By quoting those authors, “this remains a stubbornly
unsolved problem”. Furthermore, an intriguing fact about Catalan’s constant is that
quite a few definite integrals, arising in various contexts, can be expressed in terms
of 𝐺, most of which are listed in [2].
In this work we are going to show how Catalan’s constant appears in relation

to a certain integral operator that can be written exclusively in terms of the
eigenfunctions of the quantum harmonic oscillator.

2. Evaluation of the series
The following series

𝑆 =

∞∑︁
𝑛=1

𝜓42𝑛 (0)
2𝑛

(2)

may be of some interest in mathematical physics given that a certain quantity related
to

𝐻0 =
1
2

(
− 𝑑2

𝑑𝑥2
+ 𝑥2

)
, (3)

the Hamiltonian of the quantum harmonic oscillator, can be written explicitly in
terms of (2).
Here we are using the well-known eigenfunctions of the harmonic oscillator

𝜓𝑛 (𝑥) =
1√︁

2𝑛𝑛!
√
𝜋
𝑒−𝑥

2/2 𝐻𝑛 (𝑥) =⇒ 𝜓2𝑛 (0) =
𝐻2𝑛 (0)√︁
22𝑛 (2𝑛)!

√
𝜋
, (4)
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𝐻𝑛 (𝑥) being the 𝑛-th Hermite polynomial (see [1, 7, 8]). It is well known (see [1])
that

𝐻2𝑛 (0) = (−1)𝑛 (2𝑛)!
𝑛!

.

Then, taking the fourth power of (4) and using the previous result, we get

𝜓42𝑛 (0) =
(2𝑛)!2

𝜋 24𝑛 (𝑛)!4 =
[(2𝑛 − 1)!!]2
𝜋 22𝑛 (𝑛)!2 . (5)

At this stage we wish to provide an example attesting the relevance of the
aforementioned series (2) in relation to the harmonic oscillator. First, for any 𝐸 < 1

2
we consider the integral operator whose kernel is given by

[𝐻0 − 𝐸]−
1
4 (𝑥, 𝑦) =

∞∑︁
𝑛=0

𝜓𝑛 (𝑥)𝜓𝑛 (𝑦)
(𝑛 + 12 − 𝐸)

1
4
.

After denoting the restriction of 𝐻0 to [𝜓0]⊥ by 𝐻≥1
0 and setting 𝐸 = 1

2 , we consider
the integral operator whose kernel is given by

𝐵1/2 = 𝑒
− 𝑥2
2

[
𝐻≥1
0 − 1

2

]− 14
(𝑥, 𝑦) = 𝑒− 𝑥2

2

∞∑︁
𝑛=1

𝜓𝑛 (𝑥)𝜓𝑛 (𝑦)
(𝑛) 14

= 𝜋1/4𝜓0(𝑥)
∞∑︁
𝑛=1

𝜓𝑛 (𝑥)𝜓𝑛 (𝑦)
(𝑛) 14

.

(6)
Of course, the products involving 𝐵1/2 and its adjoint 𝐵∗

1/2 give rise to the positive
operators

𝐵∗
1/2𝐵1/2 =

[
𝐻≥1
0 − 1

2

]− 14
𝑒−𝑥

2
[
𝐻≥1
0 − 1

2

]− 14
≥ 0,

and
𝐵1/2𝐵

∗
1/2 = 𝑒

− 𝑥2
2

[
𝐻≥1
0 − 1

2

]− 12
𝑒−

𝑥2
2 ≥ 0.

The latter operators are reminiscent of

[𝐻0 − 𝐸]−
1
2 𝑒−𝑥

2 [𝐻0 − 𝐸]−
1
2

and
𝑒−

𝑥2
2 [𝐻0 − 𝐸]−1 𝑒−

𝑥2
2 ,

the Birman–Schwinger type operators used in our papers on the harmonic oscillator
perturbed by an attractive Gaussian potential [9, 10] (see also the analogous papers
on the negative Laplacian perturbed by the same attractive Gaussian potential in
one dimension [11, 12]).
The operator defined by (6), being the limit of a sequence of finite rank operators

in the norm topology, is compact. Furthermore, it is worth noting that the sequence����𝐵1/2𝜓𝑛

����
2 =

�����
�����𝑒− 𝑥2

2

[
𝐻≥1
0 − 1

2

]− 14
𝜓𝑛

�����
�����
2
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is not square summable since, by taking advantage of Wang’s results [9, 10, 13, 14],�����
�����𝑒− 𝑥2

2

[
𝐻≥1
0 − 1

2

]− 14
𝜓𝑛

�����
�����
2

2

=

(
𝜓𝑛, 𝐵

∗
1/2𝐵1/2𝜓𝑛

)
=

(𝜓𝑛, 𝑒
−𝑥2𝜓𝑛)√
𝑛

=
√
𝜋
𝜓22𝑛 (0)√
2𝑛

,

diverges given that 𝜓22𝑛 (0) behaves like 𝑛
− 12 (see [9, 10, 14–26]). However, it is

𝑝-summable for any 𝑝 > 2, so that

∞∑︁
𝑛=1

�����
�����𝑒− 𝑥2

2

[
𝐻≥1
0 − 1

2

]− 14
𝜓𝑛

�����
�����
4

2

= 𝜋

∞∑︁
𝑛=1

𝜓42𝑛 (0)
2𝑛

. (7)

It is worth pointing out that this series contains 𝜓42𝑛 (0) in the numerator of its
sequence, differently from the series appearing in various models involving point
perturbations of the quantum harmonic oscillator (see the articles cited earlier), which
instead share 𝜓22𝑛 (0) in the numerator of their sequences. As a result, we cannot
expect to express the series in terms of a ratio of Gamma functions, as was done in
the above-mentioned papers. As will be shown next, the series (2) can be computed
analytically. Although this fact is not entirely new (see [27] p. 472 as well as
[28] investigating a series very closely related to ours by means of hypergeometric
functions), we believe it may be worth obtaining the result by relying exclusively
on the properties of the eigenfunctions of the harmonic oscillator combined with
those of the complete elliptic integral of the first kind.

Theorem 1. The positive series (2) converges and

𝑆 =

∞∑︁
𝑛=1

𝜓42𝑛 (0)
2𝑛

=
2
𝜋2

[𝜋 ln 2 − 2𝐺] , (8)

where 𝐺 is Catalan’s constant.

Proof: As anticipated earlier, 𝜓2𝑛 (0) behaves like 𝑛−1/4 as 𝑛 → +∞, so that
the strictly positive sequence inside the sum behaves like 𝑛−2 as 𝑛 → +∞, which
ensures the convergence of the series.
First of all, we notice that

𝑆 =

∞∑︁
𝑛=1

𝜓42𝑛 (0)
2𝑛

=

∞∑︁
𝑛=1

𝜓42𝑛 (0)
∫ 1

0
𝑥2𝑛−1 𝑑𝑥 =

∫ 1

0

[ ∞∑︁
𝑛=1

𝜓42𝑛 (0) 𝑥2𝑛−1
]
𝑑𝑥. (9)

As follows in a rather straightforward manner from the definition of the normalised
eigenfunctions of the harmonic oscillator, the value of 𝜓42𝑛 (0) is given by (4), so
that the series inside the square brackets on the rhs of (9) becomes

𝑓 (𝑥) =
∞∑︁
𝑛=1

𝜓42𝑛 (0) 𝑥2𝑛−1 =
1
𝜋

∞∑︁
𝑛=1

[(2𝑛 − 1)!!]2

22𝑛 (𝑛!)2 𝑥2𝑛−1 =
1
𝜋𝑥

∞∑︁
𝑛=1

[(2𝑛 − 1)!!]2

22𝑛 (𝑛!)2 𝑥2𝑛. (10)
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As can be checked by using mathematical induction, the latter series can be written
in terms of the expansion of 𝐾 (𝑥2), the complete elliptic integral of the first kind
defined by

𝐾 (𝑥2) =
∫ 1

0

𝑑𝑡√︁
(1 − 𝑡2) (1 − 𝑥2𝑡2)

. (11)

Hence,

𝑥 𝑓 (𝑥) = 1
𝜋

∞∑︁
𝑛=1

[(2𝑛 − 1)!!]2

22𝑛 (𝑛!)2 𝑥2𝑛 =
1
𝜋

∞∑︁
𝑛=0

[(2𝑛 − 1)!!]2

22𝑛 (𝑛!)2 𝑥2𝑛 − 1
𝜋
=
2𝐾 (𝑥2) − 𝜋

𝜋2
. (12)

Therefore,

𝑓 (𝑥) = 1
𝜋𝑥

∞∑︁
𝑛=1

[(2𝑛 − 1)!!]2

22𝑛 (𝑛!)2 𝑥2𝑛 =
2𝐾 (𝑥2) − 𝜋

𝜋2𝑥
. (13)

By integrating the rhs of (13) from 0 to 1, we get

𝑆 =

∫ 1

0
𝑓 (𝑥) 𝑑𝑥 =

∫ 1

0

2𝐾 (𝑥2) − 𝜋
𝜋2𝑥

𝑑𝑥 =

∫ 1

0

𝐾 (𝑦) − 𝜋
2

𝜋2𝑦
𝑑𝑦. (14)

The latter integral integral can be evaluated as follows, taking into account that
𝐾 (0) = 𝜋/2,

𝜋2 𝑆 =

∫ 1

0

(
𝐾 (𝑚) − 𝜋

2

) 𝑑𝑚
𝑚

=

∫ 1

0

𝑑𝑚

𝑚

(∫ 1

0

𝑑𝑡√︁
(1 − 𝑡2) (1 − 𝑚𝑡2)

−
∫ 1

0

𝑑𝑡
√
1 − 𝑡2

)

=

∫ 1

0

𝑑𝑚

𝑚

∫ 1

0

1 −
√
1 − 𝑚𝑡2√︁

(1 − 𝑡2) (1 − 𝑚𝑡2)
𝑑𝑡 =

∫ 1

0

𝑑𝑡
√
1 − 𝑡2

∫ 1

0

𝑑𝑚

𝑚

1 −
√
1 − 𝑚𝑡2

√
1 − 𝑚𝑡2

,(15)

where we have just interchanged the integrals in the variables 𝑡 and 𝑚. The integral
in 𝑚 can be evaluated straightforwardly, and then

𝜋2 𝑆 =

∫ 1

0

𝑑𝑡
√
1 − 𝑡2

[
−2 ln

(
1 +

√
1 − 𝑚𝑡2

)]1
𝑚=0

=

∫ 1

0

𝑑𝑡
√
1 − 𝑡2

[
2 ln 2 − 2 ln

(
1 +

√
1 − 𝑡2

)]
= 𝜋 ln 2 − 2

∫ 1

0

ln
[
1 +

√
1 − 𝑡2

]
√
1 − 𝑡2

𝑑𝑡 = 𝜋 ln 2 − 2𝐽. (16)
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After setting 𝑡 = sin 2𝜑 in the last integral, we get

𝐽 = 2
∫ 𝜋/4

0
ln [1 + cos 2𝜑] 𝑑𝜑 = 2

∫ 𝜋/4

0
ln

[
2 cos2 𝜑

]
𝑑𝜑

= 2
∫ 𝜋/4

0
(ln 2 + 2 ln cos 𝜑) 𝑑𝜑 =

𝜋

2
ln 2 + 4

∫ 𝜋/4

0
ln cos 𝜑 𝑑𝜑. (17)

As is well known, one of the representations of Catalan’s constant is the following
integral

𝐺 = 2
∫ 𝜋/4

0
ln(2 cos 𝜑) 𝑑𝜑 =

𝜋

2
ln 2 + 2

∫ 𝜋/4

0
ln cos 𝜑 𝑑𝜑. (18)

Then, the remaining integral in (17) can be evaluated and we get

𝐽 =
𝜋

2
ln 2 + 2

(
𝐺 − 𝜋

2
ln 2

)
= 2𝐺 − 𝜋

2
ln 2, (19)

implying from (16) that
𝜋2 𝑆 = 2𝜋 ln 2 − 4𝐺, (20)

which completes the proof of our claim (8). �

As an immediate consequence of the previous theorem we get the following
evaluation of the series (7),

∞∑︁
𝑛=1

�����
�����𝑒− 𝑥2

2

[
𝐻≥1
0 − 1

2

]− 14
𝜓𝑛

�����
�����
4

2

=
2
𝜋
[𝜋 ln 2 − 2𝐺] ≈ 0.220051. (21)

We wish to remind the reader acquainted with the theory of operators belonging
to the Schatten classes, that, as stated in Theorem A in [29], (21) does not guarantee
that the operator belongs to the Schatten class of index 4 since the convergence
of the series is required to hold not only for the eigenfunctions of the harmonic
oscillator but for any orthonormal basis in our Hilbert space.
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