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2Departamento de F́ısica Teórica and IFIC, Centro Mixto Universidad de
Valencia - CSIC. Universidad de Valencia, Burjassot-46100, Valencia, Spain

3Departamento de F́ısica, Universidade Federal da Paráıba, 58051-900 João Pessoa, Paráıba, Brazil
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We study the light rings and shadows of an uniparametric family of spherically symmetric ge-
ometries interpolating between the Schwarzschild solution, a regular black hole, and a traversable
wormhole, and dubbed as black bounces, all of them sharing the same critical impact parameter. We
consider the ray-tracing method in order to study the impact parameter regions corresponding to the
direct, lensed, and photon ring emission, finding a broadening of all these regions for black bounce
solutions as compared to the Schwarzschild one. Using this, we determine the optical appearance of
black bounces when illuminated by three standard toy models of optically and geometrically thin
accretion disks viewed in face-on orientation.

I. INTRODUCTION

The detection in 2019 by the Einstein Horizon Tele-
scope (EHT) of the accretion flow around the supermas-
sive object at the center of the M87 galaxy [1] has trig-
gered the beginning of a new era in the analysis of elec-
tromagnetic phenomena around compact objects and on
testing General Relativity (GR) itself. The image re-
leased by the EHT shows a bright ring-shaped lump of
radiation surrounding a black central region of an esti-
mated 6.5 billion solar masses. The canonical interpre-
tation of this phenomenon calls for the deviation of light
rays in the gravitational field of an object having a pho-
ton sphere (a critical unstable curve) when illuminated
by an accretion disk [2]. The inner region bounded by
this critical curve is commonly known as the black hole
shadow [3].

The implications of this discovery are far reaching. Not
only does it allow us to test the background geometry us-
ing gravitational light deflection (lensing), but also con-
stitute a test of the Kerr hypothesis on the nature of
astrophysical black holes as compared to its many com-
petitors [4]. This is so because gravitational lensing near
critical curves involves testing gravitational effects hap-
pening in a regime which is inaccessible to weak-field
limit tests [5] and, as such, it allows plenty of room for al-
ternative compact objects to represent the shadow caster.
On the other hand, despite the fact that the main equa-
tions governing gravitational lensing are known since a
long time ago [6] (for a in-depth analysis of such equa-
tions in the strong-field regime see the paper by Bozza
[7]) and many non-Kerr black hole shadows beyond GR
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have been studied in the literature [8–17], only very re-
cently we have come to fully appreciate the great richness
of the physics of accretion disks around black holes re-
garding its impact on the silhouettes of the latter [18–20].

A compact object having a critical curve and illumi-
nated by an accretion disk may yield a complex pattern
of contributions to the total luminosity driven by several
light ray trajectories. Technically, the critical curve is
defined as the light ray received by the observer that,
when traced backwards, would have approached asymp-
totically a bound photon orbit. For a Schwarzschild
black hole this determines a critical impact parameter
bc = 3

√
3M ≈ 5.197M . However, while the impact

parameter region (number of orbits around the critical
curve) depends only on the background geometry, the
optical appearance of the object is not only a function of
it, but also of the geometry and physical properties of the
illuminating accretion flow [21]. For instance, for an opti-
cally and geometrically thin accretion disk the total lumi-
nosity is largely dominated by the direct emission (light
rays deflected less than 90 degrees) and, to lower extent,
by the lensing ring (light rays that intersect the equato-
rial plane just twice), with the contribution of the critical
curve to it being almost negligible. This is why the au-
thors of [21] proposed to call the inner region of this direct
emission region (for Schwarzschild this is b . 6.17M) the
black hole shadow, instead of the one associated to the
inner region of the critical curve b = bc, which nonethe-
less determines the minimum absolute shadow radius no
matter the shape of the accretion disk. Whether this in-
terplay between gravitational theory and the modelling of
the accretion disk allows to discriminate GR black holes
from alternative compact objects via electromagnetic il-
lumination, - likewise distinguishing horses from unicorns
via their respective shadow - is nowadays an exciting area
of research [22, 23].

Once the tabletop is set, the community has launched
to the search for shadows cast by different compact ob-
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jects when illuminated by different types of accretion
disks [24–32] in order to compare them with the GR
(Kerr) expectations. Nonetheless, given the many in-
gredients involved in the analysis of this problem - the
underlying background geometry, the assumptions on the
symmetries of the problem, the geometrical, optical, and
emission aspects of the modeling of the accretions disk,
etc -, it is useful to consider some simplifying assump-
tions in order to investigate prospective smoking guns of
new Physics. In this sense, the assumption of spherical
symmetry, though seemingly too restrictive given the fact
that real astrophysical black holes do rotate, turns out to
be a good approximation since the size and shape of the
shadow, as seen by an asymptotic observer, depends very
weekly on the spin of the black hole in combination with
the inclination with respect to the line of sight, with de-
viations from circularity lying within ∼ 7% for ultra-fast
spinning black holes [33].

The main aim of this work is to study the optical
appearances and shadows of an uniparametric spheri-
cally symmetric family of extensions of the Schwarzschild
space-time recently introduced in [34] and dubbed as
black bounces, which have attracted quite some atten-
tion in the community [35–46]. Despite its simple math-
ematical structure, its interest lies in the following: i) it
smoothly interpolates between the Schwarzschild space-
time, a family of regular black hole solutions, and a fam-
ily of traversable wormhole solutions; ii) it has the same
critical parameter as in the Schwarzschild solution; iii)
it removes the presence of space-time singularities, iv) it
has not Cauchy horizons, thus avoiding their associated
instability issues [47]; v) they can be taken as parame-
terized deviations from the Schwarzschild solution in a
theory-agnostic way (for an example where solutions of
this type arise as solutions to modified gravity equations,
see [48–50]). Since black holes and traversable wormholes
are conceptually and operationally two different types of
objects, the black bounce geometry allows one to study
the light rings and shadows cast by each such object
and compare them to that of the Schwarzschild solu-
tion. To this end, in this paper we shall characterize the
impact parameter regions for each direct/lensed/photon
ring trajectories using the ray-tracing method, and more-
over consider three standard toy models of geometrically
and optically thin accretion disks with different emission
profiles in order to find the corresponding optical appear-
ances as compared to the Schwarzschild solution.

This paper is organized as follows: in Sec. II we de-
scribe the main aspects of the black bounce geometries
and discuss their geodesic motion equations and associ-
ated effective potential. In Sec. III we use the ray-tracing
method in order to study the impact parameter region for
the three types of emission (direct/lensed/photon ring)
for the different regions of interest of the black bounce
parameter. In Sec. IV we use the three toy models
for the emission profile of the accretion disk in order to
study the observational appearance of some samples of
black bounces corresponding to the regular black hole

and traversable wormhole geometries. Finally in Sec. V
we summarize our main findings, discuss the limitations
of our approach as well as future prospects.

II. BLACK BOUNCES

A. Geometry and horizons

Let us start by considering a static, spherically sym-
metric solution of the form

ds2 = −A(x)dt2 +B(x)dx2 + r2(x)dΩ2 , (1)

where the radial coordinate x spans the entire real line,
x ∈ (−∞,+∞), while dΩ2 = dθ2 + sin2 θdφ2 is the line
element on the two spheres. The areal radius is measured
by S = 4πr2(x) and, in bouncing geometries such as
in wormhole ones, the radial function r(x) is bounded
by r ≥ rth in a model-dependent way [51]. One can
note that the above line element can be further simplified
to just two free functions by introducing a new radial
coordinate dy2 = B(x)dx2, though for the purposes of
this paper we shall keep it this form.

By black bounce (BB) we refer to the uniparametric
family of solutions given by the line element (1) with [34]

A(x) = B−1(x) = 1− 2M

r(x)
; r2(x) = x2 + a2 , (2)

where a is the BB parameter, so in this geometry one has
the wormhole throat located at r2th = a2. The most no-
ticeable feature of such geometries is the bounce (hence
its name) in the radial function, in a simple implementa-
tion of a wormhole geometry extending the Schwarzschild
solution via the replacement x → r(x), such that in the
limit a → 0 one has r2(x) ≈ x2. Whether the bounce is
hidden behind an event horizon or not can be found by
looking at the location of the horizons, gxx = A(x) = 0,
which in the present case amounts to

x±h = ±
√

4M2 − a2 , (3)

where the ± signs refer to the location of the horizon
on both sides of the throat. From these equations it
can be easily seen that the bounce will be hidden by
an event horizon if a < 2M , so in this case one finds a
regular black hole (BH) geometry1, while if a > 2M the
bounce lies above the would-be horizon and the geometry
represents instead a traversable wormhole (WH) solution
with its throat located at xth = 0. Note that in terms
of the radial function, the BH solution has its horizon at
rh = 2M , while the WH has its throat at rth = a > 2M

1 Indeed, the bounce allows for the extension of geodesics beyond
x = 0 (r = 0). For an extended discussion on geodesic complete-
ness restoration mechanisms, see e.g. [52].
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instead, and no horizon is present. The case a = 2M
was argued in [34] to correspond to a non-traversable
WH and, for the sake of this paper, we shall use it as a
limiting case in the transition BH/WH.

B. Geodesic equations

A photon travels on a null geodesic, gµνkµkν = 0, with
kµ = ẋµ its wave number. In spherical symmetry there
are two conserved quantities, namely, the energy per unit
mass, E = −gµνtµkν = Aṫ, and the angular momen-

tum per unit mass, L = gµνφ
µkν = r2φ̇ (dots indicat-

ing derivatives with respect to the affine parameter). By
spherical symmetry one can assume the motion to take
place in the plane θ = π/2 without loss of generality,
and furthermore by introducing the impact parameter,

b ≡ L
E = r2φ̇

Aṫ
, one can cast the geodesic equation for null

trajectories as

ẋ2 = E2(1− V (x)) , (4)

which is akin to the equation for a one-dimensional single
particle moving in an effective potential of the form

V (x) =
b2A(x)

r2(x)
, (5)

which is depicted in Fig.1 for the BB solution in both
the BH and WH cases as compared to the Schwarzschild
solution. Assuming a photon approaching from infinity
with an impact parameter above the critical one

b2c =
r2(xps)

A(xps)
, (6)

which corresponds to the maximum of the effective po-
tential (5), i.e., Veff (x = xps) = 1

b2c
, V ′eff (x = xps) =

0, V ′′eff (x = xps) < 0, it will get to the closest distance
r = r0 before bouncing back to infinity, while if its impact
parameter is below of it, then it will overcome the poten-
tial barrier and be free to explore the internal region of
the solution. Note that a photon with an impact parame-
ter arbitrarily close to b & bc will turn an arbitrarily large
number of times around the compact object. However,
this orbit is unstable since under a small perturbation
the photon will eventually fall into the black hole hori-
zon or escape to asymptotic infinity, and therefore this
critical curve (following the notation of [21]) defines the
innermost unstable null circular orbit.

In the present BB case, the above conditions define
the radius of this critical curve (for which we shall also
reserve the word “photon sphere”) as

xps =
√

9M2 − a2 → rps = 3M (7)

A remarkable property of the BB family of solutions is
that, when (7) is introduced in (6), it yields the crit-

ical impact parameter bc = 3
√

3M ≈ 5.19615M and,

-6 -4 -2 2 4 6
x

0.01

0.02

0.03

0.04
V(x)

Figure 1. The effective potential V (x) in (5) for the BB solu-
tions with M = b2 = 1 as a function of x for a = 0 (dashed
black, Schwarzschild solution), a = 3/2 (orange, BH case),
a = 2 (non-traversable WH, blue), a = 5/2 (traversable WH,
red) and a = 3 (gray, last photon orbit). Note that only when
a > 0 are both sides of this figure physically connected, since
in the a = 0 case, r2 ≈ x2 and because r > 0 then the two
regions x ∈ (−∞, 0), x ∈ (0,+∞) are causally disconnected.

therefore, all BB solutions have the same critical impact
parameter as the Schwarzschild one. Note that the con-
dition (7) implies that such innermost circular orbits will
exist provided that a < 3M . Therefore the BB con-
figurations relevant for shadows (i.e, having a photon
sphere) are naturally split into two families: those with
0 < a < 2M correspond to regular BHs while those with
2M < a < 3M are traversable WHs, with the a = 2M
and a = 3M acting as limiting cases.

In order to study the optical appearance of a compact
object as illuminated by all the light rays passing close
by, the geodesic equation (4) must be suitably rewritten
in terms of the variation of the azimuthal angle φ with
respect to the radial coordinate, which in the present BB
case reads

dφ

dx
= ∓ b

r2(x)
√

1− b2A(x)
r2(x)

, (8)

where the ∓ signs refer to ingoing/outgoing trajectories,
respectively. The few equations introduced in this section
is all the setup we need in order to start with the ray
tracing of the BB solutions.

III. RAY TRACING

In the ray-tracing procedure, light rays arriving to the
screen of the observer at asymptotic infinity are traced
back to the point of the sky they originated from bear-
ing in mind its deflection by the gravitational field of the
compact object, which in the BB case is determined by
Eq.(8). The physical scenario is that of a compact ob-
ject being illuminated from behind by a planar source
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Figure 2. The number of orbits, n ≡ φ
2π

, made by a light ray
on its trip from its emission source to the observer around the
BB solution for a BH with a = 3/2 (blue) and a traversable
WH with a = 5/2 (red), as compared to the Schwarzschild
solution, a = 0 (dashed black). n diverges at b = bc = 3

√
3 (in

units of M = 1), where it would perform an infinite number
of orbits around the BB object.

which emits isotropically and with uniform brightness.
In order to understand the optical appearance of the BB
solution by the ray-tracing procedure, we first define the
total number of orbits made by a single light ray on its
path from its source to the observer as the (normalized)

change in the azimuthal angle, that is, n(b) ≡ φ
2π . This

number of orbits will obviously depend on how close the
impact parameter is to the critical one and, in addition,
on the geometry of the different BB cases. Note that
within this setup, light rays in straight motion (i.e. not
being deflected at all by the BB solution) have n = 1/2.
In Fig.2 we depict the number of orbits for two sam-
ples of the BB solutions, representative of the BH and
traversable WH families. As expected, the most salient
feature of this plot is the narrow spike in both cases at
the critical impact parameter bc = 3

√
3M , representing

the location of the critical curve where a light ray would
have orbited the BB solution an arbitrarily large num-
ber of times. For other values of the impact parameter
one can see that increases in the BB parameter a yield
more orbits for the corresponding BH/WH solutions, an
effect which is significantly enhanced in the inner region,
b < bc, as we move towards the WH solutions.

The next step in our analysis is to integrate the
geodesic equation (8) for a bunch of light rays span-
ning the whole region of impact parameter values. For
impact parameters b ≥ bc light rays will be deflected
at some minimum radius above the photon sphere one
r = r0 > rps, and the corresponding trajectories can
be therefore classified according to the number of orbits
around the BB solution as follows:

• Direct emission, for n < 3/4, corresponding to tra-
jectories that intersect the equatorial plane (on its
front side) just once.

• Lensed emission, for 3/4 < n < 5/4, corresponding
to trajectories that intersect the equatorial plane
twice (on its front and back sides, respectively).

• Photon ring emission, for n > 5/4, corresponding
to trajectories that intersect the equatorial plane
at least three times.

It should be noted that for n > 5/4 one actually finds an
infinite sequence of concentric light rings converging to
the critical curve b = bc, which are exponentially closer
to each other and thinner as more number of orbits are
performed. Therefore, from now on we shall denote by
photon ring just the first of such orbits (whose range of
impact parameters depends on the BB parameter, see
Table I), and disregard all the others since their contri-
bution to the total luminosity will be negligible.

For impact parameters b < bc the ray tracing yields
trajectories that would have emerged from the central
region of the object inside the photon sphere (note that
having at least one intersection with the disk requires
that n > 1/4). In the BH case, a < 2, the backtrack of
such trajectories intersects with the event horizon, while
in the WH case, a ≥ 2, such trajectories continue their
path all the way down to the wormhole throat x = 0 given
the absence of event horizon. For the sake of this paper
we find it convenient to also split such b < bc trajectories
emerging out of the internal region of the solutions into
three cases depending on the number of orbits:

• Retro-direct emission, for n < 3/4.

• Retro-lensed emission, for 3/4 < n < 5/4.

• Retro-photon ring emission, for n > 5/4.

These retro-orbits could therefore contribute to the lu-
minosity in the observer’s screen for impact parameters
below the critical one, b < bc, as we shall see in Sec. IV.

In Table I we have displayed several impact parame-
ters covering the ranges between the critical cases a = 0
(Schwarzschild), a = 2 (transition BH/WH) and a = 3
(disappearance of the photon sphere), including two rep-
resentative cases of the BH/WH solutions, a = 3/2,
a = 5/2, respectively, to be later used in the illustra-
tion of the ray-tracing images as well as for the optical
appearance of the BB solutions when illuminated by ac-
cretion disks. There are several aspects to be underlined
in the modifications of the light rays’ impact parameters
as compared to the Schwarzschild solution. First, for
b > bc one can note a broadening in the range of impact
parameters contributing to the direct/lensed/photon ring
emissions as we increase the BB parameter a. This there-
fore leads to wider lensing/photon rings, and supposedly
would contribute to enhance the corresponding luminos-
ity in these regions. Second, in the BH case the impact
parameter region of the retro-orbits (b < bc) narrows
for the retro-direct emission, but broadens for both the
retro-lensed and retro-photon ring until the WH branch
is reached (a = 2), where the tendency is reversed until
the limit a = 3 is attained.
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Orbit/BB parameter a = 0 a = 3/2 a = 2 a = 5/2 a = 3
Direct b > 6.17 b > 6.32 b > 6.46 b > 6.64 b > 6.88
Lensed 5.22 < b < 6.17 5.25 < b < 6.32 5.27 < b < 6.46 5.33 < b < 6.64 5.44 < b < 6.88

Photon ring bc < b < 5.22 bc < b < 5.25 bc < b < 5.27 bc < b < 5.33 bc < b < 5.44
Retro-photon ring 5.19 < b < bc 5.17 < b < bc 5.04 < b < bc 5.07 < b < bc 5.13 < b < bc

Retro-lensed 5.02 < b < 5.18 4.89 < b < 5.17 4.42 < b < 5.04 4.59 < b < 5.07 4.83 < b < 5.13
Retro-direct b < 5.02 b < 4.89 b < 4.42 b < 4.59 b < 4.83

Table I. Range of impact parameters (in units of M , and taking only two decimals in order not to overload the text) for
different BB cases yielding orbits being deflected above the BB solution photon sphere radius (direct/lensed/photon ring) or
emerging from within it (retro-photon ring/retro-lensed/retro-direct). In the BH case (a < 2) those-retro-orbits would intersect
the event horizon at xh =

√
4− a2, while in the WH case (a ≥ 2) they would have emerged from the wormhole throat x = 0

(rth = a > 2). In this plot bc = 3
√

3 ≈ 5.19615 is the critical impact parameter for all the BB solutions.
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Figure 3. Ray-tracing for BB solutions with a = 0 (Schwarzschild case, left figure), a = 3/2 (BB BH case, middle figure)
and a = 5/2 (BB traversable WH case, right figure), written all of them in terms of the radial function r. The region inside
the event horizon is represented by a black circle, while the photon sphere radius is represented by the dashed thick black
circumference. The observer is located on the far right of the screen, and the different regions of the image are associated to
the number of crossings with the equatorial plane outside the critical curve: direct emission (green), lensed emission (orange),
photon ring emission (red). In addition the retro-trajectories (trajectories emerging out of the photon sphere) are also depicted:
retro-photon ring (blue), retro-lensed (purple) and retro-direct (black). The dashed yellow circumference denotes the radius of
the (spherical) mouth in the WH case. The vertical black solid line represents the location of the accretion disk in all cases.

Focusing for instance on the photon ring ones, one sees
a sharp increase in the width of the impact parameter re-
gion when moving from the BH to the WH configurations
(a = 2), as allowed by the uncloaking of the wormhole
mouth at a radius rth = a > 2M . As the BB parameter
a is further increased the contribution of the retro-direct
emission increases, while those of the retro-lensed and
retro-photon ring decreases, but the total impact param-
eter region (i.e. joint emission from both kinds of contri-
butions) is slightly increased for all the trajectories.

To illustrate this general discussion, let us take two
representative samples of the BH/WH configurations,
namely, a = 3/2 and a = 5/2, and integrate the geodesic
equation (8) for a bunch of light rays spanning the rel-
evant region of impact parameters for these three plus
three kinds of orbits. The corresponding results are
depicted in Fig.3 for values of the impact parameter
b ∈ (0, 10), alongside its comparison with the known re-
sults of the Schwarzschild case (a = 0), and we point out
that the observer’s screen is located at the far right side of

this plot in all these cases. In these figures one can clearly
see the direct (green), lensed (orange) and photon ring
(red) trajectories outside the photon sphere (r = 3M ,
dashed black), and the impact parameter’s range they
correspond to. In the BH case with a = 3/2 (middle
figure) the enhance in the impact parameter’s range as
compared to the Schwarzschild solution regarding these
trajectories is barely visible, though it is there, being
much more noticeable in the WH case (right figure). In
addition, we have plotted the retro-photon ring (blue),
retro-lensed (yellow), and retro-direct (black), originated
from inside the photon sphere, b < bc. In the BH case,
a = 3/2, these contributions would intersect the event
horizon at r = 2M (black circle), while in the WH case,
a = 5/2, such trajectories corresponds to those originated
from the throat (purple dashed circumference). All these
retro-trajectories reach the observer’s screen after circling
the BB solution and exiting the photon sphere.
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Figure 4. The first three transfer functions xm(b) for a Schwarzschild solution (a = 0, left), a BB solution of BH type (a = 3/2,
middle) and a BB solution of WH type (a = 5/2, right). The colours depict direct (blue), lensed (orange) and photon ring
(green) emissions, and include the contributions from the retro-orbits. The transfer functions get their minimum values in
impact parameter at the point in which no intersections with the accretion disk are made (n < 1/4), which are found at the
horizon radius xh =

√
4− a2 for the Schwarzschild (xh = 2, b ≈ 2.852) and BB (xh ≈ 1.322, b ≈ 2.572) solutions, while in the

BB WH case it corresponds to the location of the wormhole throat (x = 0, b ≈ 2.319).

IV. SHADOWS FROM GEOMETRICALLY AND
OPTICALLY THIN ACCRETION DISKS

We consider an optically and geometrically thin disk2

surrounding our BB solution on the equatorial plane (so
that the observer is located in the north pole), viewed
face-on, and providing the main contribution to the ob-
served intensity. To this end, we shall consider three
toy models of accretion disks (therefore disregarding the
complex modelling of the plasma in realistic astrophysi-
cal scenarios, which requires full magneto-hydrodynamic
simulations) where the specific luminosities only depend
on the radial coordinate x, and where the disks are as-
sumed to emit isotropically, Iemν = I(x), with ν the emis-
sion frequency in the rest frame of the emission:

• Model I: the emission has a sharp peak at the
innermost stable circular orbit (ISCO) for time-
like observers, while vanishing in the region inter-
nal to it and falling off asymptotically to zero be-
yond of it. In the BB case, the ISCO radius reads
xisco =

√
36M2 − a2 (or risco = 6M). Therefore

we model this emission profile as (taking M = 1)

IIem =

{
1

(x−(xisco−1))2 if x ≥ xisco
0 if x < xisco

(9)

• Model II: the emission has a sharp peak at the in-
nermost unstable circular orbit location (7), having
a qualitatively similar central and asymptotic be-
haviour as Model I. This is described by

IIIem =

{ 1
(x−(xpr−1))3 if x ≥ xpr
0 if x < xpr

(10)

2 This model describes accretion disks when the accretion rate is
sub-Eddington with a very high opacity [53], but leaves aside
those with high mass accretion rates, for instance around super-
massive black holes, which may effectively turn the accretion disk
into an optically thin but geometrically thick one [54].

• Model III: the emission starts right off the event
horizon and falls off more smoothly to zero than in
the previous two cases, being modelled as

IIIIem =

{
π/2−arctan[x−5]

π/2−arctan[xhor−5] if x ≥ xhor
0 if x < xhor

(11)

The observed intensity on the receiver’s screen is given
by the gravitationally red-shifted emitted density (disre-
garding effects associated to absorption and reflection of
light). Given the fact that Iν/ν

3 is conserved along a pho-
ton trajectory, one finds that in the line element (1) the
observed intensity at a frequency ν′ scales with respect
to the emitted one as Iobν′ = A3/2(x)I(x). Therefore,
the total observed intensity will be the integration over
the whole range of received frequencies as Iob =

∫
Iν′dν′

or, in other words, Iob = A2(x)I(x). In our ray-tracing
setup developed in Sec. III, whenever any light ray back-
tracked from the observer’s screen crosses the accretion
disk plane it will pick up additional brightness from it
depending on the number of orbits. Therefore, the total
received luminosity will be the sum of all the intensities
from all these crossings with the accretion disk as

Iob(b) =
∑
m

A2I|x=xm(b)
, (12)

where the so-called “transfer function” xm(b) contains
the information about the radius of the disk where a
given light ray with impact parameter b will have its
mth-intersection with the disk (in the coordinate x).
Moreover, its slope dx/db defines the (de)magnification
of the image for the different types of emission (di-
rect/lensed/photon ring). As it can be seen in Fig. 4,
the transfer function for the direct emission (m = 1) has
a constant nearly unit slope, while the lensed (m = 2)
and photon ring (m = 3) emissions have quite a large
slope, meaning that they are highly demagnified. Fur-
ther crossings with the disk will lead to exponentially
demagnified images [21], so they can be safely ignored .
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Figure 5. The observational appearance of the BB solutions within accretion disk Model I (9) with a = 0 (Schwarzschild, top),
a = 3/2 (BH case, middle) and a = 5/2 (WH case, bottom), viewed from a face-on orientation. From left to right one finds the
emitted profile, the observed one, and the optical appearance (in celestial coordinates) for a given BB solution. In the emission
profiles we have made use of the radial coordinate x, related to the radial function as r2 = x2 + a2 [recall Eq.(2)], which for
the Schwarzschild case reads simply as r2 ≈ x2. The observed profiles and the optical appearance are plotted as functions
of the impact parameter. In these plots xisco =

√
36M2 − a2 is the radius of the innermost stable circular orbit for time-like

observers, at which the emission of this Model I starts.

We can now proceed to study the optical appearance of
the different families of BB solutions for the three models
of emission above. To this end we depict in Figs. 5, 6 and
7 the emitted intensity (left), the observed intensity (mid-
dle), and the optical appearance (right) for each model
of emission in the Schwarzschild case (a = 0) and in the
two samples of BB BH (a = 3/2) and WH (a = 5/2)
solutions. As expected, the emission mode largely deter-
mines the qualitative shape of the optical appearance of
the BB object.

In Model I, due to gravitational lensing in the observed

intensity we clearly see the two isolated spikes repre-
senting the photon ring and lensing emissions, together
with the more gradual decrease of the direct emission
at larger impact parameter, neatly separated from each
other. Therefore, the main contribution to the total lumi-
nosity in the optical appearance is provided by the direct
emission yielding a wide rim, while inner to it we find the
lensing ring and in the innermost region the barely vis-
ible to naked eye is the photon ring. In Model II, the
direct, lensed, and photon ring emissions are overlapped
in the observed intensity in a wider range of impact pa-
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Figure 6. The observational appearance of the BB solutions within accretion disk Model I (9) with a = 0 (Schwarzschild, top),
a = 3/2 (BH case, middle) and a = 5/2 (WH case, bottom), viewed from a face-on orientation, and with a similar notation as
in Fig. 5. In these plots xph =

√
9M2 − a2 is the photon sphere radius, at which the emission of this Model II starts.

rameters. There are two peaks, one corresponding to the
beginning of the direct emission which falls off until a
superposition of the lensing and photon ring at almost
coincident impact factor produces the large spike in this
figure. However, the photon ring emission sharply falls
off, quickly followed by the lensing one, until the direct
emission dominates again. The net result is that in the
optical appearance the lensing and photon rings are su-
perimposed with the direct emission. The lensing ring
contribution can be appreciated in this figure, though
the one of the photon ring is highly diluted and barely
visible. In Model III the direct observed region in impact
parameter extends all the way down to the event horizon,
increasing from there and getting again contributions at
larger impact factors from the spike in the light ring first

and in the lensing ring shortly after, before smoothly
falling off to zero. The optical appearance in this case
shows a narrow but somewhat brighter extended ring,
made up of the contributions of the direct, lensed and
photon ring emission, though as usual the latter can be
safely ignored. This description of the optical appear-
ances in these three models is completely consistent with
the features obtained in similar images from the original
description of the Schwarzschild black hole introduced in
[21].

Moving forward to discussing the modifications of the
BB solutions as compared to the Schwarzschild one (a =
0), we first verify in Table II that the contributions of
both ILensed and IPhoton to the total luminosity as com-
pared to the direct emission IDirect (including trajecto-
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Figure 7. The observational appearance of the BB solutions within accretion disk Model III with a = 0 (Schwarzschild, top),
a = 3/2 (BH case, middle) and a = 5/2 (WH case, bottom), viewed from a face-on orientation, and with a similar notation as
in Fig. 5. In these plots xh =

√
4M2 − a2 is the horizon radius, since in Model III the emission goes all the way down to it.

In the WH case (bottom panel) we have slightly displaced the beginning of this emission from x = 0 (its throat) for numerical
convergence reasons.

.

ries both above and below the critical impact parameter),
though obviously emission-model-dependent, are signifi-
cantly increased as a grows. Indeed, when moving from
a = 0 (Schwarzschild) to a = 3/2 (BB BH), the ILensed
contribution slightly rises for all the three models of the
accretion disk, while those enhances are much more no-
ticeable in the contributions from IPhoton, though still
pretty much negligible as compared to IDirect. These in-
creases are much more severe when moving to a = 5/2
(WH branch), where the contribution of ILensed can be
twofold the original one (in Model II). Moreover, the con-
tribution of the IPhoton can be up to a factor ∼ 5 in Mod-
els II and III. This is due to the broadening of the impact

factor region for both the lensed and photon trajectories
in the WH case, as discussed in the ray-tracing of Sec.
III, and that can be also seen in wider regions for the
peaks of the observed intensities in the middle panels of
Figs. 5, 6 and 7.

Regarding the optical appearances (right panels), there
are some tiny changes (for the BH case) but moderate
ones (for the WH case) in the widths and intensities of the
different light rings for all the emission models, which are
barely visible in these plots for the BH case as compared
to the Schwarzschild solution, but much more noticeable
in the WH one, as expected. This is particularly true for
Model III, where the extended impact parameter region
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Model/Iob BB parameter IDirect ILensed IPhoton

Model I
a = 0 0.949 0.0494 0.00182

a = 3/2 0.942 0.0549 0.00264
a = 5/2 0.930 0.0618 0.00839

Model II
a = 0 0.901 0.0940 0.00412

a = 3/2 0.878 0.1145 0.00731
a = 5/2 0.798 0.1760 0.02589

Model III
a = 0 0.926 0.0715 0.00281

a = 3/2 0.908 0.0871 0.00506
a = 5/2 0.877 0.1094 0.01398

Table II. Contributions of the direct, lensed, and photon
ring emissions (including both b ≷ bc trajectories) to the
(normalized) total emission as seen by the observer, for the
Schwarzschild (a = 0), BB BH (a = 3/2) and WH (a = 5/2)
solutions.

for both the lensing and photon rings (clearly visible in
the corresponding observed luminosities) manifest as an
additional boost of luminosity right in the middle of the
direct emission, such that the combination of the lensing
and photon ring contributions are now clearly visible.
Large enhances of the contribution of the photon ring to
the total luminosity have also been observed in certain
models of compact objects with “flattened” regions in the
effective potential [29].

V. CONCLUSION AND PROSPECTS

In this work we have considered the optical appearance
(light rings and shadows) of an uniparametric family of
(spherically symmetric) extensions of the Schwarzschild
solution when illuminated by a thin accretion disk. Such
a black bounce family smoothly interpolates between the
Schwarzschild solution and two classes of solutions: regu-
lar black holes and traversable wormholes, and therefore
it allows to compare the shadows cast by conceptually dif-
ferent objects on an equal footing. Moreover, this model
has the additional advantage of having the last unstable
orbit located exactly at the same critical impact param-
eter as in the original Schwarzschild solution for all the
different BB configurations.

Using the ray-tracing procedure, we have classified the
different light trajectories according to the number of or-
bits performed around the BB solution, splitting them
into three main contributions according to the number
of intersections with the equatorial place: direct (one),
lensed (two) and photon ring (three). Though in purity
at the critical impact parameter the light ray would turn
an infinite number of times, the subsequent contributions
will be so demagnified that they can be safely ignored re-
garding their contributions to the total luminosity of the
object. We found that, as the BB parameter increases,
the impact parameter regions for these three contribu-
tions to the total luminosity are moderately enhanced,
particularly in the WH case due to the retro-orbits flow-
ing from the throat region thanks to the absence of an
event horizon.

Next we considered a scenario of optically and geomet-
rically thin accretion disks as the main source of illumina-
tion of the BB solutions, using three standard toy mod-
els whose emitted intensity peaks at the innermost stable
orbit for time-like observers, at the last unstable circu-
lar orbit for photons, and near the horizon (in the BH
case), or the throat (in the WH case). These three mod-
els are chosen on the grounds that they simulate different
physical scenarios and yield qualitative different observed
emissions and their respective optical appearances for a
given solution. The main modifications induced by the
BB solutions as compared to the original Schwarzschild
solution are an increase in the contributions of the lensed
and photon ring emissions as compared to the direct one,
which in the WH case are noticeable enough to be per-
ceived at naked eye in some of the optical appearances
plots.

The results found in this paper, though pointing to
some differences in the shape of light rings and shadows of
the BB solutions as compared to the Schwarzschild one,
are in agreement with the running discussion on the com-
munity regarding the difficulty for testing hints of new
Physics given the many elements involved in this analysis.
In the model presented here, one would need to generalize
it to include rotation [46] in order to study the deviations
in the circularity of the shadow when getting close to ex-
tremality rotation ratios. Moreover, the description of
the accretion disks could be improved from the optically
and geometrically thin modelling to a geometrically thick
one, and the face-on orientation should be upgraded to
consider modest inclinations of the disks and their effects
in the optical appearances of the BB solution which, to-
gether with the addition of rotation, may significantly
modify the total luminosity [55] and, therefore, the opti-
cal appearance. Finally, the presence of wormhole struc-
tures yields interesting new possibilities, such as shadows
from objects without accretion disks due to contribution
of those disks on the other side of the wormhole and flow-
ing through the wormhole throat, or the generalization
of our analysis to reflection-asymmetric wormholes since
they produce effective potentials with two maxima (i.e.
two unstable circular orbits), which can be capable to
yield additional light rings [56, 57].

To conclude, whether the combination of all the above
elements could be able to lead to further enhances in the
brightness of the photon ring region, now including also
additional contributions of the bands with m > 3, is yet
to be seen. Given the promises of the observational teams
working on achieving better resolution for the optical ap-
pearance of black hole candidates in order to test GR to
better precision, combined with some new ideas to test
the photon sphere using interferometer [58] or via corre-
lated intensity fluctuations [59], this field is ripe for the
existing zoo of non-canonical compact objects to extract
observational discriminators with respect to GR predic-
tions.
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