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Abstract

In this work we investigate the confining properties of charged particles of a Dirac material in the
plane subjected to a potential well generated by a purely electrical potential, that is, in an electric
quantum dot. The study focuses on the effect of mass and angular momenta on such confining
properties. To have a global picture of confinement, both bound and resonance states are considered.
The resonances will be examined by means of the Wigner time delay of the scattering states, as
well as through the complex eigenvalues of outgoing states in order to show that they are physically
meaningful. By tuning the potential intensity of the well, electron captures and atomic collapses are
observed for critical values. In these processes, the bound states of the discrete spectrum become
resonances of the continuous spectrum or vice versa. The atomic collapse phenomenon keeps the
number of bound levels in the quantum dot below a maximum value for the massive case. In the
massless case, the bound states have zero energy and occur only for some discrete values of the
potential depth, as is well known. We also show that although the intensity of the resonances for
massive particles is not significantly influenced by angular momenta, on the contrary, for massless
particles they are quite sensitive to angular momenta, as it is the case of graphene.

1 Introduction

It is well known that electric fields constitute a good tool for confining relativistic massive charged
particles in two or more spatial dimensions (see a detailed discussion by R. Hall et al [1] for three
dimensions), although in the case of two-dimensional massless particles they are not so useful due to the
strong Klein tunnelling effect [2,3]. For this reason, to confine massless Dirac electrons in graphene, it
is much better to appeal to magnetic fields [4–8]. However, due to its potential importance in practical
applications, the electrical confinement of massless particles has also been investigated in a recent series
of papers [9–17]. Note that since the origin of the transparency of potentials for zero-mass particles in
general comes from transverse momenta, electric fields could still be useful, for example, in the study
of quantum wires, where the momentum is parallel to the wall of the confining potential. Another
case in which electric fields could produce confinement is when the quantum dot has a symmetry
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(for example, radial), with a well-defined angular momentum quantum number corresponding to a
circular motion parallel to the quantum dot (there is a close connection between classical non-chaotic
trajectories, superintegrability and transparent potentials [10]).

On the other hand, it is also worth considering massive particles in two dimensions due to the intro-
duction of new materials similar to graphene, such as silicene, germanene, stanene, and phosphorene,
quite attractive from the point of view of topological insulators (see [18] and references quoted therein),
where the charges acquire an effective mass from the spin-orbit interaction and the perpendicular elec-
tric fields [19]. An important consequence of the confinement of massive particles is that it allows
to observe the phenomenon of atomic collapse, which is possible but very difficult to experience in
relativistic quantum mechanics. However, inside Dirac materials this is more accessible (as are other
relativistic effects, such as the above mentioned Klein tunnelling) due to the much lower Fermi ve-
locity vF relative to the speed of light c [20]. This effect is shown in experiments that have recently
been specially designed under different configurations [21–24]. Atomic collapses consist of the decay
of states in the discrete spectrum of the quantum dot to the negative energy continuum when the
depth of the well (or the charge of the atom) increases sufficiently. These relativistic effects confirm
the Dirac behaviour of electrons in two-dimensional Dirac materials.

An important topic closely related to confinement is the search for resonances. In fact, we will show
how the bound states give rise to resonances at each atomic collapse. Therefore, confinement in Dirac
materials must necessarily include both bound and resonance states. However, so far, only a few
articles have considered resonances or quasi-bound states in this problem [9,11].

From a certain point of view, resonances are characterized by complex energy values E = ER + iEI ,
where the imaginary part EI is very small, so that when the energy of a wave packet incident on
the potential well (or barrier) is close from ER, the outgoing wave packet here produced can have a
prolonged stay in the region where the potential is significant, giving rise to a quasi-bound state [11].
The delay time can be calculated using Wigner’s formula for phase change in scattering states [25–27].
We should mention that the phase change in a scattering resonance is related to the bound states
in each angular momentum channel, due to an extension of Levinson’s theorem to the domain of
relativistic quantum mechanics on the plane [1,28]. Therefore, in this way the tight link of resonances
and bound states is also shown. In fact, when the imaginary part EI is zero, the value ER can
correspond to a bound state (sometimes it may be associated with what is called antibound state [26]).
In the massless case, the bound states are characterized by ER = EI = 0.

The objective of this work is to draw some conclusions about the role of mass and angular momenta
in the problem of confinement in electric dots. We will change the intensity of the dot (this can be
done by varying the potential of the gates that produce the potential or using the tip of an STM
microscope [21]) and show its effect on resonances and bound states. As we will see, resonances
manifest a relativistic behaviour, particularly at the critical values of the potential depth they will
lead to collapses and the associated scattering phases will satisfy Levinson’s theorem near the capture
of a bound state. The most striking difference that we will find between the massive and massless cases
is that increasing the depth of the well for massless particles is very sensitive to angular momentum,
while for the massive case, the value of the angular momenta affects the intensity of the resonances
very slightly.

The structure of the paper is as follows. Section 2 begins with the study of the bound states, resonance
and dispersion of massive particles, showing the effect that increasing the depth of the well has on
these states. Section 3 addresses the same problems for massless particles, while the final section is
dedicated to presenting the main conclusions.
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2 Bound states and resonances for massive two-dimensional Dirac
particles

We will start with the two-dimensional (2D) Dirac Hamiltonian on a Dirac planar material which
describes the interaction of particles of mass m and charge e with an external electrostatic potential
V (x):

H = vF σ · p +mv2F σz + e V (x), x = (x, y) ∈ R2. (2.1)

Here, σ = (σx, σy) and σz are Pauli matrices, p = (px, py) = −i~(∂x, ∂y) the momentum operators,
and vF is the Fermi velocity of the material. To be more specific, we will consider a potential with
radial symmetry V (x) = V (r), so naturally from now on we will use polar coordinates (r, θ) to separate
variables in the time-independent Dirac equation. In the case we are dealing with, the Hamiltonian
commutes with the total angular momentum operator defined as

Jz = Lz + Σ, with Lz = −i~∂θ and Σ =
1

2
~σz. (2.2)

Thus, we can look for the eigenfunctions Φ(r, θ) of H that at the same time are eigenfunctions of
Jz,

HΦ(r, θ) = EΦ(r, θ), JzΦ(r, θ) = j~Φ(r, θ). (2.3)

It is quite easy to show that the second of the equations in (2.3) leads to eigenfunctions with the
following spinor form

Φ(r, θ) =

 φ1(r)e
i(j− 1

2
)θ

iφ2(r)e
i(j+ 1

2
)θ

 , j = `+
1

2
, ` = 0,±1, . . . (2.4)

where ` = j − 1/2 and ` + 1 = j + 1/2 are, respectively, the integer orbital angular momentum of
the upper and lower component of the spinor, and the imaginary unit in the second component is
introduced for convenience.

After replacing (2.4) in the eigenvalue equation for H in (2.3), we get a reduced equation in the
variable r:(

0 −iA−

iA+ 0

)(
φ1(r)

iφ2(r)

)
=

(
E−eV (r)−mv2F 0

0 E−eV (r)+mv2F

)(
φ1(r)

iφ2(r)

)
, (2.5)

where the operators A± are given by

A− = ~vF
(
∂r +

`+ 1

r

)
, A+ = ~vF

(
−∂r +

`

r

)
, ` ∈ Z. (2.6)

In this work we will choose the electric potential to be a typical two-dimensional radial well of the
form

V (r) =

{
V0, r < R,

0, r > R.
(2.7)

We redefine variables in natural units for this problem as

ρ =
r

R
, ε =

ER

~vF
, v =

eV0R

~vF
< 0, µ =

mvFR

~
, (2.8)
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where we will assume that the effective potential inside the dot (v) is constant and negative unless
otherwise stated (for v > 0 we would have the problem of a potential barrier instead of a well), and
the potential outside the dot is zero. We could have used another shape for the potential well, but
we preferred the option mentioned above to be able to compare the results here obtained with other
relevant references available in the literature [9–11,16].

With the new notation introduced in (2.8), equations (2.5)-(2.6) become the following coupled differ-
ential system 

φ′2,α(ρ) +
`+ 1

ρ
φ2,α(ρ) = ε−α φ1,α(ρ),

−φ′1,α(ρ) +
`

ρ
φ1,α(ρ) = ε+α φ2,α(ρ),

(2.9)

where the subindex α can be either α = i in the inner region of the dot (0 ≤ ρ < 1), or α = o in the
outer region of the dot (ρ > 1), being

ε±i = ε− v ± µ, 0 ≤ ρ < 1, ε±o = ε± µ, ρ > 1. (2.10)

Next, we will solve this set of equations in these two regions. Note that both the potential v and the
energy parameters ε±α are constant, although different, in each of these two intervals. The connec-
tion between the solutions for each of the two regions is obtained by imposing the continuity of the
components φ1,α and φ2,α at the point ρ = 1. The equation for φ1,α, obtained from (2.9), is

ρ2φ′′1,α(ρ) + ρ φ′1,α(ρ) + (p2α ρ
2 − `2)φ1,α(ρ) = 0, (2.11)

where the ‘momentum’ p in each interval α = i, o is

pi =
√

(ε− v)2 − µ2, 0 ≤ ρ < 1, po =
√
ε2 − µ2, ρ > 1, (2.12)

where pi and po are valid, respectively, in the inner and outer regions. This means that, as long as pi
and po are nonzero (later we will discuss what happens when one of them is zero), the general solution
within each interval can be expressed either as a linear combination of Bessel functions of the first
and second kind (J`, Y`) [29], or as a linear combination of Hankel functions of the first and second

kind (H
(1)
` , H

(2)
` ), in the form

φ1,α(ρ) = aα J`(pαρ) + bα Y`(pαρ) = ãαH
(1)
` (pαρ) + b̃αH

(2)
` (pαρ), α = i, o. (2.13)

The arbitrary constant coefficients ai, bi . . . are used for the inner region, while ao, bo, . . . are used for
the outer region. The second radial function φ2,α of the spinor can be obtained from the previous
expression for φ1,α and the second equation of (2.9). Using well-known properties of the Bessel and
Hankel functions [29], we get

φ2,α(ρ) =
pα

ε+α

[
aα J`+1(pαρ) + bα Y`+1(pαρ)

]
=
pα

ε+α

[
ãαH

(1)
`+1(pαρ) + b̃αH

(2)
`+1(pαρ)

]
, α = i, o. (2.14)

Now, we are going to use this equation in several situations of physical interest: when there are bound
states, resonances or the so-called critical states. We will assume below that ` ≥ 0, since for negative
values, although it is not an equivalent situation, the results are similar.

4



2.1 Bound states

To characterize the bound states in the problem we are analyzing, the correct solutions are chosen
using the appropriate boundary conditions at the origin ρ = 0, at the junction point ρ = 1, and at
ρ→∞.

• In the inner region, 0 ≤ ρ < 1, the Bessel functions that are bounded at the origin are only those
of the first kind (even in the case where pi be a complex number), so, according to (2.4), in this
interval the solutions must have the form

Φi(ρ, θ) = ai

 J`(piρ) ei`θ

i
pi

ε+i
J`+1(piρ) ei(`+1)θ

 , ` ∈ Z. (2.15)

The special value pi = 0 =⇒ ε− v = ±µ, gives no additional solution.

• In the outer region, ρ > 1, the appropriate solution to study bound states is the Hankel function
of the first kind, since its asymptotic behavior when ρ→∞ is

H
(1)
` (poρ) ∼

√
2

πpoρ
ei(poρ−`π/2−π/4). (2.16)

Therefore, from (2.16) it is clear that bound states will appear only if po =
√
ε2 − µ2 is an imaginary

number, po = i Im(po), with Im(po) > 0 (or possibly zero, see below), that is

ε2 < µ2 =⇒ −µ < ε < µ, (2.17)

where ε and µ are the energy and the mass in the units defined in (2.8). In other words, relativistic
bound states in electric fields can only take place for a range of energy which is bounded from be-
low/above by minus/plus the particle mass. The special cases ε = ±µ where po = 0 are called critical
points and will be studied separately in the next subsection. Thus, the wave function of the bound
states in the outer region must take the form

Φo(ρ, θ) = ão

 H
(1)
` (poρ) ei`θ

i
po

ε+o
H

(1)
`+1(poρ) ei(`+1)θ

 , ` ∈ Z. (2.18)

Finally, the eigenvalues of the bound states are obtained by imposing the condition of continuity
of the two spinor functions (2.15) and (2.18) at the point ρ = 1, obtaining the following secular
equation:

ε+i J`(pi) poH
(1)
`+1(po)− ε

+
o H

(1)
` (po) pi J`+1(pi) = 0. (2.19)

The solutions corresponding to the discrete values of the energy ε that arise from the secular equation
(2.19) will have their corresponding eigenfunctions Φ(ρ, θ) constructed from the matching of (2.15)
and (2.18).

2.2 Critical and supercritical states

The critical points are the eigenvalues corresponding to bound (or quasi–bound) states such that
po = 0 or ε2 = µ2, that is, they correspond to the maximum ε = µ or minimum ε = −µ possible
eigenvalues of the energy (the latter case is often called supercritical). Critical eigenvalues can only be
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reached for some special values of the potential depth v. The associated eigenstates are called critical
and supercritical states. In other words, we must look for the possible values of the potential depth
v, so that there are states with eigenvalue ε = µ or ε = −µ and with a bounded behavior such as
ρ→ 0 and ρ→∞, corresponding to a square integrable function (or at least bounded for quasi-bound
states).

2.2.1 Critical states: ε = µ

Inside the potential well those states are described by Bessel functions, as in (2.15), with the following
values of the parameters that appear there: ε+i = 2µ− v > 0 and pi =

√
v2 − 2vµ > 0.

In the outer region, taking into account that ε+o = 2µ and ε−o = 0, the components φ1,o(ρ) and φ2,o(ρ)
satisfy this particular form of equations (2.9)

φ′2,o(ρ) +
`+ 1

ρ
φ2,o(ρ) = 0,

−φ′1,o(ρ) +
`

ρ
φ1,o(ρ) = 2µφ2,o(ρ) .

(2.20)

Then, φ1,o satisfies an Euler equation (see the limit po → 0 of (2.11)) whose acceptable solutions give
the outer spinor

Φo(ρ, θ) = ao

 ρ−` ei`θ

i
`

µ
ρ−(`+1) ei(`+1)θ

 , ` = 1, 2, . . . (2.21)

Note that in the case ` = 0 the critical state is not really a bound state, but simply a quasi-bound state:
the wave function is not square integrable, although it is bounded. For ` = 1 the wave function tends
to zero but it is not yet square integrable. For the following values ` = 2, . . . , the critical state wave
functions, according to (2.21), satisfy all the conditions to represent true bound states. These types of
critical state solutions will also be discussed in detail for the massless case of the next section.

The matching condition of the solutions of the critical wave functions (2.15) and (2.21) at ρ = 1
produce the following secular equations:

`

(
µ+

√
µ2 + p2i

)
J`(pi) = µpiJ1+`(pi), ` = 0, 1, 2 . . . (2.22)

Remember that the solutions pi(`, µ) of these transcendental equations allow us to determine the well

depth v, which will depend on the parameters ` and µ, as in the present case v = µ−
√
µ2 + p2i .

2.2.2 Supercritical states: ε = −µ

Again, the eigenfunctions in the inner interval 0 ≤ ρ < 1 are Bessel functions of the first kind (2.15),
with the following values of the parameters that appear there: ε+i = −v > 0 and pi =

√
v2 + 2vµ > 0,

while outside, for ρ > 1, the components satisfy this particular form of equations (2.9)
φ′2,o(ρ) +

`+ 1

ρ
φ2,o(ρ) = −2µφ1,o(ρ),

−φ′1,o(ρ) +
`

ρ
φ1,o(ρ) = 0.

(2.23)
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Then, the solutions bounded in the region ρ > 1 are

Φo(ρ, θ) = ao

(
0

iρ−(`+1)ei(`+1)θ

)
, ` = 0, 1, 2, . . . (2.24)

Except the value ` = 0, which correspond to a quasi-bound state, the rest, i.e. ` ≥ 1, lead to square-
integrable wave functions. The matching condition in the present situation gives rise to the following
secular equations:

J`(pi) = 0, ` = 0, 1, 2, . . . (2.25)

which allow to determine the values of pi(`, µ), and therefore those of v for each `, taking into account

that in this case v = −µ −
√
µ2 + p2i . Some examples of bound energy levels are given in Figure 1

along with critical and supercritical values. In these graphs we can see that for ` = 0 bound states
appear for any (negative) value of the well depth v, however, for instance, the case ` = 2 bound states

will only appear for negative values of v lower than the value v = µ −
√
µ2 + p2i,1, where pi,1 is the

first strictly positive root of the transcendental equation (2.25) (v = −2.7558 in the case shown in
Figure 1). This fact is due to the centrifugal potential caused by the orbital momentum `. Note that
from Figure 1 we can see that for this particular value of mass and for any negative value of v there
will be no more than two bound states for each `. Thus, the maximum number of bound states is
finite and it depends on the value of µ. The depth v of the dot modulates the energy of these bound
states. If the potential depth v is more negative than −µ, the lowest bound states can plunge into the
continuous spectrum of antiparticles, giving rise to the phenomenon of atomic collapse. This result
is quite different from non-relativistic wells, which can have any number of bound states simply by
taking more negative depths v without any risk of leaking into the ‘negative sea’.

2.3 Resonances and pure outgoing states

In a scattering process, a resonance occurs for a real energy Er > µ if an incoming wave packet state
takes longer time to exit than it should without the presence of the potential. That is, if it suffers
a delay time within the significant range of the potential. One way to measure these resonances is
by computing the phase shift δ` of incoming and outgoing waves [1, 28], as will be done in the next
subsection. The derivative of this phase shift with respect to energy gives the so-called “Wigner time
delay” τ` [25, 26], indeed

τ` = 2
dδ`
dE

. (2.26)

The presence of a maximum in this function (specially if it is sharp) is a clear resonance signal.

There is another approach also used to calculate the resonances of a potential well (or barrier) which
consists in finding the complex energies E = ER + iEI , where the stationary states satisfy purely
outgoing boundary conditions. In fact, when these energies are real, in the interval (−µ,+µ), they
can belong to the discrete spectrum or, in other cases, they can be interpreted as anti–bound states
[26,27,30]. These characteristics are best appreciated in momentum space, but we will limit ourselves
here to the energy picture for simplicity. The real part ER of the resonant energy is then identified
with the energy of the incident wave, while the imaginary part EI is related to the resonance delay
time as follows: ER ≈ Er, while τ` ∝ 1/EI . The consistency of these two criteria (Wigner time delay
and complex energies) to detect resonances will be checked in the next two subsections.
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Figure 1: For a particle of mass µ = 2: plots of the bound state energy levels obtained from (2.19) when
−2 < ε(v) < 2 for ` = 0 (green curves on the left plot) and ` = 2 (blue curves on the right plot). They are given
as functions of the potential depth in the range −14 < v < 0. The critical states of (2.22) are represented by
the dots on the right and the supercritical states of (2.25) by dots on the left sides of the curves. The vertical
dashing lines are the limits of the bound state energies, while the horizontal dashing lines correspond to the
values of the well depths v selected for Figure 3.

2.3.1 Scattering states, shift phases, and resonances

In order to study the scattering states and their phase shifts, it is better to use in the outer region
the basis {J`, Y`}. The asymptotic behavior of these functions for large values of ρ is the following
[29]:

J`(po ρ) ∼
√

2

πpo ρ
cos(po ρ− `π/2− π/4), Y`(po ρ) ∼

√
2

πpo ρ
sin(po ρ− `π/2− π/4).

Then, the spinors of the scattering states take the form (2.15) in the inner region (0 ≤ ρ < 1), and
the following one in the outer region (ρ > 1)

Φo(ρ, θ) =


[
AJ`(po ρ) +B Y`(po ρ)

]
ei`θ

i
po

ε+o

[
AJ`+1(poρ) +B Y`+1(poρ)

]
ei(`+1)θ

 .

If for convenience we choose the form of the arbitrary constants A and B as A = a cos δ`, B = −a sin δ`,
the asymptotic behavior of the spinor when ρ→∞ is

Φo(ρ, θ) ∼
√

2

πpoρ

 cos(poρ− `π/2− π/4 + δ`) e
i`θ

i po
ε+o

sin(poρ− `π/2− π/4 + δ`) e
i(`+1)θ

 .

The quantity δ` is the phase shift due to the presence of the potential near the origin of coordinates,
and it appears in the outer spinor wave function:

Φo(ρ, θ) = A


[
J`(poρ)− tan δ`Y`(poρ)

]
ei`θ

i
po

ε+o

[
J`+1(poρ)− tan δ`Y`+1(poρ)

]
ei(`+1)θ

 .
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The continuity condition of the spinor Φ(ρ, θ) at ρ = 1 leads to

ε+i J`(pi)

pi J`+1(pi)
=

ε+o (J`(po)− tan δ` Y`(po))

po(J`+1(po)− tan δ` Y`+1(po))
,

from where we obtain the explicit value of the phase δ`:

tan δ`(ε) =
ε+i po J`(pi)J`+1(po)− ε+o pi J`+1(pi)J`(po)

ε+i po J`(pi)Y`+1(po)− ε+o pi J`+1(pi)Y`(po)
. (2.27)

Once the potential depth v is set, the phase shift δ` will depend on the energy ε, taking into account
(2.10) and (2.12). Also, for a potential well with depth v it is easy to show that at the high energy
limit (note that the constraint (2.17) is no longer valid now) the phase shift is

lim
ε→∞

tan δ`(ε) = − tan v. (2.28)

The values for which the derivative with respect to the energy of (2.27) is maximum correspond to
resonances, since this will mean that with this energy the time that a wave packet spends inside the
well (2.26) will be greater than it should. It also turns out that as we increase the depth of the well
we trap bound states that leave the continuum. In this process, when a value of v is reached so that a
new bound state is captured, the corresponding phase shift undergoes an abrupt change, increasing by
π (which is the content of Levinson’s theorem adapted to the relativistic plane [1,28]). These features
are shown in Figure 2.

4 6 8 10
ε

1

2

3

δl

μ=2, l=2

v=-2

v=-2.75

v=-3.5

3 4 5 6 7
ε

-2

2

4

6

8

τl

μ=2, l=2

v=-2
v=-2.75
v=-3.5

Figure 2: On the left, a graph of the phase shift δ`(ε) for the scattering of a particle with µ = 2, ` = 2, and
three values of the potential depth: (a) v = −3.5, just after trapping a bound state (blue dashed line), (b)
v = −2.75, the trapping value (black solid line), and (c) v = −2, before trapping a bound state (red dotted
line). Note that due to the capture of a bound state taken from the continuum, there is a phase jump (see the
phases of v = −2.75 and v = −3.5 with respect to that of v = −2). The horizontal lines are the limits of the
phases when ε→∞ from (2.28). Remark that hereafter the critical or supercritical values of the potential will
be given with two decimals in order to simplify the notation (as it is the case of v = −2.75). On the right,
a plot of the corresponding Wigner time delays for the same values of v. The maxima of the curves show the
existence of resonances for particular values of the scattering energy.

2.3.2 Complex resonances and outgoing states

In the scattering process discussed in the previous subsection, we had an incoming wave and an
outgoing wave, and we calculated the phase shift of these waves due to the potential near the origin.
Next, we will look for energy values ε such that we have a pure outgoing wave. This situation may
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Figure 3: Resonances in the complex plane ε = εR + iεI for particles with mass µ = 2, angular momenta
` = 2 (blue dots) and ` = 0 (green dots), are represented as functions of the well depth v. There are six plots
for six values of v (indicated in each graphic). The thick red interval (−2, 2) on the real axis represents the
possible bound energies. The evolution of the resonances as the depth of the potential well goes from the initial
value v = −1 up to the final one v = −14 is clearly observed by the change of position of the resonances drawn
as circles (green for ` = 0, blue for ` = 2). At v = −2.75,−5.86,−8.99 the potential well captures a new bound
state, with ` = 2, of energy ε = 2 (recall that we use the two decimal convention for numerical values of critical
potentials). In general, as v becomes more negative, the set of resonances moves from energies with positive
values of εR towards energies with negative values εR. The complex resonance energies for ` = 2 are slightly
closer (therefore stronger) than those for ` = 0.

not have a physical realization, but it will provide us with useful information. In fact, this condition
in general will be satisfied for complex energies: ε = εR + iεI . Therefore, states with pure outgoing
boundary conditions must satisfy the following conditions:

(i) when ρ→ 0 the spinor Φi(ρ, θ) must be kept bounded,

(ii) when ρ → ∞ each component must behave as the first Hankel function (2.16), and the spinor
Φo(ρ, θ) as in (2.18).

In other words, the purely outgoing wave conditions are the same as the bound state conditions (2.19),
except that now what we want to find are the complex solutions ε = εR + iεI of this secular equation,
and therefore the corresponding eigenfunctions may diverge when ρ→∞.

Obviously, the resonances depend on the depth v, in the same way that the energies of the bound
states also depend on v, as shown in Figure 1. As the results must necessarily be obtained numerically
or graphically from (2.19), we will choose, as an example, a particle with mass µ = 2 and follow its
trajectory ε(v) = εR(v)+iεI(v) as a function of v. We start from a resonance such that εR(v0) > µ = 2,
εI(v0) 6= 0, and little by little we decrease the depth of the potential well until we reach the value
v1 for which we have precisely the first bound state: ε(v1) = εR(v1) = µ, εI(v1) = 0. As we
continue to decrease the value of v, the bound energy decreases to the minimum bound eigenvalue
ε(v2) = εR(v2) = −µ = −2. Below this value v2, the bound energy will again change into a complex
resonance ε(v3) = εR(v3) + iεI(v3), with εR(v3) < −2 and εI(v3) 6= 0. The whole process can be
followed in Figure 3. We observe that, as shown in that figure, the resonances for the non-zero
momentum, ` = 2, are higher but of the same order as those with zero momentum ` = 0. This is
shown in greater detail in Figure 3, as explained below.

10



The relation between the Wigner time delay τ` and the complex energies is shown in Figure 4: the dots
correspond to resonances in the energy representation and the curves represent the Wigner time delay
as a function of energy. For ` > 0, we see that the real part of the resonances perfectly coincides with
the peak of the time delay, but for ` = 0 this correspondence is not so good due to the quasi-bound
character of the critical state if ` = 0, as already mentioned in (2.21).

4 6 8 10 12 14
ε, εR

-3

-2

-1

0

1
τl , εI

4 6 8 10 12 14
ε, εR
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-2

-1

0

1
τl , εI

Figure 4: The left graphic in green is for m = 2, ` = 0, the right in blue for m = 2, ` = 2, in both plots the
potential depth is v = −2.75 (see Figure 3). The dots represent complex resonances with coordinates (εR, εI).
The continuous curves are for the Wigner time delay as a function of the real part of the energy. The maxima of
the Wigner time delay take place at energies which have a good agreement with the real part of the resonance
energies εR as shown in both graphics by the dashing vertical lines. However, in the left one (for ` = 0) the
coincidence is not so good (this may be due to the fact that for ` = 0 the critical ‘bound state’ is not square
integrable). The resonances for ` = 2 are stronger than for ` = 0, but both have the same order of magnitude.

3 Massless two-dimensional Dirac particles: Bound states and res-
onances

In this section we will analyze the bound states and resonances of the problem under study when the
particles are assumed to be massless, something that can be seen as a limit of the treatment given
in the previous section for massive particles. However, we will see that the behavior in massive and
massless cases has important differences that we will highlight below.

3.1 Bound states

The potential well has the same shape as in the case of non-zero masses (2.7). The equations for the
components φ1, φ2 also have the same form as their massive analogs (2.9), although now the mass
disappears from the equations as µ = 0. Consequently, the energy constants given in (2.10) and (2.12)
become

ε±i = ε− v, 0 ≤ ρ < 1 , ε±o = ε, ρ > 1, (3.29)

and
pi = ±(ε− v), 0 ≤ ρ < 1 , po = ±ε, ρ > 1, (3.30)

where the appropriate sign in (3.30) must be chosen in each of the two cases (interior and exterior) in
order to obtain correct boundary conditions for the solutions.

By the same arguments about the asymptotic behavior of the wave functions of the massive case
(2.17), in the current situation the bound states must have zero energy ε = 0, that is, they coincide
with the critical and supercritical states. To find them we concentrate on the outer region ρ > 1,
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because in the inner region the solutions are the same as in the case µ 6= 0. In the outer region, since
ε±o = 0, the equations (2.9) become

φ′2 +
`+ 1

ρ
φ2 = 0 , −φ′1 +

`

ρ
φ1 = 0 . (3.31)

Notice that in these two equations there is the symmetry `→ −(`+ 1) and changing the components
φ1 → φ2, due to the fact that µ = 0. The solutions to these equations are (see also [16])

Φo(ρ, θ) =

(
c1 ρ

` ei`θ

i c2 ρ
−(`+1) ei(`+1)θ

)
, ` = 0,±1,±2, . . .

where c1, c2 are arbitrary integration constants. Thus, if either ` > 0 or ` < −1, the physically
acceptable bound states are described by

Φo(ρ, θ) =

(
0

i c2 ρ
−(`+1) ei(`+1)θ

)
, ` > 0, Φo(ρ, θ) =

(
c1 ρ

` ei`θ

0

)
, ` < −1,

which go to zero as ρ → ∞ and are square integrable. For the cases ` = 0,−1 the corresponding
solutions, although also vanish at infinity, are not square integrable, and thus they do not correspond
to ‘true’ bound states.

μ=0

l=0

-2 -1 1 2
ε

-14

-12

-10

-8

-6

-4

-2

v

l=2

μ=0

-2 -1 1 2
ε

-14

-12

-10

-8
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Figure 5: The red dots are the well depth v values for which there are bound states with energy ε = 0 for
massless particles (µ = 0) from (3.32): on the left the case with ` = 0, on the right the case with ` = 2. These
two graphs correspond to the limit µ→ 0 of the massive cases, like the ones in Figure 1 for µ = 2.

The formula for the potential depth v is the same as (2.25) taking the limit µ→ 0,

J`(pi) = 0, ` ≥ 0, J1+`(pi) = 0, ` < 0, pi = |v|. (3.32)

Then, the roots of J`(pi) = 0, give us the values for v corresponding the bound states. In Figure 5
two graphics represent the first of these values corresponding to the angular momenta ` = 0 and
` = 2.
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3.2 Scattering states and resonances

With respect to scattering states with positive energy ε > 0, the situation is completely similar
to Subsection 2.3.1 for massive particles. The phase shift of the scattering states is calculated using
(2.27), whose limit value when ε→∞ is (2.28). In Figure 6, some examples of phase shift of scattering
states and their derivatives with respect to energy (interpreted as Wigner time delays) are shown. The
resonances are the εr(v) values for which the Wigner time delay reaches a maximum. We have verified
numerically that even for ` = 0 there are time delays and resonances. However, for ` > 0 they become
quite strong, especially for energies close to capturing a bound state.
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Figure 6: For massless particles and ` = 2, the graph on the left represents the phase shift depending on the
incident energy for three values of potential depth v = −4 (dotted), v = −5.13 (solid), and v = −6 (dashed);
in the graph to the right, the corresponding Wigner time delay is plotted as a function of energy for the same
three potential depth values. The highest resonances (the red dashed in the graphics, v = −4) are obtained for
depths slightly less than a critical value, in this case v = −5.13.

On the left of Figure 6 we have represented the phase shifts for a massless charge with angular
momentum ` = 2 for three values of v: −4, −5.13, and −6. The special value v = −5.13 corresponds
to the capture of a bound state with ε = 0. For the value v = −4 (which is a bit above v = −5.13)
the phase shifts undergo a strong change at a certain value ε near ε = 0 (dotted curve). However, for
the capture value v = −5.13 (solid curve) or for a slightly lower value (v = −6, dashed curve), the
phase shifts are smoother and start with a jump of π in ε = 0 (according to Levinson’s theorem for
massless particles [28]). Furthermore, in the limit ε→∞, it is seen that these phase shifts tend to the
corresponding value |v|. To the right of Figure 6 we have represented the derivatives of these three
phase shifts, which are identified with Wigner time delays. The potential v = −4 (a little above the
capture value v = −5.13) has a very high maximum of the time delay τ , reached at a certain value
εr that we identify with a strong resonance. However, for the capture potential v = −5.13 or slightly
lower values (v = −6), the maxima of time delays are much lower, corresponding to weak resonances.
In summary, the behavior of scattering states is reasonable according to the non-relativistic nonzero
mass theory on phase shift and Wigner time delay.

As we have already mentioned, another way to define (complex) resonances is through complex eigen-
values of energy corresponding to eigenfunctions that satisfy purely outgoing boundary conditions.
Then, we must look for complex solutions ε(v) = εR + i εI of equation (2.19), but now having in mind
that the mass vanishes and therefore also the simplifications (3.29)-(3.30) apply. According to (2.16)
the asymptotic behaviour of the Hankel function, which concern us, is

H
(1)
` (poρ) ∼ ei(poρ−`π/2−π/4). (3.33)
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In our case, from (3.30), po = ±ε = ±εR ± iεI . The wave will be outgoing as far as ±εR > 0. This
condition is fulfilled if we choose the positive sign for εR > 0 (for the resonances in the right hand
complex plane); and the negative sign for εR < 0 (for the resonances in the left hand complex plane).
In conclusion, we obtain the following secular equation, depending on the sign of the real part of the
complex energy ε,

J`(εR+ i εI −v)H
(1)
`+1

(
|εR|+ i εI sign(εR)

)
− sign(εR) J`+1(εR+ i εI −v)H

(1)
`

(
|εR|+ i εI sign(εR)

)
= 0.

(3.34)
Some solutions of this equation are shown in Figure 7 for six values of v.
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Figure 7: Resonances for a massless particle with angular momenta ` = 0 (green dots) and ` = 2 (blue dots).
For higher value ` = 2 they are much closer to the real axis than the ones with null angular momentum ` = 0.
As a consequence, the corresponding blue resonances are much larger (an order of magnitude) than the green
ones. This is a differential behavior with massive Dirac particles.

As we have already shown in the previous subsection, the bound states, with ε = 0, appear only for
some special values of the well depth and are critical states. In Figure 7, such bound states occur
for v = −5.13 and for v = −8.65 (following our convention of two decimals). The resonances shown
in Figure 6 correspond to the well depth values v = −4,−5.13,−6, which are part of Figure 7. For
the value v = −4, the resonance is closest to the origin, as shown in Figure 7 with a blue circle, and
is represented by the maximum of the dotted curve in Figure 6 (right); this is a strong resonance.
For the next value v = −5.13, that resonance becomes a bound state with zero energy and the next
resonance is represented at εR ∼ 2.50 by the maximum of the solid black curve in Figure 6; in this
case the resonance is much weaker. Finally, for the value v = −6, the first resonance is closer to the
origin, ε ∼ 1.90, and becomes slightly stronger than the previous one, as seen by the maximum of the
dashed curve in Figure 6.

If both approaches to resonance phenomena correspond to the same physical concept, described by
different properties, then we should have εr(v) ≈ εR(v), where εr(v) is the real energy of the scattering
state and εR(v) is the real part of a complex resonance. The imaginary part εI is inversely proportional
to the time delay. From Figure 8, we can see the close relationship between the complex resonances
of Figure 7 (represented by green dots for ` = 0 and blue dots for ` = 2) with coordinates (εR, εI) and
the Wigner time delay (represented by a green curve for ` = 0, or a blue one for ` = 2). We observe
that the first coordinate εR of the dots (representing complex resonances) is very close to the values
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of the maxima εr of the Wigner time delays (this is shown by the dashed vertical lines), specially for
the value v = −4 which is close (from above) to the value v = −5.13 corresponding to the capture of
a bound state, as shown in Figure 7. If we compare Figure 8 and Figure 4, we can see that angular
momenta affect much more to massless resonances than to massive ones.
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Figure 8: On the left, in green, plot of Wigner time delay as a function of energy (solid curve) and complex
resonances ε = εR + iεI (represented by dots at points (εR, εI)) for massless particles with ` = 0. The shape of
time delay fails close to ε ∼ 0 due to the bad behaviour of the bound state at ε = 0. On the right, in blue, the
same plots for m = 0 and ` = 2. The depth of the well for both cases is v = −5.13 (capture value of a bound
state for ` = 2, see Figure 7).

We must point out the differences in the evolution of the resonances of the massive particles in Figure 3
and those of the massless case in Figure 7. It is clear that for deeper wells, both the resonances and the
bound states move towards deeper values of (the real part of) the energy. This is true for both massive
and massless Dirac particles. However, angular momentum has little influence on massive particles
but, on the contrary, it is quite important for massless particles. In fact, for ` = 0, the resonances are
very weak while for ` = 2 they are quite strong for m = 0, as we saw in detail in Figures 4-8.

4 Conclusions

The aim of this article is to search for specific properties of both massive and massless Dirac particles
in the so-called Dirac materials, including graphene, under the influence of electric quantum dots.
We start with particles of mass µ 6= 0, where the bound states are limited to the range of energies
−µ ≤ ε ≤ µ. Furthermore, the phenomenon of atomic colapses in the quantum dot keeps the number
of bound levels finite for any value of the well depth v. We have also considered resonant states, a kind
of eigenstates, generally with complex energy, that satisfy purely outgoing boundary conditions. Such
conditions include bound states such as a particular case of resonances. These resonant states, specially
those corresponding to genuine complex energies, are in principle a mathematical construction, but
may be related to physical scattering resonances. In fact, we have observed throughout some examples
that these resonant states correspond quite well to the scattering resonances defined by the Wigner time
delay conditions. We pay attention to the behavior of complex resonance energies ε(v) = εR(v)+iεI(v)
as a function of the depth v of the potential. In this sense, we have seen that ε(v) is a continuous
function with a reasonable evolution: as the well deepens (v is more negative), εR(v) goes from
positive to negative values. In a certain interval of v (which depends on each particular resonance)
the resonance is captured by the quantum dot and becomes a bound state with −µ ≤ ε(v) ≤ µ and
εI(v) = 0, that is, the imaginary part disappears. The value of ε(v) where the capture takes place
is called the critical point. For lower, more negative values of v, the bound states revert to complex
resonances by means of the aforementioned mentioned atomic collapse phenomenon (the point where
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this occurs is a supercritical point). This ‘motion’ of resonances in the complex plane as a function
of v is illustrated by a sequence of graphs in Figure 3. We conclude that the number of resonances
(including bound states) is conserved, as a function of v; all of them (at least those with a small
imaginary part, which are the most physically important) flow in the same direction. Throughout
this motion, each complex resonance becomes real corresponding to bound states within an interval
of the potential depth v. The capture of a bound state in a well as a consequence of its deepening is a
common feature of quantum mechanics. But atomic colapse, that is, the loss of a bound state due to
the great depth of the well, is a relativistic effect that was not tested experimentally due to the large
number of charges to create such a system. However, in the context of condensed matter it is possible
to carry out an atomic collapse experimentally at much lower energies [21–24].

In the case of massless particles, we have a special situation. Since µ = 0, the bound states take place
at zero energy ε = 0, which is both a critical and a supercritical point (see other examples of electric
fields in [17]). If we study the evolution of complex resonances ε(v) = εR(v) + iεI(v) as we did for
massive particles, we observe that they are very sensitive to the value of the angular momenta. For
zero angular momentum (` = 0) the resonances are very weak, while for higher values, for example
` = 2, the corresponding resonances for any value of the well depth are much higher. The growth of
the resonance intensity as a function of ` is a consequence of the effective centrifugal potential, which is
small for ` = 0 and greater for larger `. The behavior at ` = 0 is a relativistic effect; in non-relativistic
quantum mechanics, ` = 0 gives no centrifugal term and therefore there is no resonance. Another
important piece of information is that this effect of angular momenta on resonances is magnified for
light particles, µ = 0. However, the influence of angular momenta is also described in some recent
works [11, 24]. Remark that in general, other references instead of resonances or Wigner time delay,
make use of the local density of states (LDOS) which can be calculated from resonances and has a
similar shape as a function of energy.

Most of the properties that have been shown in this work are based on numerical calculations on sharp
potentials. In the near future, we plan to delve into these properties but especially using smoother
potential and analytical models.
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[27] M. Gadella, Ş. Kuru and J. Negro, Ann. Phys. 379, 86 (2017).

[28] S.-H. Dong, X.-W. Hou, Z.-Q. Ma, Phys. Rev. A 58 2160 (1998).

[29] M. Abramowitz, I. A. Stegun, Handbook of mathematical functions (Dover, New York, 1965).
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