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Abstract In this work, we have extended the factorization method of scalar shape-invariant
Schrödinger Hamiltonians to a class of Dirac-like matrix Hamiltonians. The intertwining
operators of the Schrödinger equations have been implemented in the Dirac-like shape invari-
ant equations. We have considered also another kind of anti-intertwining operators changing
the sign of energy. The Dirac-like Hamiltonians can be obtained from reduction of higher
dimensional spin systems. Two examples have been worked out, one obtained from the sphere
S2 and a second one, having a non-Hermitian character, from the hyperbolic space H2.

1 Introduction

In this work, our starting point will be the one-dimensional Schrödinger equations that can
be algebraically solved by the well known method of factorization [1]. This method has
a long history of applications to quantum mechanics since the early times when it was
already used by Dirac and Schrödinger [2,3]. The basis of the method can be described
as the building of a sequence (or hierarchy) of shape invariant Schrödinger Hamiltonians
connected by intertwining operators [4–6]. The knowledge of such intertwining operators
and their annihilated functions solves the eigenvalue problem for all the eigenvalue equations
in the Hamiltonian hierarchy. Our objective here is to widen the factorization method from
the Schrödinger second order scalar equations to a kind of first order matrix Dirac-like
equations. We will associate to each of these hierarchies of Schrödinger equations another
hierarchy made up of matrix equations similar to Dirac Hamiltonians in one variable [7].
Note that L.M. Nieto et al extended the Darboux transformations (intertwining operators)
for Schrödinger differential operators to the one dimensional Dirac equation in an exhaustive
study [8]. However, we remark that in the present work our approach will be different and we
will show other complementary applications of the matrix intertwining method. This type
of Dirac-like factorization hierarchies will have also a kind of intertwining operators which
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correspond to those of the scalar case in a natural way. Let us remark that some particular
cases of such Dirac-like Hamiltonian hierarchies have been found previously when solving
the Dirac equation for some external magnetic fields [9–20]. In this work, we plan to undertake
a systematic study of such a kind of matrix Hamiltonians.

Among the purposes of this work, we want to understand the origin of the “Dirac factor-
izations” from symmetry considerations. In fact, we will show that the class of Dirac-like
Hamiltonians related to factorizable Schrödinger equations can be explained by means of a
reduction of higher dimensional problems in flat and curved spaces. These initial systems
must have symmetries, including spin, which allow the reducing process. Our program con-
sist in the following steps. We will begin with a free Hamiltonian on a flat or curved space.
If this Hamiltonian is scalar, it will lead, by reduction, to some of the Schrödinger factorized
Hamiltonians. If that Hamiltonian is a kind of spin-orbit coupling then, after a reduction
process, it will lead us to a particular kind of the Dirac-like Hamiltonians proposed for each
factorization type. The intertwining operators of the reduced Dirac Hamiltonians will be
recovered from the symmetries of the initial system, but we remark that there will appear
new intertwining operators. We have restricted in this paper to some specific two-dimensional
spaces, the sphere S2 and the hyperboloid H2, for the sake of simplicity and to keep it within
a reasonable length, but this program can in principle be applied to all the factorization cases
[1].

In a similar way as the Klein-Gordon equation is obtained by “squaring” the Dirac equa-
tion, we will have a similar property where the scalar second order Schrödinger factorized
Hamiltonian is obtained by taking the square (in an appropriate way) of the associated Dirac-
like Hamiltonian.

The organization of this work is as follows. In the second section, the factorization method
is introduced briefly in order to set the notation of increasing and decreasing hierarchies used
along the paper. The third section is devoted to Dirac-like Hamiltonians related with increas-
ing hierarchies. Next, in the fourth section, an example on S2 is given and the connection with
symmetry group reduction is examined. In the fifth section the same procedure is applied to
find Dirac-like Hamiltonians for decreasing hierarchies which in this case are non-Hermitian
[25]. Here, the space H2 will be used in order to get an example of this type of Dirac-like
Hamiltonians. Finally, this work will end with some conclusions and remarks.

2 Hierarchies of 1D Schrödinger Hamiltonians

In the following sections we will specify how is the correspondence of 1D Schrödinger
and Dirac Hamiltonian hierarchies of equations. But first, it is necessary to distinguish three
cases of hierarchies of shape invariant Schrödinger equations (also referred as shape-invariant
potentials). These are well known [1,4–6], but here we will briefly introduce them in order
to set the notation.

• Increasing hierarchy (or I-hierarchy)
Consider the Schrödinger hierarchy of second order Hamiltonians Hn which can be
factorized as follows:

Hn = −∂xx + Vn(x) = a+
n a

−
n + μ2

n = a−
n−1a

+
n−1 + μ2

n−1, n = 0, 1, . . . (2.1)

where ∂xx := d2

dx2 . Let us explain the standard notation here used. The first order operators
a±
n are defined by
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a±
n (x) = ∓∂x + wn(x) (2.2)

Here, ∂x is the derivative with respect to x , ∂x := d
dx ; the functions wn(x) are called super-

potentials and, according to eq. (2.1), satisfy the following relations with the potential
Vn(x),

Vn(x) = wn(x)
2 − w′

n(x) + μ2
n = wn−1(x)

2 + w′
n−1(x) + μ2

n−1 (2.3)

where w′
n(x) := dwn(x)

dx . The factorization energies μ2
n are assumed to be positive, but

the following results can be also adapted to other factorization energies, as we will see
later.

In all the hierarchies, in particular in this I-hierarchy, we will also assume that a−
n are

annihilation operators, in other words the equation

a−
n ψ0

n = 0, �⇒ ψ0
n (x) = K e− ∫

wn(x)dx (2.4)

(where K is an integration constant) determines a square-integrable function ψ0
n (x). The

function ψ0
n (x) corresponds to the ground state of Hn , while μ2

n is the ground state energy
(this is consistent with the factorization (2.1)):

E0
n = μ2

n (2.5)

This sequence of Hamiltonians Hn has increasing ground energies. The key factorization
property (2.1) implies that the operators a−

n intertwine the consecutive Hamiltonians Hn

and Hn+1:

a−
n Hn = Hn+1a

−
n , Hna

+
n = a+

n Hn+1 (2.6)

The annihilation operators a−
n go towards the Hamiltonians on the right (index n) but

decrease the energy level (index k). The creation operators a+
n act in the opposite way:

a−
n : ψk

n → ψk−1
n+1 , a+

n : ψk−1
n+1 → ψk

n (2.7)

In fact,

a−
n ψk

n =
√

μ2
n+k − μ2

n ψk−1
n+1 , a+

n ψk−1
n+1 =

√
μ2
n+k − μ2

n ψk
n (2.8)

The k-excited eigenfunction ψk
n of Hn can be obtained from the ground eigenfunction

ψ0
n+k of Hn+k , by means of creation operators:

ψk
n ∝ a+

n a
+
n+1 . . . a+

n+k−1ψ
0
n+k , Ek

n = μ2
n+k (2.9)

An example of this increasing hierarchy type is the trigonometric Pöschl-Teller (PT)
Hamiltonians as we will see later.

• Decreasing hierarchy (or D-hierarchy) Next, we start from a Schrödinger hierarchy of
second order Hamiltonians Hn satisfying the following factorization property:

Hn = −∂xx + Vn(x) = a+
n a

−
n − μ2

n = a−
n+1a

+
n+1 − μ2

n+1, n = 0, 1, . . . (2.10)

The first order operators a±
n are defined in the same way as (2.2). The superpotentials

wn(x) and the potentials Vn(x) are here related by

Vn(x) = wn(x)
2 − w′

n(x) − μ2
n = wn+1(x)

2 + w′
n+1(x) − μ2

n+1 (2.11)
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The factorization energies are given by −μ2
n , where μ2

n are real numbers which we
will assume to be positive. The annihilation operator a−

n determines the ground state
wavefunction ψ0

n (x) of Hn ,

a−
n ψ0

n = 0, E0
n = −μ2

n

where −μ2
n is the negative ground state energy, in a similar way as in the previous positive

case (2.4)–(2.5).
Here the sequence of Hamiltonians Hn have decreasing ground energies. In the D-

hierarchies, the factorization property (2.10) implies that the operators a±
n intertwine the

consecutive Hamiltonians, Hn and Hn−1, as follows:

a−
n Hn = Hn−1a

−
n , Hna

+
n = a+

n Hn−1 (2.12)

The annihilation operators a−
n go towards the Hamiltonians to the left (in index n) and

decrease the energy level (index k). The creation operators a+
n go in the opposite way:

a−
n : ψk

n → ψk−1
n−1 , a+

n : ψk−1
n−1 → ψk

n

a−
n ψk

n =
√

μ2
n − μ2

n−k ψk−1
n−1 , a+

n ψk−1
n−1 =

√
μ2
n − μ2

n−k ψk
n

(2.13)

The k-excited eigenfunction ψk
n of Hn can be obtained from the ground eigenfunction

ψ0
n−k of Hamiltonians to the left Hn−k , by means of creation operators:

ψk
n ∝ a+

n a
+
n−1 . . . a+

n−k+1ψ
0
n−k, Ek

n = E0
n−k = −μ2

n−k, k = 1, 2 . . . (2.14)

An example of this decreasing hierarchy type is the sequence of hyperbolic Pöschl-Teller
Hamiltonians.

• Equal hierarchy (or E-hierarchy).
This is a hierarchy where all the factorizacion energies are equal:

μ2 = μ2
n, ∀n (2.15)

In this case the spectrum of all the Hamiltonians Hn are the same (they are isospectral).
The operators a±

n are neither annihilation nor creation, they could be called iso-operators.
This case will not be considered in this work.

3 Hierarchies of 1D Dirac Hamiltonians: increasing case

Consider an increasing hierarchy of Schrödinger Hamiltonians Hn characterized by the fac-
torization (2.1). Then, we can form a 2 × 2 matrix Hamiltonian hierarchy hn defined by

hn =
(

μn ia+
n

−ia−
n −μn

)

(3.16)

We will refer to this first order matrix operator hn as a Dirac-like Hamiltonian. This type of
Dirac-like Hamiltonians have been obtained in a number of problems related with Dirac-Weyl
systems in planar graphene, spherical surfaces or for other cases with cylindrical symmetry
[9–15].

The matrix Hamiltonian hn in (3.16) is explicitly Hermitian from a formal point of view.
The square of hn gives a pair of Schrödinger Hamiltonians of the scalar I-hierarchy in the
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diagonal, therefore in this sense it mimics the Dirac Hamiltonians:

h2
n =

(
Hn 0

0 Hn+1

)

:= Hn (3.17)

Next, we will look for a pair of first order matrix differential (anti)intertwining operators A±
n

between the matrix Hamiltonians hn and hn+1 (similar to the operators a±
n between Hn and

Hn+1 in (2.6) for the I-hierarchy):

A−
n hn = γ hn+1A

−
n , hn A

+
n = γ A+

n hn+1 (3.18)

where γ is for a sign. As a consequence of (3.18), the operators A±
n will also intertwine h2

n
and h2

n+1:

A−
n h

2
n = h2

n+1A
−
n , h2

n A
+
n = A+

n h
2
n+1 (3.19)

where A±
n = (A∓

n )
†. There are two solutions to this problem (up to a multiplicative constant):

a) True intertwining operators (γ = 1)

R−
n =

(
a−
n i(μn+1 − μn)

0 a−
n+1

)

, R−
n hn = hn+1R

−
n (3.20)

b) Anti-intertwining operators (γ = −1)

T−
n =

(
a−
n −i(μn+1 + μn)

0 −a−
n+1

)

, T−
n hn = −hn+1T

−
n (3.21)

One couple, R±
n , plays the role of the usual intertwining operators; but there is a new pair

T±
n carrying a minus sign that we call anti-intertwining. This possibility is specific of Dirac-

like Hamiltonians where the spectrum includes a negative sector, as we will see in the next
subsection.

3.1 Spectrum of the Dirac hierarchy hn

We will compute the eigenfunctions and eigenvalues of each Dirac Hamiltonian (3.16),

hn�
k
n = εkn�

k
n (3.22)

where εkn designs the kth excited level of the energy eigenvalues of Hamiltonian hn and �k
n is

a corresponding spinor eigenfunction. According to the square of hn given in (3.17), we will
express the spectrum and eigen-spinors of hn (εkn and �k

n ) in terms of the eigenfunctions of
the scalar Schrödinger Hamiltonians Hn (μ2

n+k , ψk
n ) and Hn+1 (μ2

n+k+1, ψk
n+1), respectively.

We make the natural ansatz

�k
n =

(
α ψk

n

iβ ψk−1
n+1

)

, α, β ∈ C (3.23)

where α, β must be computed by substituting in the eigenvalue equation for hn defined in
(3.16). There are two signs for the energy. Then, to specify the energy sign ± we will write
εk±n and �k±

n for the respective eigenfunctions. After some computations we get the following
solutions (they are not normalized).
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• Positive spectrum

εk+n = μn+k, �k+
n =

( √
μn+k + μn ψk

n

−i
√

μn+k − μn ψk−1
n+1

)

, k = 1, 2, . . .

Ground level :

ε0+
n = μn, �0+

n =
(

ψ0
n

0

)

, k = 0

(3.24)

• Negative spectrum

εk−n = −μn+k, �k−
n =

( √
μn+k − μn ψk

n

i
√

μn+k + μn ψk−1
n+1

)

, k = 1, 2, . . . (3.25)

Notice some properties of the spectrum.

1. The positive and negative solutions �k±
n are solutions of the square of hn with the same

positive eigenvalue:

(hn)
2�k±

n =
(
Hn 0

0 Hn+1

) ( √
μn+k ± μn ψk

n

∓i
√

μn+k ∓ μn ψk−1
n+1

)

= μ2
n+k �k±

n (3.26)

2. The ground level k = 0 exists only for positive energies, while the “ground negative”
energy level is reached for k = 1.

3. The eigenfunctions for positive energy have the upper component with bigger norm than
the lower one, while eigenfunctions of negative energy have oposite character: the norm
of the lower component is bigger than the upper.

4. Eigenfunctions of positive and negative energies are orthogonal.

3.2 The spectrum for a null factorization energy (Dirac–Weyl like equation)

Up to now we have assumed that each Dirac Hamiltonian hn , as it is defined in (3.16), has
the factorization energy (it may play the role of mass) given by μn . However, we could
be interested in the spectrum of a particular hn0 with n = n0, having a different value of
the factorizacion energy, for instance μn0 = 0, (it would correspond to a null mass case
associated to a Dirac–Weyl like equation).

In principle, the Schrödinger Hamiltonian hierarchy (increasing (2.1) or decreasing (2.10))
will have μ2

n0
�= 0. Then, we will subtract from all the Hamiltonian hierarchy {Hn = a+

n a
−
n +

μ2
n} the same value: μ2

n0
= E0

n0
. Hence, we will have the new sequence {H̃n = a+

n a
−
n + μ̃2

n}
where

μ̃2
n = μ2

n − μ2
n0

This new hierarchy has the same properties, intertwining, eigenfunctions, etc. except the
spectrum that now will be displaced the same amount:

Ẽk
n = Ẽ0

n+k = μ̃2
n+k = E0

n+k − E0
n0

, Ẽ0
n0

= 0
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In other words, the ground energy of the displaced Hamiltonian H̃n0 is zero and the corre-
sponding Dirac Hamiltonian h̃n0 will have zero mass:

h̃n =
(

μ̃n ia+
n

−ia−
n −μ̃n

)

, h̃n0 =
(

0 ia+
n0

−ia−
n0

0

)

, μ̃n0 = 0 (3.27)

The formulas for the positive (3.24) or negative (3.25) spectrum ε̃k±n and wave functions
�̃k±

n will still be valid, with the replacement of the new values of μ̃n in their respective
expressions.

3.3 Eigenfunctions annihilated by the intertwining operators

Next, we want to know what kind of eigenfunctions annihilate the intertwining operators
R−
n and T−

n . Since they are first order linear 2 × 2-matrix differential operators, they must
annihilate two linearly independent spinor functions.

• Eigenfunctions annihilated by R−
n

1) The ground state of positive energies:

�0+
n =

(
ψ0
n

0

)

, ε0+
n = μn

2) The “ground state” of negative energies:

�1−
n =

( √
μn+1 − μn ψ1

n

i
√

μn+1 + μn ψ0
n+1

)

, ε1−
n = −μn+1

• Eigenfunctions annihilated by T−
n

1) The ground state of positive energies:

�0+
n =

(
ψ0
n

0

)

, ε0+
n = μn

2) The first excited state of positive energies:

�1+
n =

( √
μn+1 + μn ψ1

n

−i
√

μn+1 − μn ψ0
n+1

)

, ε1+
n = μn+1

In conclusion, the matrix intertwining operators R−
n and T−

n annihilate some of lowest energy
states of the Hamiltonians hn , in a similar way as the factor operators a−

n do for the ground
states of Hn . However, in the matrix case there are more options due to the two sectors (positive
and negative) of the spectrum and the fact that each intertwining operator annihilates two
independent states.

3.4 Symmetries from intertwining operators

As we have seen in a precedent subsection, the spectrum of this type of Dirac Hamiltonians
hn has simple degeneracy: the eigenspaces are one-dimensional. This means that there are
no additional independent symmetry, or in other words, any symmetry must be a function of
the Hamiltonian hn .
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A method to build symmetries is by means of the product of two intertwining operators
in opposite direction; for instance Sn obtained by the product R+

n R−
n will be a symmetry of

hn :

R−
n hn = hn+1R

−
n , hn R

+
n = R+

n hn+1 �⇒ [Sn, hn] = 0

Therefore, this symmetry must be a function of hn . After a computation we find:

Sn = R+
n R−

n = (hn − μn)(hn + μn+1)

and the commutator is

R+
n R−

n − R−
n−1R

+
n−1 = hn(μn+1 − 2μn + μn−1) + μn(μn−1 − μn+1)

This result seems reasonable since we have seen before that the operator R−
n annihilates

eigenvectors with eigenvalues μn and −μn+1 and the same happens with the operators on
the right hand side of the last equality.

The symmetry obtained from the other intertwining (anti-intertwining) operator:

S′
n = T+

n T−
n

will have a similar expression,

S′
n = (hn − μn)(hn − μn+1)

and in this case the commutator has the form

T+
n T−

n − T−
n−1T

+
n−1 = −hn(μn+1 + 2μn + μn−1) − μn(μn−1 − μn+1)

This is consistent with the eigenvectors (and their eigenvalues) annihilated by T−
n (see the

previous subsection).

3.5 Intertwining operators for m0-mass Dirac-like Hamiltonians

In this subsection, we will mention briefly how our approach to Dirac-like matrix Hamilto-
nians is compatible with a constant mass m0.

Firstly, we define the 4 × 4 Dirac-like Hamiltonian Hn with mass m0 from the previous
hn as follows [9,10,17]:

Hn =
(
m0c2 hn

hn −m0c2

)

(3.28)

Then, we can also introduce 4×4 intertwining operators for the hierarchy Hn , in terms of the
previous 2×2 operators, R±

n = (R∓
n )† and T±

n = (T∓
n )†. In fact, we have two extensions for

each pair having the following form (together with their adjoint operators and taking c = 1):

R−
n =

(
R−
n 0

0 R−
n

)

, R̃−
n =

(−m0M− R−
n

R−
n m0M−

)

(3.29)

T −
n =

(−T−
n 0

0 T−
n

)

, T̃ −
n =

(
m0M− −T−

n

T−
n m0M−

)

(3.30)

where

M− := −iσ+ = −i(σ1 + iσ2)

123
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is a constant matrix which satisfies the following (anti)commutation relations with the 2 × 2
Hamiltonians hn :

M−hn + hn+1M
− = −2R−

n , M−hn − hn+1M
− = −2T−

n

It can be checked that all these global intertwining operators fulfil the usual type of inter-
twining relations, for example:

R−
n Hn = Hn+1R−

n , T −
n Hn = Hn+1T −

n

The adjoint operators R+
n = (R−

n )† and T +
n = (T −

n )† will satisfy the opposite intertwining
relations. Finally, we can say that in fact we have obtained a four dimensional vector space of
global intertwining operators for the same hierarchy of 4 × 4 Hamiltonians Hn . In principle,
this is surprising because in scalar Hamiltonian hierarchies there is only one set of factor
intertwining operators for the same hierarchy. In our case, the degeneracy of the positive and
negative energy levels of each Hamiltonian Hn allows that the intertwining operators be non
unique.

Let us obtain the eigenfunctions and the spectrum of Hn . The eigenvalue equation is

Hn 
ks
n = Ek

n± 
ks
n (3.31)

where the energy is Ek
n± and each state 
ks

n is composed of two eigen-spinors of hn of same
type:


ks
n =

(
�ks

n

�ks
n

)

(3.32)

For instance, �ks
n corresponds to the eigenvalue εksn of the n-Hamiltonian hn , k-energy level,

and energy sign s = ±. Using Hn in the eigenvalue equation, we get two coupled equations:

m0c
2�ks

n + hn�
ks
n = Ek

n±�ks
n , −m0c

2�ks
n + hn�

ks
n = Ek

n±�ks
n (3.33)

From these equations, we obtain the following relations

�ks
n± = hn�ks

n

Ek
n± + m0c2

, �ks
n± = hn�ks

n

Ek
n± − m0c2

(3.34)

Substituting these in (3.33), we get the equations for the spinors � and �

h2
n�

ks
n = ((Ek

n )2 − m2
0c

4)�ks
n , h2

n�
ks
n = ((Ek

n )2 − m2
0c

4)�ks
n (3.35)

taking into account h2
n�

ks
n = (εksn )2�ks

n , we get the eigenvalues

Ek
n± = ±

√
(εksn )2 + m2

0c
4 = ±

√
μ2
n+k + m2

0c
4 (3.36)

where Ek
n = (εkn)

2 = μ2
n+k , as shown in (3.26). Then, we find the eigenfunctions:


ks
n+ =

(
�ks

n

�ks
n+

)

, �ks
n+ = s μn+k�

ks
n√

μ2
n+k + m2

0c
4 + m0c2

(3.37)

or


ks
n− =

(
�ks

n−
�ks

n

)

, �ks
n− = − s μn+k�

ks
n√

μ2
n+k + m2

0c
4 + m0c2

(3.38)

123
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We notice that the spectrum (3.36) for a non-vanishing m0 is symmetric in the positive and
negative eigenvalue sectors, contrary to hn . The eigenvalues have double degeneracy s = ±,
except for the ground energy of each sector which has simple degeneracy.

4 Example: the Trigonometric Pöschl–Teller Potential

An example of a hierarchy of increasing type is the following sequence of PT Schrödinger
Hamiltonians

Hn(x) = −∂xx + (n + 1/2)(n − 1/2)

sin2 x
, x ∈ (0, π), n ∈ N (4.39)

Hn(x) satisfy the factorization given by (2.1). The factor operators and factor energies are

a±
n (x) = ∓∂x − (n + 1/2) cot x, μ2

n = (n + 1/2)2, n = 0, 1, 2, . . . (4.40)

Therefore, the associated Dirac Hamiltonians hn are defined, according to (3.16), by

hn =
(

n + 1/2 i(−∂x − (n + 1/2) cot x)

−i(+∂x − (n + 1/2) cot x) −n − 1/2

)

(4.41)

Their square reproduce the Hamiltonians Hn and Hn+1, as it is given in (3.17). The explicit
intertwining operators, given by (3.20) and (3.21), take here the expressions

R−
n =

(
∂x − (n + 1/2) cot x i

0 ∂x − (n + 3/2) cot x

)

(4.42)

and

T−
n =

(
∂x − (n + 1/2) cot x −i(2n + 2)

0 −(∂x − (n + 3/2) cot x)

)

(4.43)

In the next subsection, we will explain the origin of the scalar and matrix hierarchies together
with the (anti)intertwining operators.

4.1 Dirac-like equations for systems on the S2 sphere

Here we want to show how these two Hamiltonians, the scalar PT Schrödinger one (4.39)
and the matrix PT Dirac (4.41), can be obtained by reduction of a scalar and a spinor particle
systems respectively, defined on the S2 sphere. We will start with the scalar case, which is
more or less well known, and then we will introduce the one of Dirac type, which is new up
to our knowledge.

(a) Scalar system

Let us consider a system on the two-dimensional sphere S2 defined by the points (x, y, z) ∈
R

3 satisfying

x2 + y2 + z2 = 1

The SO(3) group will act in the usual way on the scalar wavefunctions ψ̃(x) defined on S2,

U (g)ψ̃(x) = ψ̃(g−1x), g ∈ SO(3) (4.44)
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If we use Cartesian (x, y, z) or spherical (r, θ, φ) coordinates

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ

the Hermitian generators Li , i = 1, 2, 3 (or Lx , Ly, Lz) of SO(3) represented by (4.44) are
given by:

Lx = −i(y∂z − z∂y) = i(sin φ ∂θ + cos φ cot θ ∂φ)

Ly = −i(z∂x − x∂z) = i(− cos φ ∂θ + sin φ cot θ ∂φ)

Lz = −i(x∂y − y∂x ) = i(−∂φ)

(4.45)

We recall the notation of the lowering and raising angular momentum operators:

L± = Lx ± i L y, L± = e±iφ(±∂θ + i cot θ∂φ) (4.46)

such that

[Lz, L
±] = ±L±, [L−, L+] = −2Lz

The quadratic Casimir operator H̃ := C = L2
x + L2

y + L2
z plays the role of a free

two-dimensional Hamiltonian in the space of wavefunctions defined on the sphere, with
eigenvalues �(�+1) corresponding to the eigenfunctions of each irreducible representation:

H̃ ψ̃� =
(

−∂θθ − cot θ∂θ − ∂φφ

sin2 θ

)

ψ̃� = �(� + 1)ψ̃�, � = 0, 1, . . . (4.47)

We will eliminate the term with the first partial derivative by means of the transformation

ψ̃ = 1√
sin θ

ψ �⇒ ∂θ → ∂θ − 1

2
cot θ; H̃ → H − 1/4 (4.48)

After applying this transformation, we get the following Hamiltonian equation (with H :=
H̃ + 1/4) in a explicitly Hermitian equivalent form

Hψ� =
(

−∂θθ − 1/4 + ∂φφ

sin2 θ

)

ψ� = (� + 1/2)2 ψ�, � = 0, 1, . . . (4.49)

In summary, the above Schrödinger Hamiltonian can be identified, in the realization (4.48),
with the SO(3) Casimir operator (plus the constant 1/4)

H = L2 + 1/4 (4.50)

If we take separated solutions, which are also eigenfunctions of the generator Lz defined in
(4.45),

ψ�n(θ, φ) = ψ�n(θ)einφ, Lzψ�n(θ, φ) = n ψ�n(φ, θ), |n| ≤ � (4.51)

the component ψ�n(θ) will satisfy the reduced equation

Hnψ�n =
(

−∂θθ + (n + 1/2)(n − 1/2)

sin2 θ

)

ψ�n = (� + 1/2)2 ψ�n, n = 0,±1, · · · ± �

(4.52)

If we fix the eigenvalue by means of the parameter � then, the Hamiltonians Hn having
this eigenvalue are those parametrised by n = 0,±1, . . . ,±�. The states span the 2� + 1–
dimensional representation “�” of SO(3) with eigenvalue ε�n = (� + 1/2)2.
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On the other hand, once selected a value n, the spectrum of the reduced Hamiltonian Hn

is given by the eigenvalues

Ek
n = (n + k + 1/2)2, k = 0, 1, . . . , n + k := �

Equation (4.52) is the same as the initial one (4.39) of the PT potential (with the variable
θ instead of x) and the factorization energies μ2

n coincide with E0
n . Therefore, we have the

following connection between the eigenvalue notation (Ek
n , ψ

k
n (θ)) and the notation of SO(3)

representations (ε�n = (� + 1/2)2, ψ�n):
⎧
⎨

⎩

Hnψ
k
n = Ek

nψ
k
n , Ek

n = (n + k + 1/2)2

Hnψ�n = ε�nψ�n, ε�n = (� + 1/2)2
�⇒ n + k = � �⇒

⎧
⎨

⎩

ψk
n = ψ(n+k)n

ψ�n = ψ�−n
n

This relationship tell us that the eigenfunctions of this hierarchy Hn are essentially spherical
harmonics (subjected to the above transformation):

ψk
n (θ)einφ ∝ √

sin θ Y�n(θ, φ), � = n + k (4.53)

In particular, for k = 0 have the form:

ψ0
n (θ)einφ ∝ √

sin θ Ynn(θ, φ)

If we apply the transformation (4.48) to the orbital angular operators (4.46), they become

L+ = eiφ
(
∂θ + cot θ(−1/2 + i∂φ)

)
, L− =

(
− ∂θ + cot θ(−1/2 + i∂φ)

)
e−iφ

(4.54)

where now it is explicit the adjoint relation (L+)† = L−. If we allow them to act on the
separated solutions (4.51) we find the reduced expressions

L+
n = ∂θ − cot θ(1/2 + n), L−

n = −∂θ − cot θ(1/2 + n) (4.55)

which coincide with the intertwining operators a−
n (corresponds to L+

n ) and a+
n (to L−

n ),
given in (4.40).

Next, we want to carry out a similar construction of the Dirac-like Hamiltonian (4.41) by
means of a spinor realization of SO(3) (or better, its universal covering SU (2)) on the sphere
S2.

(b) Spinor system

We will consider an spinor system defined on the unit sphere by means of two-component
wavefunctions �(x), x ∈ S2. The action of the group SU (2) on a function of this space has
the usual form

U (g)�(x) = D(g)�(g−1x), g ∈ SU (2)

where D is for the spin 1/2 fundamental representation of SU (2), and the action of g ∈ SU (2)

on S2 is through the homomorphism of SU (2) onto SO(3). The generators corresponding
to this action are given by the total rotations (orbital plus spin):

Ji = Li (θ, φ) + 1

2
σi := Li (θ, φ) + Si , i = 1, 2, 3

with σi (σ1 = σx , σ2 = σy, σ3 = σz) being the three 2 × 2 Pauli spin matrices. These
operators close the su(2) ≈ so(3) Lie algebra. In this case, the Casimir operator is

Cs = J2 = L2 + 2LS + S2 (4.56)
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It is clear that L2 and S2 are also Casimir operators for the spinor system (both commute with
all the generators Ji ). Therefore, another Casimir operator commuting with the operators J
is

h̃ := Cso = 2LS = 2

(
∑

k

Lk Sk

)

(4.57)

which has the form of a spin-orbit coupling term. Notice that this is a first order Casimir in
the momentum operators and it has a matrix character due to S; by these reasons we will
identify this operator as a Dirac-like Hamiltonian h̃.

In order to simplify some calculations, we will make use of the lowering and raising spin
operators:

S± = Sx ± i Sy, S+ =
(

0 1

0 0

)

, S− =
(

0 0

1 0

)

Then, we have another useful expression of h̃ defined by (4.57) in terms of L± (given in
(4.54)) and S±:

h̃ = L−S+ + L+S− + 2Lz Sz (4.58)

After replacement of the operators in (4.58), the final explicit expression for h̃ is

h̃ =
⎛

⎜
⎝

−i∂φ

(
− ∂θ + cot θ(−1/2 + i∂φ)

)
e−iφ

eiφ
(
∂θ + cot θ(−1/2 + i∂φ)

)
i∂φ

⎞

⎟
⎠ (4.59)

Since h̃ commutes with the generators J , the eigenfunctions � jm can be labeled by the
parameters j and m corresponding to the eigenvalues of J2 and Jz :

J2� jm = j ( j + 1)� jm, Jz� jm = m� jm (4.60)

If we apply the matrix Hamiltonian (4.59) on the eigenfunctions of the generator Jz , with
undetermined value of J2,

Jz�m = m�m �⇒ �m(θ, φ) =
(

ϕm(θ)ei(m−1/2)φ

χm(θ)ei(m+1/2)φ

)

(4.61)

then, we get the reduced Hamiltonian in the θ variable

h̃m =
(

m − 1/2 −(∂θ + m cot θ)

−(−∂θ + m cot θ) −m − 1/2

)

(4.62)

which is similar to hn proposed at the beginning of this section in (4.41); in fact,

h̃m + 1/2 = hn, m = n + 1/2 (4.63)

We must have in mind that, according to its definitionm is a pure half-integer, i.e.m−1/2 = n
and m + 1/2 = n + 1, are integer values of the orbital angular momentum Lz corresponding
to the spinor components in (4.61). We will also use the notation of (4.63) for non reduced
Hamiltonians: h̃ + 1/2 = h.
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We can also compute the square of h̃ with the aim of recovering the Schrödinger equation
(4.49):

(2LS)2 = L2 − 2LS �⇒
(

2LS + 1

2

)2 = L2 + 1

4
:= H (4.64)

In other words, we must choose h = h̃ + 1/2, where h̃ is defined in (4.59) and square it as
in (4.64) to get

h2 = H (4.65)

Therefore, by taking the square (in this modified way) of the Dirac operator h, we get the
scalar Hamiltonian (4.49), just in a similar manner as from the Dirac equation we can get the
Klein-Gordon equation.

In particular, if we apply this formula to the Hamiltonian h̃m in (4.62), with m = n+ 1/2,
we get the scalar reduced Hamiltonians Hn and Hn+1 in a diagonal matrix, as it was shown
in (4.52),

(
h̃m + 1

2

)2 =
(
Hn 0

0 Hn+1

)

, m = n + 1/2 (4.66)

We are always making use of the relation n = m − 1/2 and n + 1 = m + 1/2 for the spinor
components.

In this way, we have explained the origin of the first order Dirac-like matrix Hamiltonians
hn corresponding to the scalar Hamiltonians Hn from the factorization method [1]. Next, we
will determine the intertwining operators of the sequence hn by means of the symmetries of
h.

(c) Symmetries and “anti-symmetries”

1) Symmetries J±, Jz .
In the following we will compute the symmetries corresponding to the lowering and
raising operators J± for the eigenfunctions � jm of Jz and J2. Taking into account the
expressions of (4.54), we get

J+ = L+ + S+ =
⎛

⎝
eiφ

(
∂θ + cot θ(−1/2 + i∂φ)

)
1

0 eiφ
(
∂θ + cot θ(−1/2 + i∂φ)

)

⎞

⎠

J− = L− + S−

=
⎛

⎝

(
− ∂θ + cot θ(−1/2 + i∂φ)

)
e−iφ 0

1
(

− ∂θ + cot θ(−1/2 + i∂φ)
)
e−iφ

⎞

⎠

When J+ act on � jm and J− on � jm+1 their effect on the components ϕm(θ) and χm(θ)

of (4.61) turns into

J+
m =

(
∂θ − m cot θ 1

0 ∂θ − (m + 1) cot θ

)

;

J−
m =

(−∂θ − m cot θ 0

1 −∂θ − (m + 1) cot θ

)
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These expressions are related with the previous ones shown in (4.42) by means of a
simple equivalence (R±

n ≈ J∓
m , m = n + 1/2). We should also include the symmetry

Jz = Lz + Sz which is used to define the basis of eigenvectors � jm (4.60).
2) Anti-symmetries T±, T3. We will also find the anti-symmetries T± which anti-commute

with the Hamiltonian h and behave like shift operators of Jz :

T±(h̃ + 1/2) = −(h̃ + 1/2) T±, [Jz, T±] = ±T±

Due to their anti-commutation with h̃ + 1/2, the operators T± change a positive energy
state of h̃ + 1/2 into another one with the same absolute but opposite sign energy. It can
be checked that such anti-symmetries are given by

T+ = L+S3 − L3S+, (T+)† = T− = L−S3 − L3S−

where S3 = Sz and L3 = Lz . When they act on the basis � jm , T± acquire an equivalent
expression to that given in (4.43). Besides the above anti-symmetry operators, we must
include a third one, called T3 defined by:

T3 = −1

2
(L+S− − L−S+)

We can also check that the set of anti-symmetries T±, T3 constitute a vector operator
under the action of J ; in other words, they satisfy the commutation rules

[J+, T+] = 0, [J+, T−] = 2T3, [J±, T3]
= ∓T±, [J3, T

±] = ±T±, [J3, T3] = 0

The operators T±, T3 are “odd” operators in the sense that connect the spaces of positive
and negative energies states. The pair T± besides changing the energy sign, they also
change the J3 = Jz eigenvalue m, but T3 keeps m invariant. All of them change the
eigenvalue j of J2 to j − 1 or to j + 1 if the initial space was of positive or negative
energies, respectively. This is consistent with the following commutation rule,

[J2, T+] = 2(h̃ + 1/2)T+

The existence of anti-symmetry operators does not imply that the positive and negative
eigenspaces are completely symmetric, as we will see later. Notice that this type of nontrivial
anti-symmetry operators is a remarkable property of this kind of Dirac-like Hamiltonians.

(d) Spectrum and eigenfunctions

In this subsection, we will compute the discrete spectrum and eigenfunctions in the same
way as we have seen above. Later on we will identify the eigenfunctions in relation with the
symmetries.

First of all we choose the eigenfunctions with a definite value of the momentum Jz given
by (4.61). As we have seen in (4.66), the square of h̃m + 1/2 is a diagonal matrix with
Hn and Hn+1 in the diagonal. These two scalar Hamiltonians have the same eigenvalues
Ek
n = (n+ k+1/2)2 for the respective eigenfunctions ψk

n and ψk−1
n+1 . Therefore, this suggest

the following form of the spinor eigenfunctions of h̃m + 1/2:

�k
n =

(
α ψk

n (θ)ei(m−1/2)φ

β ψk−1
n+1(θ)ei(m+1/2)φ

)

, m = n + 1/2, k = 0, 1, 2 . . .
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where the constants α, β ∈ C must be found from the eigenvalue equation:

(h̃m + 1/2)�k
n = ε̃ �k

n , m = n + 1/2

We have positive energy solutions

ε̃k+n = +(n + k + 1/2), �k+
n

=
(

αk+
n ψk

n (θ)ei(m−1/2)φ

βk+
n ψk−1

n+1 (θ)ei(m+1/2)φ

)

, m = n + 1/2, k = 0, 1, 2 . . .

and negative energy solutions

ε̃k−n = −(n + k + 1/2), �k+
n =

(
αk−
n ψk

n (θ)ei(m−1/2)φ

βk−
n ψk−1

n+1 (θ)ei(m+1/2)φ

)

,

m = n + 1/2, k = 1, 2 . . .

with eigenfunctions determined by the coefficients

αk+
n = √

2n + k + 1, βk+
n = −√

k, αk−
n = √

k, βk−
n = √

2n + k + 1

The zero ground energy level is positive:

ε̃0+
n = +(n + 1/2)

and its wave function is

�0+
n (θ, φ) =

(
ψ0
n (θ)ei(m−1/2)φ

0

)

Next, we will interpret the eigenfunctions �k±
n and their spinor components in terms of the

commuting symmetries of h̃: Jz , L2 and J2.

Jz : The label n of the eigenfunctions �k±
n means that, in fact they are eigenfunctions of Jz

with eigenvalue m = n + 1/2:

Jz�
k±
n = m�k±

n , m = n + 1/2

L2: We know from the previous scalar case that the scalar functions ψk
n (θ)ei(m−1/2) and

ψk−1
n+1(θ)ei(m+1/2) (which are de components of the spinors �k±

n ) are eigenfunctions of
L2 with eigenvalue “�(� + 1)”.
Therefore, the spinor eigenfunctions of h̃ are also eigenfunctions of L2 with the same
eigenvalue

(L2 + 1/4)�k±
n = (� + 1/2)2�k±

n , � = n + k, m = n + 1/2

J2: The above eigenfunctions of h̃ are also eigenfunctions of J2. We will make use of
expression (4.56) in order to see this:

J2�k+
n = (

L2 + h̃ + S2)�k+
n = (�(� + 1) + � + 3/4)�k+

n = (� + 1/2)(� + 3/2)�k+
n

In other words, it can be written as

J2�k+
n = ( j+)( j+ + 1)�k+

n , j+ = � + 1/2
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In the same way, we check that

J2�k−
n = ( j−)( j− + 1)�k+

n , j− = � − 1/2

We could explain these results from the fact that the spinor wave functions � belong to
tensor products of the representations “�” from the orbital part and s = 1/2 from spin:
� ∈ � ⊗ 1/2. As we know (from the composition of angular momenta):

� ⊗ 1/2 = j+ ⊕ j−, j± = � ± 1/2

Then, the positive energy spinors �k+
n belong to the representation of the total angular

momentum j+, while the negative spinors �k−
n to j−.

In summary, the eigenfunctions of h̃ + 1/2 could be labeled in two equivalent ways with
the notations �k±

n and � j±�m :

�k+
n = � j+�m; ε̃k+n = � + 1/2, � = n + k, m = n + 1/2, j+ = � + 1/2

�k−
n = � j−�m; ε̃k−n = −(� + 1/2), � = n + k, m = n + 1/2, j− = � − 1/2

As a consequence, this result confirms us that the degeneracy of positive energy ε̃k+n levels
is greater than the corresponding negative level ε̃k−n . This is due to the fact that the positive
eigenspace is the support of the representation j+ = � + 1/2, whose dimension is 2� + 2,
while the negative eigenspace supports j− of dimension 2�.

5 Hierarchies of 1D Dirac Hamiltonians: decreasing case

Next, we will carry out this program for a decreasing Hamiltonian hierarchy Hn characterized
by the factorization

Hn−1 = −∂xx + Vn(x) = a+
n−1a

−
n−1 − μ2

n−1 = a−
n a

+
n − μ2

n, n = 1, 2, . . . (5.67)

which was given in (2.10). Then, we can form a Dirac-like Hamiltonian hierarchy hn defined
by

hn =
(

μn ia−
n

ia+
n −μn

)

(5.68)

The square of hn gives a pair of Schrödinger Hamiltonians of the D-hierarchy, with an extra
minus sign

h2
n = −

(
Hn−1 0

0 Hn

)

:= −Hn (5.69)

Thus, we see that the Dirac-like Hamiltonians (5.68) in this case have a relevant difference
with the increasing hierarchy: they are non-Hermitian. In fact, we could say that they are
σ3-Hermitian [25,26] in the sense that

hn = σ3 h
†
n σ3 := h�

n (5.70)

However, since σ3 commutes with h2
n given in (5.69) we find that this is Hermitian: (h2

n)
† =

h2
n .
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Next, we are looking for a pair of intertwining operators A±
n between the matrix Hamil-

tonians hn and hn−1 in the same way as (2.12) for the scalar D-hierarchy:

A−
n hn = γ hn−1A

−
n , hn A

+
n = γ A+

n hn−1 (5.71)

where A±
n = σ3(A∓

n )†σ3 and γ is for a sign. As a consequence, the operators A±
n will

intertwine h2
n and h2

n−1:

A−
n h

2
n = h2

n−1A
−
n , h2

n A
+
n = A+

n h
2
n−1 (5.72)

The solution for the case of intertwining operators (γ = 1) is

R−
n =

(
a−
n−1 0

i(μn−1 − μn) a−
n

)

, R−
n hn = hn−1R

−
n (5.73)

While the anti-intertwining operators (γ = −1) are T±
n :

T−
n =

(
a−
n−1 0

i(μn−1 + μn) −a−
n

)

, T−
n hn = −hn−1T

−
n (5.74)

5.1 Spectrum of the Dirac hierarchy for decreasing case

The spectrum and spinor eigenfunctions of the Hamiltonian hn (5.68) can also be found
following the same procedure as before. We get the solutions:

• Positive spectrum

εk+n = μn−k, �k+
n =

(√
μn + μn−k ψk−1

n−1

i
√

μn − μn−k ψk
n

)

, k = 1, 2, . . . (5.75)

• Negative spectrum

εk−n = −μn−k, �k−
n =

(√
μn − μn−k ψk−1

n−1

i
√

μn + μn−k ψk
n

)

, k = 1, 2, . . .

Ground level :

ε0−
n = −μn, �0−

n =
(

0

ψ0
n

)

, k = 0

(5.76)

Remark that in this Dirac-like version of the scalar D-hierarchies the “absolute” ground
state has negative energy. Now, the role of antiparticle states are played by the positive energy
spectrum. This is an example of non-Hermitian matrix Hamiltonian, as it is explicit in (5.68),
where the discrete energy levels are real and the eigenfunctions square integrable.

5.2 Eigenfunctions annihilated by the intertwining operators

Next, we want to know what kind of eigenfunctions annihilate the intertwining operators R−
n

and T−
n .

• Eigenfunctions annihilated by R−
n
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1) The ground state of negative energies:

�0−
n =

(
0

ψ0
n

)

, ε0−
n = −μn

2) The “ground state” of positive energies:

�1+
n =

(√
μn + μn−1 ψ0

n−1

i
√

μn − μn−1 ψ1
n

)

, ε1+
n = μn−1

• Eigenfunctions annihilated by T−
n

1) The ground state of negative energies:

�0−
n =

(
0

ψ0
n

)

, ε0−
n = −μn

2) The first excited state of negative energies:

�1−
n =

(√
μn − μn−1 ψ0

n−1

i
√

μn + μn−1 ψ1
n

)

, ε1−
n = −μn−1

5.3 Example: the hyperbolic Pöschl–Teller potential

The following sequence of hyperbolic PT Schrödinger Hamiltonians

Hn(x) = −∂xx − (n + 1/2)(n − 1/2)

cosh2 x
, x ∈ (−∞,∞), n ∈ N (5.77)

are of decreasing type and satisfy the factorization (2.10). The factor operators and factor
energies are

a±
n (x) = ∓∂x + (n − 1/2) tanh x, μ2

n = (n − 1/2)2, n = 1, 2, . . . (5.78)

Therefore, the associated Dirac Hamiltonians hn are defined by

hn =
(

(n − 1/2) i(∂x + (n − 1/2) tanh x)

i(−∂x + (n − 1/2) tanh x) −(n − 1/2)

)

(5.79)

and the intertwining operators by

R+
n =

(−∂x + (n − 3/2) tanh x −i

0 −∂x + (n − 1/2) tanh x

)

(5.80)

T+
n =

(−∂x + (n − 3/2) tanh x i (2n − 2)

0 −(−∂x + (n − 1/2) tanh x)

)

(5.81)

5.4 Dirac-like equations for systems on the H2 hyperboloid

We can get the hyperbolic PT scalar Hamiltonian (5.77) and the matrix PT Hamiltonian
corresponding to (5.79) from separation of variables of a system defined on a hyperboloid
in a similar way as that employed in the trigonometric case in the space of functions on the
sphere. In order to get the potential in (5.77), we start with one sheet hyperboloid (this choice
is different from the two sheets hyperboloid and it has some peculiarities). We have made
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this election in order to work with representations of eigenfunctions in the angular φ variable
and to obtain the specific form of the hyperbolic potential (5.77).

(a) The scalar system

Consider the hyperbolic surface H2,

x2 + y2 − z2 = 1 (5.82)

parametrised with pseudo-spherical coordinates:

x = cosh χ cos φ, y = cosh χ sin φ, z = sinh χ (5.83)

The surface (5.82) is invariant under the group SO(2, 1) and the scalar wavefunctions defined
on H2 constitute the support space of a quasi-regular representation U ,

U (g)ψ̃(x) = ψ̃(g−1x), g ∈ SO(2, 1) (5.84)

The generators of the group SO(2, 1) are given by: one of them, Lz , generating rotations
around the z-axis and two, Lx and Ly , of hyperbolic transformations around the x and y
axes. A differential realization in Cartesian coordinates is

Lx = y∂z + z∂y, Ly = −x∂z − z∂x , Lz = −x∂y + y∂x

If we pass to the pseudo-spherical coordinates (5.83) and multiply by the imaginary unit i ,
they take the form

Lx = i(sin φ ∂χ + tanh χ cos φ ∂φ),

Ly = i(− cos φ ∂χ + tanh χ sin φ ∂φ), Lz = i(−∂φ) (5.85)

Their commutation rules close the so(2, 1) ≈ su(1, 1) Lie algebra

[Lz, Lx ] = i L y, [Lz, Ly] = −i Lx , [Lx , Ly] = −i Lz

We build the lowering and raising operators from the realization (5.85),

L± = Lx ± i L y = e±iφ
(

± ∂χ + i tanh χ∂φ

)
(5.86)

In this basis the so(2, 1) ≈ su(1, 1) Lie algebra is

[Lz, L±] = ±L±, [L−, L+] = 2Lz

The Casimir operator, which we will identify with the scalar Schrödinger Hamiltonian, has
the form

C := H̃ = L2
x + L2

y − L2
z = L+L− − Lz(Lz − 1) (5.87)

The discrete series of unitary irreducible representations (uir’s) of SO(2, 1) are characterized
by the Casimir eigenvalues [22–24]

H̃ ψ̃ = −λ(λ − 1)ψ̃, λ = 1, 2, 3, . . . (5.88)

In terms of the pseudo-spherical coordinates C (= H̃ ) takes the expression

H̃ = −∂χχ − tanh χ ∂χ + ∂φφ

cosh2 χ
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There is a first order term in ∂χ that can be eliminated by means of the following transfor-
mation:

ψ̃ = 1√
cosh χ

ψ �⇒ ∂χ → ∂χ − 1

2
tanh χ (5.89)

Then, the displaced Hamiltonian H := H̃ − 1
4 becomes

H = H̃ − 1

4
= −∂χχ + 1/4 + ∂φφ

cosh2 χ
(5.90)

The eigenvalues of this Hamiltonian corresponding to the uir’s of SO(2, 1) are, according to
(5.88),

Hψ = −(λ − 1/2)2ψ, λ = 1, 2, . . .

If we consider a basis in this representation of common eigenfunctions of C and Lz ,

ψ(χ, φ) = ψn(χ)einφ, n ∈ N

we find

Hnψn =
(

−∂χχ − (n + 1/2)(n − 1/2)

cosh2 χ

)

ψn = −(λ − 1/2)2ψn, λ = 1, 2, 3, . . . , n

(5.91)

where n ≥ λ ≥ 1. Therefore, once fixed n then the number of bound states is finite: k =
0, 1, . . . , n − 1. In case we fixed the eigenvalue λ, the potentials that may support such a
negative level are labeled by n ≥ λ.

We will use the notation ψk
n for the eigenfunction corresponding to:

ψk
n =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Potential Vn = − (n+1/2)(n−1/2)

cosh2 χ

Energy level Ek
n = −(n − k − 1/2)2, k = 0, 1 . . . n − 1

Representation λ = n − k, Lzψ
k
n = nψk

n , λ = n, n − 1, . . . , 1

We can check that indeed this equation coincides with the initial hyperbolic PT equation
(5.77) as well as the eigenvalues (5.78).

On the other hand, the lowering and raising operators, when they act between the Hamil-
tonians Hn and Hn−1, after the transformation (5.89), become

L+ = Lx + i L y = ( + ∂χ − (n − 1/2) tanh χ
)

L− = Lx − i L y = ( − ∂χ − (n − 1/2) tanh χ
) (5.92)

These operators coincide with the intertwining operators a±
n given before in (5.78).

(b) The spinor system

Next, we will consider the spinor representation of so(2, 1) ≈ su(1, 1) defined in the space
of spinor wavefunctions �(x) on the hyperboloid (5.82). In this space, the generators of
SU (1, 1), which will be called Ki , are defined by

Ki = Li + Si , i = 1, 2, 3 (5.93)
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where the orbital generators (L1 = Lx , L2 = Ly, L3 = Lz) have been given in (5.85), while
the spinor generators (S1 = Sx , S2 = Sy, S3 = Sz) have been chosen as

Sx = i 1
2σx , Sy = i 1

2σy, Sz = 1
2σz

and therefore, S± = Sx ± i Sy are

S+ =
(

0 i

0 0

)

, S− =
(

0 0

i 0

)

(5.94)

The matrices Sx , Sy are anti-Hermitian, while Sz is Hermitian. They satisfy the su(1, 1) Lie
algebra:

[Sz, Sx ] = i Sy, [Sz, Sy] = −i Sx , [Sx , Sy] = −i Sz

or

[Sz, S±] = ±S±, [S−, S+] = 2Sz

Then, the Casimir operator of this realization is

Cs = K 2 = (Lx + Sx )
2 + (Ly + Sy)

2 − (Lz + Sz)
2 = L2 + 2LS + S2 = −ν(ν − 1)

(5.95)

where the cross terms constitute the matrix Hamiltonian h,

h = 2LS = 2(Lx Sx + Ly Sy − Lz Sz) = L+S− + L−S+ − 2Lz Sz (5.96)

and S2 = −3/4. We will use the spinor expressions (5.94) and the orbital operators L± of
(5.86) after the transformation (5.89),

L± = e±iφ( ± ∂χ + (i∂φ ∓ 1/2) tanh χ
)

to be replaced in the expression (5.96) of h in order to find the explicit matrix Hamiltonian

h =
⎛

⎝
i∂φ ie−iφ(−∂χ + (i∂φ + 1/2) tanh χ)

i(+∂χ + (i∂φ + 1/2) tanh χ)eiφ −i∂φ

⎞

⎠ (5.97)

As we know from the beginning this Hamiltonian is not explicitly Hermitian since the
matrix generators Sx and Sy were not Hermitian. Let us write the form of h when it acts on
simultaneous eigenfunctions �νm of the Casimir C (5.95) and Kz :

Kz�νm = m�νm �⇒ �νm(χ, φ) =
(

ϕm(χ)ei(m−1/2)φ

ξm(χ)ei(m+1/2)φ

)

(5.98)

Then, the reduced Hamiltonian in the variable χ , using this basis, is

hm =
( −m + 1/2 i(−∂χ − m tanh χ)

i(∂χ − m tanh χ) m + 1/2

)

(5.99)

The next step is to compute the square of h:

h2 = −L2 + h (5.100)
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According to (5.90) H = L2 − 1/4 so that finally we get

(h − 1/2)2 = −H = −
(

−∂χχ + 1/4 + ∂φφ

cosh2 χ

)

(5.101)

If we take the square (hm − 1/2)2 of the reduced Hamiltonian (5.99), we find

(hm − 1/2)2 = −
(
Hn−1 0

0 Hn

)

(5.102)

where Hm coincides with Hn of (5.91), provided m = n − 1/2. Let us make some remarks.
(a) These two formulas for the square of h are reasonable since the square of a real spectrum
of h will always produce a positive spectrum, that is, this square must have oposite sign than
the scalar Hamiltonians H , which have a negative spectrum as shown in (5.91).

(b) The matrix hyperbolic Hamiltonian h given in (5.97), or its reduced form (5.99), are
not explicitly Hermitian, therefore this seems an inconsistency. However, h although non-
Hermitian it has a real discrete spectrum with square integrable solutions. We will show this
property in the following subsection by computing the eigenvalues and eigenvectors.
(c) Let us notice that, as a consequence of the previous remark, this spinor representation of
SU (1, 1) is not unitary. However, there is a Hermitian invariant product given by

〈�,�〉 =
∫

�†(χ, φ)σ3�(χ, φ) dχdφ

where the invariant measure on the hyperboloid is hidden in the wavefunctions by the trans-
formation (5.89). One can check that indeed, the reduced Hamiltonian (5.97) is Hermitian
with respect to σ3: h†σ3 = σ3h. This is a non positive definite product which is consistent
with the non-unitary character.

(c) Spectrum and eigenfunctions

If we have in mind the diagonal form of the square (h−1/2)2, and at the same time we write
the operators in the entries of the matrix hm given in (5.99) we guess that the eigenfunctions
will have the following form, making use of the factor operators a±

m of (5.78):
( −m −ia−

m

−ia+
m m

) (
αψk−1

m−1

i βψk
m

)

= εkn

(
αψk−1

m−1

i βψk
m

)

(5.103)

Taking into account that the action of these factor operators is

a−
mψk

m =
√

μ2
m − μ2

m−k ψk−1
m−1, a+

mψk−1
m−1 =

√
μ2
m − μ2

m−k ψk
m, μ2

m−k = (m − k)2

Then, we get the eigenvalues of h:

εk±n = ±(m − k) , m = n − 1/2 (5.104)

The corresponding eigenspinors �k±
n are given by their coefficients α± and β±:

α− = √
k , β− = √

2m − k , α+ = √
2m − k , β+ = √

k

The ground state of these eigenfunctions is negative:

ε0−
n = −m, �0−

n =
(

0

ψ0
m

)
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We notice that the greater spinor component of the negative spectrum eigenfunctions is
the lower one with spin −1/2. However, the greater component of the positive spectrum
spinor eigenfunctions is the upper corresponding to spin 1/2. The degeneracy is infinite
for each positive or negative eigenvalue. In the following we will determine the SU (1, 1)

representations corresponding to the eigenvalues of the same absolute value but opposite
sign: εk±n = ±(n − k − 1/2). In order to find these representations, we will characterize the
eigenfunctions �k±

n and their spinor components in terms of the commuting symmetries of
h: Kz , L2 and K 2.

Kz : The label n of the spinor functions �k±
n means that they are eigenfunctions of Kz with

eigenvalue m = n − 1/2:

Kz�
k±
n = m�k±

n , m = n − 1/2

L2: We know that the scalar functions ψk
n (θ)ei(m+1/2)φ and ψk−1

n−1(θ)ei(m−1/2)φ (which are
de components of the spinors �k±

n ) are eigenfunctions of L2 with eigenvalue λ = n−k.
Therefore, the spinor eigenfunctions of h are also eigenfunctions of L2 with the same
eigenvalue

(L2 − 1/4)�k±
n = −(λ − 1/2)2�k±

n , λ = n − k, m = n − 1/2

K 2: The above eigenfunctions of h are also eigenfunctions of K 2. We will make use of
expression (4.56) in order to see this:

K 2�k−
n = (

L2 + h̃ + S2)�k−
n

= (−λ(λ − 1) − λ + 1/4)�k−
n = −(λ + 1/2)(λ − 1/2)�k−

n

In other words, we can write as

K 2�k−
n = (ν+)(ν+ − 1)�k−

n , ν+ = λ + 1/2

and in a similar way

K 2�k+
n = (ν−)(ν− − 1)�k+

n , ν− = λ − 1/2

We could explain these results from the fact that the spinor wave functions � belong
to tensor products of the representations λ from the orbital part and s = 1/2 from spin:
� ∈ λ ⊗ 1/2. As we know from the composition of “angular momenta”:

λ ⊗ 1/2 = ν+ ⊕ ν−, ν± = λ ± 1/2

Then, the negative energy spinors �k−
n belong to the representation of the total “angular

momentum” ν+, while the positive spinors �k+
n to ν−.

In conclusion, we have obtained a real spectrum for a non-Hermitian matrix Hamiltonian.

(d) Symmetries and “anti-symmetries”

1) Symmetries K±, K3. In the same way as for su(2) the spinor symmetries in the case of
su(1, 1) are given by

K+ = L+ + S+, K− = L− + S−, K3 = L3 + S3

Their restriction to the eigenfunctions of K3 = Kz give rise to the intertwining operators
R±
n .
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2) Anti-symmetries
We will also find the anti-symmetries T± which anti-commute with the Hamiltonian
hn − 1/2,

T±(h̃ − 1/2) = −(h̃ − 1/2) T±, [K3, T
±] = ±T±

and have the same form as in the trigonometric case:

T+ = L+S3 − L3S+, T− = L−S3 − L3S−, T3 = 1

2
(L+S− − L−S+)

The spectrum of Dirac-Weyl like equations, symmetries in terms of intertwining operators
and global intertwining operators for 4 × 4 Dirac-like Hamiltonians can also be obtained
following the same procedure as above. However, in order to shorten the length of the paper
we have not discussed them here.

6 Conclusions and remarks

We have introduced a kind of matrix Dirac-like Hamiltonians which are in close correspon-
dence with factorizable Schrödinger Hamiltonians. The scalar intertwining operators, a±

n and
the factorization energies ±μ2

n , are used as ingredients to construct the matrix Hamiltonian
and the intertwining matrix operators. This type of Dirac Hamiltonians have appeared in
many previous references taking part in different problems. Here, we have tried to explain
them by a reduction process of spinor systems defined on curved spaces. We have called hn
(the reduced cases in one variable) or h (in two coordinates of the surface) to these Dirac-like
Hamiltonians. In the case of spherical symmetry they are called Dirac operators [27]. In [8],
L.M. Nieto et al showed that the usual properties for scalar differential intertwining operators
have correspondence to the matrix case. In fact, the matrix intertwining operators used in
this current work coincide with some of the operators introduced in [8]. On the other hand,
our interest here is on the hierarchies of shape invariant Dirac Hamiltonians and its relation
with superintegrable systems; a problem which was not touched in that reference.

We have worked out two simple examples. One of them defined on a sphere S2, giving
rise to a matrix version of a trigonometric Pöschl-Teller potential. The symmetries and anti-
symmetries were characterized as well as the degeneracy of the energy levels. In particular the
anti-symmetries interchanged the sign of energy. The second example which was defined in a
two dimensional hyperboloidH2 gave rise to a matrix non-Hermitian Hamiltonian with a real
spectrum, which is related to a scalar hyperbolic Pöschl-Teller potential. The scalar systems
were obtained as the square of the Dirac-like systems, just in a similar way as the Dirac and
Klein-Gordon equations are related. We expect to complete this picture in the near future
by finding the Dirac-like cases of all the scalar factorizable potentials with or without the
mass m0. In particular they will need higher space dimensions and higher gamma matrices.
Another point that we pursue is to identify the role of this kind of Dirac-like Hamiltonians; it
is reasonable that they be related with the symmetries of different classes of Dirac systems,
since our building relies only on symmetry considerations. We hope that this kind of Dirac-
like Hamiltonians be also consistent with some symmetric interactions with external fields
[28,29].
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