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Abstract: We introduce a multi-parameter family of bases in the Hilbert space L2(R), which are1

associated to the set of Hermite functions, which also serve as a basis for L2(R). The Hermite2

functions are eigenfunctions of the Fourier transform, a property which is in some sense shared3

by these “generalized Hermite functions”. The construction of these new bases is grounded4

on some symmetry properties of the real line under translations, dilations and reflexions and5

some properties of the Fourier transform. We show how these generalized Hermite functions are6

transformed under the unitary representations of a series of groups including the Weyl-Heisenberg7

group and some of their extensions.8

Keywords: Hermite functions; Wey-Heisenberg groups; group representations; Fourier transform;9

bases in Hilbert space L2(R); rigged Hilbert spaces10

1. Introduction11

The present paper studies the relations between some physical relevant low-dimen-12

sional Lie groups, in connection to affine transformations on the whole real line (R),13

their representations on the Hilbert space L2(R) as well as to some other notions as the14

Hermite functions, other bases in L2(R) and the eigenfunctions of the Fourier transform.15

As a consequence of these relations, some invariance properties are disclosed.16

These invariance properties come from the option to choose between four types17

of freedom. These are: (i) the freedom to choose between coordinate and momentum18

representations and the respective bases determined by each of the representations; (ii)19

the freedom to choose an origin on the real line when using any of these two representa-20

tions; (iii) the freedom to choose the units of length on R and (iv) the freedom to choose21

an orientation on the line. We span one dimensional wave functions in terms of bases22

in either coordinate or momentum representation. The family of bases on a parameter23

covering the whole set of real numbers R is a homogeneous self-similar and not oriented24

space, as is well known. The Fourier transform, which is an invertible correspondence25

between coordinate and momentum representations [1], implies some restrictions on26

self-similarity and orientation.27

This invariance suggests a principle of relativity: Assume that two observers are28

located at different points of the line and that, furthermore, they use different length29

and/or momentum units. These observers would perceive the same physical state as30

exactly the same description of the reality. This means that under these invariances the31

one-dimensional physical world may be equivalently described by the coordinate x and32

the momentum p or by the coordinate x′ = kx + a and the momentum p′ = k−1 p + b33

with a, b ∈ R and k ∈ R∗ ≡ R− {0}.34

Likewise other well-known situations showing invariance properties, this type of35

invariance is described by a Lie group, which is usually denoted by H̃(1). This is a36
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twofold version of the affine Weyl-Heisenberg group H̃o(1) [2–8] since it includes the37

discrete symmetry associated to the reflection or Parity operator P : (x, p)→ (−x,−p).38

The Lie algebra of the affine Weyl-Heisenberg group, h̃(1) has four infinitesimal genera-39

tors: D, X, P and I that correspond to dilations, position operator, momentum operator40

and a central operator commuting with the others, respectively. As we shall show later,41

the Lie group H̃(1) is isomorphic to the the central extension of the Poincaré group in42

1+1 dimensions [9] enlarged with the discrete symmetry P T , where P is the parity and43

T the time-reversal.44

From now on, when we speak about symmetry or invariance on the real line we45

refer to the existence of properties of spaces constructed over R, as for example L2(R).46

This includes many others depending on a unique continuous parameter.47

The Hermite functions are all real and determine a basis of the (complex) space of48

functions L2(R). Self-similarity transformations do not change this property. In addition,49

it is rather simple to construct additional bases of L2(R) after some transformations on50

Hermite functions, as for instance under the action of the group H̃(1). The result are the51

so called generalized Hermite functions, to be defined later (Section 4). Contrary to the52

basis of Hermite functions, these bases of generalized Hermite functions are not sets of53

real functions as they usually have a complex phase.54

As is well known, the real line R as one dimensional Euclidean space is the homo-55

geneous space Eo(1)/{0}, where Eo(1) is the group of translations on the line and {0} is56

the isotropy group of an arbitrary point of the line, for instance the origin. The real line57

supports two important continuous bases for L2(R): {|x〉}x∈R and {|p〉}p∈R. As is well58

known, each of these bases is transformed into the other by the Fourier transform. The59

meaning of continuous bases will be clarified later, although it is nonetheless explained60

in [10].61

One consequence of the homogeneity is that the continuous basis in the coordinate62

representation given by {|x〉}, where x runs out the set of real numbers, is equivalent to63

the continuous basis {|x + a〉}, where x Ta−→ x + a, for each fixed a ∈ R, with Ta ∈ Eo(1).64

Analogously, the continuous basis in the momentum representation, {|p〉}, is equivalent65

for the continuous basis {|p + b〉}, where p runs out the set of real numbers and b is an66

arbitrary, although fixed, real number.67

If we consider the position (X) and momentum (P) operators acting on their
generalized eigenvectors, which are |x〉 and |p〉, respectively, we have that

X |x〉 = x|x〉 ⇒ e−iXa|x〉 = e−iax|x〉 ,

P |p〉 = p|p〉 ⇒ e−iPb|p〉 = e−ibp|p〉 .
(1)

The Fourier transform and its inverse produce the following relations [10] :

|p〉 = 1√
2

∫
R

eipx|x〉 dx , |x〉 = 1√
2

∫
R

e−ipx|p〉 dp . (2)

We also have the following relations:

e−iXa |p〉 = 1√
2

∫
R

eipxe−iXa|x〉 dx =
1√
2

∫
R

eix(p−a)|x〉 dx = |p− a〉

e−iPb |x〉 = 1√
2

∫
R

e−ipxe−iPb|p〉 dp =
1√
2

∫
R

e−i(x+b)p|x〉 dp = |x + b〉
(3)

The conclusion is that X and P together with the central operator I determine the Lie68

algebra for the Heisenberg-Weyl group H(1). In this context, we say that the real line69

(meaning the space L2(R)) supports a unitary representation of H(1).70

However, the group H(1) does not exhaust self-similarity invariances on the real71

line and for our purposes is “not oriented”, in the sense that it is equivalent to consider72
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the direction on the line either from left to right or from right to left. Moreover, as73

commented earlier, the continuous basis {|x〉} is equivalent to the continuous basis74

{|kx〉} with k ∈ R∗. This suggest the use of the dilatation operator, D, which may be75

defined by the action of its exponential on the continuous basis as e−idD|x〉 = e−d/2 |edx〉76

(d real) and then extended as a self-adjoint operator on L2(R). This action considers77

positive dilatations only as ed > 0 for any real d. Note that if 〈x|y〉 = δ(x − y) then78

〈edx|edy〉 = δ(ed(x− y)) = e−d δ(x− y), this is the reason to introduce the factor e−d/2
79

in the definition of the action of e−idD in |x〉 in order that 〈x|
(

e−idD
)†

e−idD|y〉 = 〈x|y〉.80

Analogously, the continuous basis {|p〉} is equivalent to the continuous basis81

{|k′p〉}, with k′ ∈ R. Consistency with Fourier transform invariance implies that82

k′ = k−1. This suggest a result that shall become evident soon, that the algebra describing83

the invariance in the real line should be H̃o(1), i.e., the Weyl-Heisenberg group enlarged84

with dilations.85

Nevertheless, we need to introduce orientation invariance and negative numbers86

k for dilatations in our picture. This is performed by the parity operator P . As is87

well known, the action of P on the continuous bases are given by P |x〉 = | − x〉 and88

P |p〉 = | − p〉. If we add this parity operator to the connected group H̃o(1), we obtain89

the general group of invariance of the real line H̃(1). The the space L2(R) supports a90

unitary representation U of H̃(1).91

This representation U can be well studied using the generalized Hermite functions,92

we mentioned earlier. For our purposes, we need two families of bases constructed93

as follows. Choose the basis of the normalized Hermite functions {ψn(x)} and their94

Fourier transforms {ψ̃n(p)}. Then, U(g̃) with g̃ ∈ H̃(1) being the unitary representation,95

these families are {U(g̃)ψn(x)}g̃∈H̃(1)
x∈R and {U(g̃)ψ̂n(p)}g̃∈H̃(1)

x∈R . These two families of96

generalized Hermite functions are transformed into each other by the Fourier transform97

(FT) and its inverse (IFT), in similarity with the behaviour of the Hermite functions [10].98

The present article is organized as follows: In the next Section 2, we arrive to99

the Weyl-Heisenberg group H(1), starting from the translations groups and supposing100

some more symmetries for the line, provided that we also implement the symmetry101

under Fourier Transform for the Hermite functions. In Section 3 we present some102

general properties of the Weyl-Heisenberg group and its extension to H̃(1). This group103

is connected to the general symmetry on the real line. We deal with local structures,104

exhibited by the Lie algebra of H̃(1), which is presented in its more familiar form105

including the parity operator. In Section 4, we construct the unitary representations106

of the Weyl-Heisenberg group and its generalisations defined in the previous Section.107

Considering the behaviour of the Hermite functions under the group H̃(1), we introduce108

in Section 5 a generalization of such Hermite functions: We obtain a 3-parameter family109

of “generalized Hermite functions” that are bases of L2(R). We study properties of these110

generalized Hermite functions as well as their behaviour under the Fourier transform.111

Also, we construct Rigged Hilbert space structures associated to these generalized112

Hermite functions. We give some concluding remarks in the final Section 6. For the113

benefit of the reader, we have added some Appendices with some known material about114

of group representation.115

2. From Translation group to the Weyl-Heisenberg group116

Let us consider the group of the translations of the real line, Eo(1), that can be117

considered as the connected part of the isometries of the line (translations and reflexions118

in a point, the origin for instance) that constitute the Euclidean group on one dimension119

E(1).120

The group Eo(1) is isomorphic to the group (R,+). Under a translation Ta the point
x of the real line is transformed as

x Ta−−→
a∈R

x + a . (4)
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The action of Eo(1) on the space of square integrable functions defined on R (L2(R)) is
given by

(U(Ta) f )(x) = f (x− a) , (5)

where we have taking into account that if a group G acts on a space X from the left

(i.e., ∀x ∈ X
g∈G−−→ g x ∈ X such that e x = x, being e the identity element of G, and

g′(g x) = (g′ g) x , ∀g, g′ ∈ G) then there is a representation of this group in the space of
functions defined in X as

(U(g) f )(x) = f (g−1x) . (6)

Let P be the infinitesimal generator of the translation group, hence U(Ta) = e−iaP and
from (6) we get that

P = −i
d

dx
. (7)

2.1. The group Eo(1) extended by dilations: a matrix realization121

If we consider also transformations like dilations acting as

x
Dk−−−→

k∈R∗
kx , (8)

the composition of both transformations Ta · Dk acts as

x
Dk−−−→

k∈R∗
kx Ta−−→

a∈R
kx + a . (9)

We can realize the group spanned by both transformations as the group of matrices

M[k,a] =

(
k a
0 1

)
, k 6= 0, b ∈ R (10)

acting on the real line as follows

M[k,a]x =

(
k a
0 1

)(
x
1

)
=

(
k x + a

1

)
. (11)

in agreement with (9). Henceforth, we shall denote this group as Ẽ(1). It is non-122

connected and shows two connected components: the connected component of the unit123

characterized by k > 0 and and a second component for which k < 0.124

2.2. The connected component of Ẽ(1): Ẽo(1)125

Let us start by restricting ourselves to the connected component of the unit of Ẽ(1)
that we denote for Ẽo(1). The infinitesimal generators in the matrix representation (10)
are

P =
dM[k,a]

da

∣∣∣∣
a=0

=

(
0 1
0 0

)
, D =

dM[k,a]

dk

∣∣∣∣
k=1

=

(
1 0
0 0

)
. (12)

The commutation relation of P and D is

[D, P] = P . (13)

We see that under exponentiation (i.e. eaP and ekK), we only recover Ẽo(1)

eaP ekD =

(
1 a
0 1

)(
ek 0
0 1

)
= M[a,ek ] (14)
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Let us denote by g = (a, k) = eaP ekD an arbitrary element of Ẽo(1) with a, k ∈ R. The
group law is given by

g′ · g = (a′, k′)(a, k) = (a′ + ek′ a, k′ + k) . (15)

Moreover
g = (a, 1)(0, k) , g−1 = (−e−ka,−k) . (16)

The action of g on the functions f (x) is given by (see (6))

(U(a, k) f )(x) = e−k/2 f (e−k(x− a)) , (17)

where the term e−k/2 has been added so as to assure the unitarity of this representation
[11,12]. In particular, the Hermite functions ψn(x) are functions in L2(R). In addition,
Hermite functions are a basis of L2(R). Consequently, they support the representation
of Ẽo(1), so that,

(U(a, k)ψn)(x) = e−k/2 ψn(e−k(x− a)) . (18)

After (17) (U(a, k) = e−iaP e−ikD), the infinitesimal generators take the explicit form

P = −i
d

dx
, D = −i

1
2

(
x

d
dx

+
d

dx
x
)

, (19)

and its Lie commutator is given by

[D, P] = iP . (20)

2.3. The group Ẽ(1)126

In order to take into account the orientation invariance of the real line or, in other
words, to consider the other connect component of the group Ẽ(1), we must include the
parity or reflexion operator around the origin P , that act on R as

x P−→ −x . (21)

The infinitesimal generators P and D transform under P as

(P, D)
P−→ (−P, D) (22)

and the elements of Ẽo(1) transform under parity as

g = (a, k) ∈ Ẽo(1)
P−→ (a, k)P = (aP , kP ) = (−a, k) . (23)

Each of the g̃ ∈ Ẽ(1) can be parametrized by

g̃ = (a, k, α) , α ∈ V = {I ,P} (24)

where I is the identity transformation.127

The group law is

g̃′ · g̃ = (a′, k′, α′)(a, k, α) = (a′ + ek′ aα′ , k′ + k, α′α) , (25)

where, obviously,

aα =

 a if α = I

−a if α = P
. (26)
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Thus, Ẽ(1) is a semidirect product, i.e., Ẽ(1) = Ẽo(1)� V = (Eo(1)� V)�D, where D
is the dilations group {(0, k, I)}k∈R, since

g̃ = (a, k, α) = (a, k, I) (0, 0, α) = (a, k, I) (0, 0, α) = (a, 0, I) (0, 0, α) (0, k, I) . (27)

On the given representation of Ẽ(1), the operator P is realized as a linear operator,
so that the representation is unitary. It has the form [13]

(U(a, k, α) f )(x) = e−k/2 f (e−k(xα − a)) .

(U(a, k, α)ψn)(x) = e−k/2 ψn(e−k(xα − a)) .
(28)

2.4. The Weyl-Heisenberg group H(1)128

An important fact of the Hermite functions is that they are eigenfunctions of the
Fourier transform [10]

FT [ψn(x), x, p] = in ψn(p) , IFT [ψn(p), p, x] = (−i)n ψn(x) , (29)

where (I)FT [ψn(x), x, p] means the Inverse Fourier transform of the function ψn(x)
integrated on the variable x as a function of the variable p, i.e.

FT[ f (x), x, p] =
1√
2

∫
R

eipx f (x) dx = f̂ (p) ,

IFT[ f̂ (p), p, x] =
1√
2

∫
R

e−ipx f̂ (p) dp = f (x) .
(30)

Henceforth, we shall use this notation.129

All we have previously mentioned for the Hermite functions ψn(x) in this section
is valid for their FTs ψn(p). Hence(

e−iPa f̂
)
(p) =

1√
2

∫
R

eipx
(

e−iPa f
)
(x) dx =

1√
2

∫
R

eipx f (x− a) dx

=
1√
2

eipa
∫
R

eiup f (u) du = eipa f̂ (p) ,

(
e−iDk f̂

)
(p) =

1√
2

∫
R

eipx
(

e−iDk f
)
(x) dx =

1√
2

∫
R

eipx e−k/2 f (e−kx) dx

=
1√
2

∫
R

ek/2 eiekvp f (v) dv = ek/2 f̂ (ek p) .

(31)

In the above relations, we have proceed with the change of variables u = x − a and
v = e−kx. We need to have a translation operator acting on the real line in the p
representation. First of all, we recall some properties of the FT such as:

x f (x)
FT[•,x,p]−−−−−→ −i

d
dp

f̂ (p) ,
d

dx
f (x)

FT[•,x,p]−−−−−→ −ip f̂ (p) . (32)

Hence, we define a new operator X acting on the space of square integrable functions on
the line in the following manner:

(X f )(x) = x f (x) , (eiX f )(x) = eix f (x) . (33)
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Then (
eiXb f̂

)
(p) =

1√
2

∫
R

eipx
(

eiXb f
)
(x) dx =

1√
2

∫
R

eipx eibx f (x) dx

=
1√
2

∫
R

eix(p+b) f (x) dx = f̂ (p + b) .
(34)

Thus, X is the infinitesimal generator of translations on the p-real line.130

From (29) and taking into account the isomorphism between the real x-line and the
real p-line, we can identify up to a phase the Hermite functions ψn(x) and their FT, i.e.

ψn(x) TF−→ ψ̂n(p) = in ψn(p) ≡ in ψn(x) . (35)

Hence, we have properly determined the generators X (33) and P (20) acting on L2(R)
being R the x-line. From (33) and (5), we note that X produces a phase and P a translation,
respectively. Obviously from (32) the roles of X and P interchange when R is the p-line.
Both operators along to the central operator I determine the Weyl-Heisenberg group
since they verify the Lie commutators

[X, P] = i I , [I, • ] = 0 . (36)

In the next section, we study the Weyl-Heisenberg group as well some of its exten-131

sions in detail.132

3. The Weyl-Heisenberg group and its extensions133

In this section, we start presenting a review of the Weyl-Heisenberg (WH) group134

as well as one of its extensions. Also we revisite their Lie algebras. Finally, we provide135

the isomorphism between the extended WH group and the a central extension of the136

Poincaré (1+1) group enlarged by the discrete symmetry P T (parity-time inversion).137

3.1. The Weyl-Heisenberg group: a matrix realization138

The Weyl-Heisenberg group H(1) shows as the most common commutation relation
in ordinary relativistic Quantum Physics appears, i.e., [x, p] ≡ [x,−ih̄ ∂

∂x ] = ih̄. This
group admits a representation by real 3× 3 upper unitriangular matrices [8] such as:

A =

1 a θ
0 1 b
0 0 1

 , a, b, θ ∈ R . (37)

These matrices form a group with the usual matrix multiplication as one readily sees:

A′ · A =

1 a′ + a ac′ + θ′ + θ
0 1 c′ + c
0 0 1

 . (38)

The identity element is the identitiy matrix, i.e. Id = A
∣∣
a,b,θ=0, and the inverse of A (37)

is given by

A−1 =

1 −a ac− θ
0 1 −c
0 0 1

 . (39)

Note that H(1) is a subgroup of the group of all upper triangular matrices 3× 3, M3(R),139

see [14].140



Version April 15, 2021 submitted to Journal Not Specified 8 of 24

3.2. The extended Weyl-Heisenberg group141

In order to include self-similarity on the real line, one needs to look at a more
general subgroup of M3(R), which is the set of all 3× 3 matrices of the form:

B =

1 a θ
0 k b
0 0 1

 , a, b, θ ∈ R, k ∈ R∗ . (40)

The group law is given by

B′ · B =

1 ka′ + a θ′ + θ + a′b
0 k′k k′b + b′

0 0 1

 . (41)

The identity element is Id = B
∣∣
a,b,θ=0,k=1 and the inverse of B (40) is

B−1 =

1 −a/k θ + ab/k
0 1/k −b/k
0 0 1

 . (42)

Obviously, this group reduces to H(1) if and only if k = 1. In other words H(1)142

is a subgroup of this extended Weyl-Heisenberg group. Consequently, we denote the143

extended group as H̃(1).144

Th group H̃(1) has two connected components: the connected component of the145

identity characterized for k > 0, which is a subgroup of H̃(1), here denoted as H̃o(1), and146

a second component containing the elements elements caracterized by k < 0. It can be ob-147

tained multiplying the elements of H̃o(1) by the “parity” matrix P = Diagonal[1,−1, 1].148

3.3. The Weyl-Heisenberg algebras149

Let us go back to the group H(1) of matrices of the form (37). It depends on three
real parameters a, θ and b related to the generators X, I and P, respectively, of the Lie
algebra h(1). In addition, the Lie algebra h̃(1) contains another generator, D, which is
associated with the real parameter k in the group of matrices (40). The explicit form of
these generators is given by

X = ∂B
∂a

∣∣∣∣
Id
=

 0 1 0
0 0 0
0 0 0

, I = ∂B
∂θ

∣∣∣∣
Id
=

 0 0 1
0 0 0
0 0 0

,

P = ∂B
∂c

∣∣∣∣
Id
=

 0 0 0
0 0 1
0 0 0

, D = ∂B
∂k

∣∣∣∣
Id
=

 0 0 0
0 1 0
0 0 0

.

(43)

The commutation relations are

[X, P] = I , [D, X] = −X , [D, P] = P, [I, • ] = 0 . (44)

It is noteworthy that the action of the parity matrix, P = Diagonal[1,−1, 1], on the
generators is given by P YP−1 (with Y = X, P, I, D), so that

P XP−1 = −X , P PP−1 = −P , P I P−1 = I , P DP−1 = D . (45)

Due to the fact that for arbitrary g ∈ h(1) one has that [g, [g, g]] = 0, we conclude150

that h(1) ≡ 〈X, P, I〉 is nilpotent. On the other hand, this is not the case for h̃o(1) ≡151

〈X, P, D, I〉, which is not nilpotent, although solvable.152
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The four one-parametric subgroups of h̃o(1), corresponding to its four independent
real parameters, are constructed by direct exponentiation of the matrices in (43). They
are

eaX =

 1 a 0
0 1 0
0 0 1

, eθ I =

 1 0 θ
0 1 0
0 0 1

, ebP =

 1 0 0
0 1 b
0 0 1

 , edD =

 1 0 0
0 ed 0
0 0 1


with a, θ, b, d ∈ R. Note that ed > 0, because by exponentiation we only obtain the153

elements of the connected component of the unit, i.e, H̃o(1).154

We can factorize the group H̃o(1) as product of its four one-dimensional groups as

g(θ, a, b, d) = eθ I ebP edD eaX =

 1 a θ

0 ed b
0 0 1

 ,

g(θ, a, b, d) = eθ I ebP eaX edD =

 1 eda θ

0 ed b
0 0 1

 ,

g(θ, a, b, d) = eθ I eaX ebP edD =

 1 eda θ + ac
0 ed c
0 0 1

 ,

(46)

or also as

g(θ, a, b, d) = eθ I eaX+bP edD =

 1 eda θ + ab/2
0 ed b
0 0 1

 . (47)

In the following, any g ∈ H̃o(1) will be written as a product of the four one-parametric
groups according to the second factorization displayed in (46), i.e.,

g ≡ (θ, b, a, d) = eθ I ebP eiaX edD , θ, b, a, d ∈ R . (48)

In this parametrization the group law is

g′g = (θ′, b′, a′, d′) (θ, b, a, d) = (θ′ + θ + a′ ed′b, b′ + ed′b, e−d′ a + a′, d′ + d) (49)

and the inverse element of g = (θ, b, a, d) is

g−1 = (−θ + ab,−e−db,−eda,−d) . (50)

It is simple to compute the adjoint action of the four one-parameter subgroups on
the four generators of the Lie algebra h̃o(1), which is given by

eaXPe−aX = P + aI , eaXDe−aX = D + aX ,

ebPXe−bP = X− bI , ebPDe−bP = D− bP ,

edDXe−dD = e−dX , edDPe−dD = edP .

(51)

Since I is a central generator for the algebra, we conclude that

ebIYe−bI = Y , etY Ie−tY = I , ∀Y ∈ h̃o(1) .

Also, etYYetY = Y for any Y ∈ h̃o(1).155
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From (48) and (51) we can easily compute the adjoint action of the group H̃o(1) on
its Lie algebra h̃o(1). Thus,

gXg−1 = e−dX− e−dbI ,

gPg−1 = edP + edaI , g = (θ, b, a, d)

gDg−1 = D + a X− b P− a bI .

(52)

Hence, equations (52) show that, under the action of the elements of H̃o(1), the position
and the momentum operators are transformed as X′ = e−dX − e−dbI and P′ = edP +
edaI, respectively.. Therefore, the whole group describing the invariances in the oriented
real line should be H̃(1), as e±d is always positive, so that it does not change the
orientation of X and P. However, the real line is not properly speaking an oriented
space as can be seen equally well from left to the right or from right to the left. The
conclusion is that, we have to add to H̃o(1) a parity operator P acting like the parity
matrix Diagonal[1,−1, 1] (45). Hence

H̃(1) = V2 ⊗ H̃o(1) , (53)

where V2 is the group of the discrete symmetries {I ,P}.156

3.4. The extended WH group versus an extension of the Poincaré (1+1) group157

The group H̃(1) is isomorphic to an extension of the Poincaré (1+1) group, which
we denote by P̃(1, 1). More especifically, it is the connected component of the identity
of the extended Poincaré group in (1+1) dimensions [7,9]. The group P̃o(1, 1), enlarged
with the symmetry P T , gives

P̃(1, 1) = P̃o(1, 1) ∪ P T · P(1, 1) = V2 ⊗ Po(1, 1) . (54)

Here, V2 is the group of the discrete symmetries {I ,PT }. As a matter of fact, the
group P̃o(1, 1) is spanned by H, P, K, C. These are the infinitesimal generators of the
time-translations, space-translations, boots and the central extension, respectively. Their
Lie commutators are

[P, H] = C, [K, H] = P, [K, P] = H, [·, C] = 0 . (55)

Under the discrete symmetry P T , the infinitesimal generators transform as

(H, P, K, C) P T−−→ (−H,−P, K, C) . (56)

Now, let us consider the new generators

X± = H ± P , I = 2C (57)

together with K. Their commutations relations are

[X+, X−] = I, [K, X+] = X+, [K, X−] = −X−, [•, I] = 0 . (58)

From (56) the behaviour of X± under the symmetry P T is (P T ) X± (P T )−1 = −X±.
Hence, the identification

(X+, X−, K, I) ⇐⇒ (X, P, D, I) (59)

along to the symmetry (P T ) ⇔ P allow us to show the existence of an isomorphism158

between the Lie algebras Lie[P̃(1, 1)] and Lie[H̃(1)] and their Lie groups.159
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4. Unitary representations of the WH groups160

In this section, we are going to review the unitary representations (UR) and or the161

unitary irreducible representations (UIR) the of the different HW groups described in162

the previous section.163

4.1. UIR of the Weyl-Heisenberg group H(1)164

It is noteworthy that we may consider the WH group as a central extension of the
abelian group of the translations on the 2-dimensional euclidean plane. The elements of
the WH group are parametrized by [7,15,16]

g = (θ, a, b) , θ ∈ R , (a, b) ∈ R2 , (60)

with the multiplication law

g1 · g2 = (θ1, a1, b1)(θ2, a2, b2)

= (θ1 + θ2 + ξ((a1, b1), (a2, b2)), a1 + a2, b1 + b2) ,
(61)

where the exponent ξ is [16]

ξ((a1, b1), (a2, b2)) =
1
2
(a1 b2 − a2 b1) . (62)

For the sake of simplicity we write~a = (a, b, 0) so that after (62), we have

ξ(~a1,~a2) =
1
2
~a1 ∧~a2 , ~ai = (ai, bi, 0), i = 1, 2 . (63)

Note that (61) is related with the more usual factorization

g = (θ, a, b) = eθ I eaX+bP . (64)

The latter formula can be easily checked:

g1 · g2 = (θ1, a1, b1)(θ2, a2, b2)

= eθ1 I ea1X+b1P eθ2 I ea2X+b2P = e(θ1+θ2)I ea1X+b1P ea2X+b2P

= e(θ1+θ2+
1
2 (a1b2−a2b1))I e(a1+a2)X+(b1+b2)P

= (θ1 + θ2 +
1
2
(a1b2 − a2b1), a1 + a2, b1 + b2) .

(65)

Here, we have made use of the Glauber formula [1,7], which is a particular case of the165

Baker-Campbell-Hausdorff formula, which states that if A and B are two operators166

such that [A, [A, B]] = [B, [A, B]] = 0, then eA eB = eA+B e
1
2 [A,B] or equivalently eA eB =167

eB eA e[A,B].168

It is noteworthy that the Glauber formula relates the different parametrizations of
the group

g = (θ, a, b) = eθ I eaX+bP = e(θ−
1
2 ab)I ebP eaX = (θ − 1

2
ab, 0, 0)(0, b, 0)(0, 0, a) . (66)

The UIR’s of the WH group on the space of square integrable functions on the real line169

L2(R) are well known after their applications in Quantum Mechanics. Here, we can170

distinguish two types or classes thereof:171
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I.- The infinite-dimensional representations labeled by a real parameter h ∈ R∗ given
by the product of operators [7,15]

Uh(g) ≡ Uh(θ, a, b) = eihθ eih(aX−bP) = eih(θ−ab/2) eihaX e−ihbP . (67)

for which its explicit expression acting on the functions f (x) ∈ L2(R) is given by

(Uh(g) f )(x) = eihθ eiha(x−b/2) f (x− b) . (68)

Note that Uh′ and Uh with h′ 6= h are non-equivalent.172

II.- The one-dimensional and trivial UIR with h = 0, so that (U0(g) f )(x) = f (x).173

These are not relevant in our discussion.174

Under the representations of class I, see (68), the infinitesimal generators X, P, I
take the form

(X f )(x) = x f (x) , (P f )(x) = − i
h

d f
dx

(x) , [X, P] =
i
h

I ⇒ I = h . (69)

If h = 1/h̄ we recover well-known results in Quantum Mechanics..175

We may say that the real line, we recall that we here mean the space of square176

integrable functions on the real line L2(R), supports a UIR Uh of the Weyl-Heisenberg177

group H(1).178

4.2. UIR of the Weyl-Heisenberg group with dilations H̃o(1)179

As mentioned in Section 1 the group H(1) does not exhaust self-similarity invari-
ances on the real line that for our purposes should be considered as “non oriented”. By
non-orientation, we refer to the equivalence of both directions to left to right or to right
to left. Since the Lie algebra describing the invariance in the real line is h̃(1), with gener-
ators fulfilling the commutation relations (44) and taking into account the realization
of the infinitesimal generators of the WH group (69) and Subsection 2.2 (in particular
expression (20)), we obtain the following expression for the infinitesimal generator D:

(D f )(x) = − i
2h

(
x

d
dx

+
d

dx
x
)

f (x) = − i
2h

.
(

2x
d f (x)

dx
+ f (x)

)
(70)

Hence (
e−ihdD f

)
(x) = e−d/2 f (e−dx) . (71)

Another interesting fact is that this group has two Casimir elements: I (central charge)
and the quadratic Casimir

C = X P− I D . (72)

The eigenvalues of these central elements (h, C) ∈ R2 label the UIR’s of H̃o(1). For the
sake of our purposes, the suitable UIRs of H̃o(1) are characterized by (h 6= 0, C) and
given by

(Uh,C(ĝ) f )(x) = e−d/2 eih(θ+C) eiha(x−b/2) f (e−d(x− b)) , (73)

where according to (64), we have

ĝ = (g, d) = (θ, a, b, d) = eθ I eaX+bP edD , g ∈ H(1) , d ∈ R . (74)

Now, the group law is given by

ĝ1 ĝ2 = (θ1 + θ2 +
1
2

ξ((a1, b1), (ed1 a2, e−d1 b2)), a1 + ed1 a2, b1 + e−d1 b2, d1 + d2) , (75)
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where we have taken into account (61) and (74). The inverse of the element ĝ = (θ, a, b, d)
is given by

ĝ−1 = (−θ,−e−da,−edb,−d) . (76)

With the notation used in (62), we can rewrite the exponent ξ of (75) as

ξ(ĝ1 ĝ2) = ξ((a1, b1), (ed1 a2, e−d1 b2)) = ξ
(
~a1,~a d1

2

)
, ~a d = (eda, e−db) . (77)

The factor systems [17] ωH̃o(1) = eihξ of the group H̃o(1) are

ωH̃o(1)(ĝ1 ĝ2) = eihξ
(
~a1,~a

d1
2

)
. (78)

In Reference [9] the UIRs of the Poincaré (1+1) group are constructed. Taking into180

account the relationship between this group and H̃o(1) as displayed in paragraph 3.4, it181

is straightforward to rewrite these representations in relation to our results obtained for182

H̃o(1).183

4.3. UR of the extended Weyl-Heisenberg group H̃(1)184

The invariance under orientation, or invariance under the change x ↔ −x suggest
the need for the use of the parity operator, P . The connected group H̃o(1) plus the parity
operator provide the general group of invariance of the real line as a semidirect product
of the group of the discrete symmetries V2 = {I ,P}, where I is the identity operator,
and the affine Weyl-Heisenberg group (53). This semidirect group is

H̃(1) = V2 � H̃o(1) . (79)

The action of the parity into H̃o(1) is given by

(θ, a, b, d) P−→ (θ,−a,−b, d) . (80)

The elements of the group H̃(1) can be written as

g̃ = (ĝ, α) , ĝ = (θ, a, b, d) ∈ H̃o(1) , α ∈ {I ,P} . (81)

The law group of H̃(1) is given by

g̃1 · g̃2 = (ĝ1, α1)(ĝ2, α2) = (ĝ1 · ĝα1
2 , α1α2) , (82)

where

ĝα =

 ĝ if α = I

ĝP = (θ,−a,−b, d) if α = P
, ĝ = (θ, a, b, d) . (83)

Following (82) and (76), the inverse of g̃ is

g̃−1 = (ĝ, α)−1 = (
(

ĝ−1
)α

, α) = (−θ,−e−daα,−edbα,−d, α) . (84)

Coming back to the parity operator P , we may select two choices for its representa-185

tion U(P), either by a linear or by an antilinear operator. In the sequel, we analyze both186

possibilities [13]:187

I) If we look at P as a linear operator, then H = H̃(1). The factor systems [13,17] of
this group can be written as

ωH̃(1)(ĝ1, α1, ĝ2, α2) = ωH̃o(1)(ĝ1, ĝα1
2 )ωV2(α1, α2)Λ(ĝ2, α1) , (85)
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where the factors ωH̃o(1), ωV2 and Λ, with Λ : H̃o(1)× V2 → U(1) fulfil equations188

(A155) and (A156) in Appendix G. Note that the action ∗H
∣∣
V2
(P) is here trivial after the189

linearity of P and the form of (A155) and (A156)190

ωH̃o(1)(ĝα
1 , ĝα

2) = ωH̃o(1)(ĝ1, ĝ2)Λ(ĝ1 ĝ2, α)(Λ(ĝ1, α)Λ(ĝ2, α))−1 , (86)

Λ(ĝ, α1α2) = Λ(ĝα2 , α1)Λ(ĝ, α2) . (87)

In this case, we take the factors (78) for H̃o(1). Then,

ωH̃o(1)(ĝα
1 , ĝα

2) = ωH̃o(1)(ĝ1, ĝ2) , α ∈ {I ,P} . (88)

Hence Λ, is 2-coboundary (A148) so that we may dismiss it. The factor ωV2(α1, α2) is
trivial in this case as we easily show. As we easily chaeck ωV2(P ,P) = m ∈ U(1) while
all the others from (A145) are trivial, i.e.,

ω(I , I) = ω(I ,P) = ω(P , I) = 1 . (89)

Now from (A148), we can write

ω1(P ,P) = m = λ(P) λ(P) λ(P2)−1 = λ(P)2 ⇒ λ(P) = m1/2 (90)

because λ(I) = 1. Thus, the UIRs are given by

(Uh,C(ĝ, α) f )(x) = e−d/2 eih(θ+C) eiha(x−b/2)α
f (e−d(x− b)α) . (91)

II) The second option is that P be an antilinear operator and, then, H = H̃o(1).191

The factors for H̃(1) satisfy the relation (85). Also ωH̃o(1), ωV2 and Λ verify equations192

(A155) and (A156). Since P is an antilinear operator, the action ∗H
∣∣
V2
(P) is the complex193

conjugation. Hence,194

ωH̃o(1)(ĝα
1 , ĝα

2) = ωH̃o(1)(ĝ1, ĝ2)
∗H
∣∣
V2

(α)
Λ(ĝ1 ĝ2, α)(Λ(ĝ1, α)Λ(ĝ2, α))−1 , (92)

Λ(ĝ, α1α2) = Λ(ĝα2 , α1)Λ(ĝ, α2)
∗H
∣∣
V2

(α)
. (93)

From (78) and (88), we conclude that (92) have no solutions for Λ unless h = 0. Moreover,
ωV2 is not trivial now and we have ωV2

m (P ,P) = m with m = ±1. Then Λ becomes
trivial. Its factor system is now

ωH̃(1)(ĝα
1 , ĝα

2) = ωV2
m (α1, α2) . (94)

We have obtained a semi-unitary representation of the whole group such that its restric-
tion to the connected component is a realization with h = 0. We have now

(U0,C(ĝ, α) f )(x) = ∆(α) f (xα) , (95)

where ∆(I) = Identity and ∆(P) = K, the conjugation operator.195

In the following, we shall focus our attention in the representations of class I, i.e., in196

the unitary representations (91) or (100) as they are the only non-trivial.197



Version April 15, 2021 submitted to Journal Not Specified 15 of 24

4.4. Unitary representations of H̃(1) and Fourier Transform198

The above unitary representations can be translated to functions f̂ (p) via the Fourier
transform. Thus, for the representation (91) we have(

Uh,C(g̃) f̂
)
(p) =

∫
R

eihpx (Uh,C(g̃) f )(x) dx

=
∫
R

e−d/2 eihpαxα
eih(θ+C) eiha(x−b/2)α

f (e−d(xα − b)) dx

= ed/2 eih(θ+C) eihpb
∫
R

eihed(p+a)α yα
f (yα) dy .

= ed/2 eih(θ+C) eihpb f̂ (ed(p + a)α) dy .

(96)

In the third identity in (96), we have used a new variable, defined as yα = e−d(x− b)α.
For the representation (95), we have used(

U0,C(ĝ, α) f̂
)
(p) =

∫
R

eεαihpx (U0,C(ĝ, α) f )(x) dx

=
∫
R

eεαihpx ∆(α) f (xα) dx = ∆(α)
∫
R

eihpαxα
f (xα) dx

= ∆(α) f (pα) ,

(97)

where εα = sign(∆(α)i).199

5. A generalization of the Hermite functions200

The most used orthonormal basis for the Hilbert space L2(R) is the basis of the
normalized Hermite functions, {ψn(x)}, defined as [18,19]

ψn(x) :=
e−x2/2√
2nn!
√

π
Hn(x) , Hn(x) := (−1)n ex2 dn

dxn e−x2
, n = 0, 1, 2, . . . , (98)

where the Hn(x) are the so called the (physicists) Hermite polynomials [10,20,21]. We
recall the following well known relations that assure that the normalized Hermite
functions are a basis for L2(R):

∫ +∞

−∞
ψn(x)ψn′(x)∗ dx = δnn′ ,

∞

∑
n=0

ψn(x)ψn(y)∗ = δ(x− y) . (99)

The basis of Hermite functions (98) has two interesting properties: (i) nonetheless201

the complex character of the functions in the Hilbert space L2(R), all Hermite functions202

are real and (ii) they are eigenfunctions of the FT and also of the IFT (29) [10] .203

We can restrict the UIR of H̃(1) (91) to those elements g̃ = (ĝ, α) with θ = 0, recall
that g̃ = (θ, a, b, d, α). Let us denote g̃0 = (0, a, b, d, α) and take C = 0. The action of g̃0
on the Hermite functions is given by

(Uh,0(g̃0)ψn)(x) = e−d/2 eiha(x−b/2)α
ψn(e−d(x− b)α) . (100)
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Next, let us consider the inner product (99) and compute∫ +∞

−∞
[Uh,0(ĝ0, α)ψn](x) [Uh,0(ĝ0, α)ψn′ ](x)∗ dx

= e−d
∫ +∞

−∞
ψn(e−d(x− b)α)ψn′(e

−d(x− b)α) dx

=
∫ +∞

−∞
ψn(yα)ψn′(y

α) dy =
∫ +∞

−∞
ψn(y)ψn′(y) dy

= δnn′ ,

(101)

where we have used the change of variables yα = e−d(x− b)α in the third equality. In
addition, we have that

+∞

∑
n=0

[Uh,0(ĝ0, α)ψn](x)∗ [Uh,0(ĝ0, α)ψn](y)∗

= e−d e−iha(xα−yα)
∞

∑
n=0

ψn(e−d(x− b)α)ψn′(e
−d(y− b)α) (102)

= e−d e−iha(xα−yα) δ(e−d(xα − yα))

= δ(xα − yα) = δ(x− y) . (103)

If we split (102) into its real and imaginary parts, we arrive to the following pair of204

equations, both together equivalent to (103):205

∞

∑
n=0

cos[ha(x− y)]ψn(kx + b)ψn(ky + b) = δ(x− y) ,

∞

∑
n=0

sin[a(x− y)]ψn(kx + b)ψn(ky + b) = 0 . (104)

Now, let us consider an element g̃0 = (0, a, b, d) ∈ H̃(1) and its inverse given by
(84), i.e., g̃−1

0 = (0,−e−daα,−edbα,−d, α). Then (100) becomes

(Uh,0(ĝ0, α)ψn)(x) = e−d/2 eiha(x−b/2)α
ψn(e−d(x− b)α) . (105)

After (26) and (105), it becomes obvious that the Parity induces a particular case of
dilatation, since

e−d xα =

 e−d x = kx with k > 0 if α = I

−e−d x = kx with k < 0 if α = P
(106)

In the sequel, we shall introduce a generalization of the Hermite functions and206

study some of their properties.207

5.1. Generalized Hermite Functions208

Let us define a three-parameter family of square integrable functions based on the
Hermite functions as follows:

χn(x, k, a, b) :=
√
|k| e−iax ψn(kx + b) , a, b ∈ R; , k 6= 0 ∈ R∗ . (107)
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From the two expression in (99), we readily obtain, respectively, the following relations
valid for n, n′ = 0, 1, 2, . . . :∫ +∞

−∞
χn(x, k, a, b) χn′(x, k, a, b)∗ dx = δnn′ ,

∞

∑
n=0

χn(x, k, a, b) χn(y, k, a, b)∗ = δ(x− y) ,
(108)

which show that for fixed a, b and k 6= 0, the functions χn(x, k, a, b), n = 0, 1, 2, . . . , form
a basis for L2(R). Thus, we have constructed a family of bases for this Hilbert space,
which under transformations by the FT and the IFT becomes,

FT[χn(x, k, a, b), x, y] = inχn(y, k−1, b,−a) ,

IFT[χn(y, k, a, b), y, x] = (−i)nχn(x, k−1,−b, a) .
(109)

This is a generalization of (29), which shows that the Fourier transform and its inverse
are symmetry transformations of the representations of the Weyl-Heisenberg group
H(1). After (109) we realize that both are symmetry transformations of the H̃(1) group
as well. Obviously, both expressions of (109) are written in terms of the coordinate
representation. Their explicit forms in terms of the momentum representation can be
easily obtain. We see that under the FT (IFT) transform, the basis {χn(x, k, a, b)} changes
into {χn(x, k−1, b,−a)} (or viceversa). Thus, the generalized Hermite functions are not
eigenvectors of the FT (IFT) contrarily to the Hermite functions (29). On the other hand,
if

k = k−1, a = b, b = −a =⇒ k = ±1, a = 0, b = 0 (110)

the corresponding generalized Hermite functions are eigenvalues of the FT (IFT). This209

only happens for the standard Hermite functions.210

Consequently, the Fourier transform and its inverse, transform bases into bases of211

L2(R), which are relevant for symmetry transformations after the action of groups like212

H(1) and H̃(1) ' P̃(1 + 1). In the first case, the FT and the IFT transform bases into213

bases. In the second, they transform any basis of the family into another basis of the214

same family, although having with different parameters as we see in (110). Furthermore,215

we find another difference between the two approaches: while the Hermite functions216

are real, the generalized Hermite functions are not real and only they are real for the217

particular choice a = 0, where the three-parameter family of bases becomes restricted to218

a two-parameters family.219

Finally, we may disregard translational invariance and consider self-similarity and
invalid orientation only. Then, the three-parameter family of bases (107) reduces to a
one-parameter family, depending only on k ∈ R∗. This is

{χn(x, k)}n∈N
∈R∗ ≡ {χn(x, k, 0, 0)}n∈N

∈R∗ ≡ {
√
|k| ψn(kx)}n∈N

∈R∗ . (111)

We shall discuss the importance of these basis in the sequel.220

5.2. P̃(1, 1) and the “classical” real line221

In Section 3, we have extended the group H(1) so as to include non-commutativity222

and self-similarity. Thus, we arrived to H̃(1) which is isomorphic to an extension of223

the Poincaré group in 1+1 dimensions, P̃(1, 1), see Subsection 3.4. Nevertheless, its is224

always possible to start from symmetries of “classical physics” given by Po(1, 1), which225

is the connected component of the Poincaré group in (1 + 1) dimensions to arrive again226

to P̃(1 + 1) using the central extension and the P T symmetry as a tool.227

In order to implement this programme, we start withwith the connected algebra228

Lie(Po(1 + 1)) = Po(1 + 1) with basis {H, P, K} [9]. Here, H and P are the infinitesimal229
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generators of the time and space translations, respectively, and K is the infinitesimal230

generator of the Lorentz transformations. Their commutation relations are231

[H, P] = 0, [H, K] = P, [P, K] = H . (112)

The action of an arbitrary element (a0, a1, Λ(η)) ∈ Po(1 + 1) on the space-time is
given by

(a, b, Λ(η))x ≡
(

cosh η sinh η
sinh η cosh η

)(
x0

x1

)
+

(
a0

a1

)
, (113)

where x = (x0, x1)T . Using relations (57) and (59), we obtain a new basis {X, P, K} such
that [X, P] = 0. These new basis elements are related to to the light-cone coordinates:

x± = x0 ± x1 ⇔ x0 =
x+ + x−

2
, x1 =

x+ − x−
2

. (114)

The commutator [X, P] = 0 justifies the label “classicality” for the symmetry with
group of invariance Po(1, 1). As previously remarked, the group P(1, 1) is the result of
the addition of the operator PT to Po(1, 1). The action of each g = (a, b, d, α) ∈ P(1, 1)
on any square integrable function in the coordinate and the momentum representation
is (x+ = x, x− = p), respectively according to (105) and (106):

U(g) f (x) = |k|−1/2 f (k−1(x− b))

U(g) f (p) = |k|1/2 f (k(p + a))
k =

(
ed
)α

. (115)

Now, let us consider self-similarity and parity transformations on the line, per-
forming the operations x =⇒ kx and p =⇒ k−1 p, along the symmetries induced by
these transformations. The translation invariance introduced in Quantum Physics by the
non-commutativity is not relevant here. For k 6= 0 and real, equation (111) yields to

χn(x, k) =
√
|k| e−k2x2/ 2√

2nn!
√

π
Hn(kx) . (116)

From (108), we readily obtain for any k ∈ R∗

∫ +∞

−∞
χn(x, k) χn′(x, k)∗ dx = δnn′ ,

∞

∑
n=0

χn(x, k) χn(y, k)∗ = δ(x− y) . (117)

This shows that {χn(x, k)} is a one-parameter family of orthonormal bases for L2(R).
Under the Fourier transform and its inverse, these bases become

FT[χn(x, k), x, y] = inχn(y, k−1) , IFT[χn(p, k−1), y, x] = (−i)nχn(x, k) . (118)

The functions belonging to the family of bases {χn(x, k)} are all real for all k ∈ R∗,232

a property shared by the basis of Hermite functions {ψn(x)}. This means that both set233

of bases are equally appropriate for the Hilbert space L2(R), no matter if this is a Hilbert234

space on the set of either the complex or the real field. This property is in general false if235

we choose {χn(x, k, a, b)} as a basis, which for most values of the parameters is solely a236

basis for L2(R) as a Hilbert space on the complex field.237

On the other hand, all the bases {ψn(x)}, {χn(x, k, a, b)} and {χn(x, k)} have a238

similar behaviour under Fourier transform and its inverse, so that all serve as bases in239

the momentum representation (29), (109) and (118).240

5.3. Generalized Hermite polynomials241

Some comments on the functions {χn(x, k)} are in order here. For each value of242

n = 0, 1, 2, . . . , these functions include the factor Hn(kx), which is nothing else that the243
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n-th Hermite polynomial (98) with a dilation on its argument. The Rodrigues formula244

for Hn(kx) follows straightforwardly from (98) and gives245

Hn(kx) = (−1)n ek2x2 dn

kndxn e−k2x2
=

(
2kx− 1

k
d

dx

)n
∗ 1 , (119)

with generating function

e2kxt−t2
=

∞

∑
n=0

Hn(kx)
tn

n!
. (120)

Other relevant formulas or recurrence relations of the Hermite polynomials Hn(x)
are are straightforwardly obtained from Hn(kx). As for instance, the differential equation
for Hn(kx):

H′′n (kx)− 2k2xH′n(kx) + 2k2nHn(kx) = 0 . (121)

5.4. The set of functions {χn(x, k)} as basis for representations of the WH algebra h(1)246

As is well known, {ψn(x)} ≡ {χn(x, 1)} is a basis for representations of the WH247

algebra h(1) [22], which are supported on L2(R). In addition, following previous experi-248

ences with the use of ladder operators, we may also here construct a set of operators,249

{H, A+, A−}, for h(1) such that the basis functions {χn(x, k)} are eigenfunctions of H,250

and are transformed into each other using the others, A±, as ladder operators. The251

explicit form of these operators for h(1) is252

H :=
1
2
(k2X2 + k−1P2) , A± :=

k√
2

x∓ 1√
2 k

d
dx

. (122)

Thesy fulfil the following commutation relations in h(1):

[H, A±] = ±A± , [A+, A−] = −1 . (123)

It is quite simple to show that the operators A± act as ladder operators with respect to
the family of bases {χn(x, k)}:

A+ χn(x, k) =
√

n + 1 χn+1(x, k) , A− χn(x, k) =
√

n χn−1(x, k) . (124)

Then, we may define the number operator N := A+A− so that from (124) we have

Nχn(x, k) = n χn(x, k) , (125)

as we may have expected. Note that H = N + 1/2 and that relations (123) and (124) are
independent on k. This representation of h(1) has the zero operator as Casimir [22,23]:[

H − 1
2
{A+, A−}

]
χn(x, k) = 0 , (126)

This relation may be extended to the common domain of the operators {H, A+, A−}.
This domain is dense in L2(R), since it contains the Schwartz space. We also may
write the Casimir in terms of the basis {X, P, H}. Needless to say that, in this explicit
realization (122) the Casimir is also zero, i.e.,[

H − 1
2
(k2X2 + k−2P2)

]
χn(x, k) = 0 . (127)

Observe that the formal expression for the Casimir depends now on k. This is also the
case of the kinetic energy operator, which on each member of the basis {χn(x, k)} acts as

P2

2
χn(x, k) = k2

[
(N + 1/2) − k2X2

2

]
χn(x, k) . (128)
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Note that the right hand side of (128) goes to the free particle of zero energy in the limit253

k→ 0. This exhibits a limiting connection between the Harmonic Oscillator and the free254

particle within the context of Quantum Mechanics.255

5.5. Representation on rigged Hilbert space256

Thus far, we have discussed representations of some Lie algebras as operators on
the Hilbert space L2(R). These operators, although self-adjoint, are unbounded. It would
have been interesting to represent these algebras of operators as continuous operators on
some topological vector space. The formalism of rigged Hilbert spaces (RHS), or Gelfand
triplets is very suitable in achieving this goal. A rigged Hilbert space is a triplet of spaces
[24].

Φ ⊂ H ⊂ Φ× , (129)

such thatH is a complex separable infinite dimensional Hilbert space. The locally convex257

space Φ is endowed with a strictly finer topology than the inherited by Φ from H, so258

that the canonical injection Φ 7−→ H is continuous. Finally, the space of all continuous259

antilinear functionals on Φ is Φ×, which is the antidual space of Φ. It may have any260

topology compatible with the dual pair {Φ, Φ×}, i.e., weak, strong or MacKey. We261

usually choose this antiduality instead of duality for notational convenience [25,26]. See262

also [10,27–30].263

The simplest example for Φ is the Schwartz space S of all complex indefinitely
differentiable functions on the real line, such that they and their derivatives go to zero at
the infinity faster than the inverse of any polynomial. A good discussion on the Schwartz
space may be found in [31]. The Schwartz space contains all the basis {χn(x, k, a, b)} and

S ⊂ L2(R) ⊂ S× (130)

is a RHS. In the sequel, we shall see why this RHS is suitable for our purposes. We
should note first that if A is a symmetric (Hermitian) continuous operator [31] on S ,
then, it may be extended to a continuous operator on S× by using the duality formula:

〈Aϕ|F〉 = 〈ϕ|AF〉 , ∀ ϕ ∈ S , ∀ F ∈ S× , (131)

and 〈ϕ|F〉 is the action of F ∈ S× on ϕ ∈ S .264

The usual Frèchet topology on S is given by a countable set of norms. There
are several countable families of norms given the same topology on S , although the
most convenient for our purposes in the following [31]: A square integrable function
f (x) ∈ L2(R) with

f (x) =
∞

∑
n=0

an ψn(x) (132)

is in S if and only if

∞

∑
n=0
|an|2 (n + 1)2r < ∞ , r = 0, 1, 2, . . . . (133)

Then, for any f ≡ f (x) ∈ S , we define the following countable family of norms, pr( f ),
as:

pr( f ) :=

√
∞

∑
n=0
|an|2 (n + 1)2r , r = 0, 1, 2, . . . . (134)

It is worthy noticing that for r = 0, we have the Hilbert space norm, so that the canonical265

injection i : S 7−→ L2(R) is continuous.266
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What happens if we use the other families of bases such as {χn(x, k)} or {χn(x, k, a, b)}?
Note that for fixed real numbers a, b and k 6= 0, we have

f (x) =
∞

∑
n=0

bn χn(x, k, a, b) =
∞

∑
n=0

bn
√

k e−iax ψn(kx + b)

=
∞

∑
n=0

bn
√

k e−i(y/k−b/k) ψn(y) ,
(135)

so that for all r = 0, 1, 2, . . . ,

p2
r ( f ) = k

∞

∑
n=0
|bn|2 (n + 1)2r , (136)

and hence, |an|2 = k |bn|2, n = 0, 1, 2, . . . , for k fixed. Same for the span of f (x) in terms267

of the family of basis {χn(x, k)}.268

With these ideas in mind, it is rather trivial to prove that the operators A±, H and269

N, defined in (122)-(124) are continuous operators on S and, therefore, continuously270

extensible to S×. This comes from the following result [31]:271

Theorem.- Let Φ a locally convex space for which the topology is defined by the family of
seminorms {pi(·)}i∈I . A linear operator A : Φ 7−→ Φ is continuous on Φ if and only if
for each seminorm pj of the previous family, there exist a positive constant K > 0 and k
fixed seminorms of the same collection pn1 , pn2 , . . . , pnk such that for all ϕ ∈ Φ, we have

pi(ϕ) ≤ K{pn1(ϕ) + pn2(ϕ) + · · ·+ pnk (ϕ)} . (137)

The constant K, the seminorms pn1 , pn2 , . . . , pnk and its number k may depend on pj.272

Proof.- In order to prove our claim, let us first show that for any f (x) ∈ S , then
A± f (x) ∈ S and same property is true for H and N. Take,

[A+ f ](x) =
∞

∑
n=0

an
√

n + 1 χn+1(x, k) , (138)

so that for any norm, pr, in (134), one has for r = 0, 1, 2, . . . :

pr(A+ f ) =
√

k

√
∞

∑
k=0
|an|2 (n + 1) (n + 1)2r ≤

√
k

√
∞

∑
k=0
|an|2 (n + 1)2(r+1)

≤
√

k pr+1( f ) .

(139)

This proves both that A+ f ∈ S for any f ∈ S and that, according to the previous
Theorem, A+ is continuous on S . Similar proofs can be used for A−, H and N. Since,

X =
1√
2 k

(A+ + A−) , P =
ik√

2
(A− − A+) , (140)

it comes that X and P are also continuous operators on S . The same property holds for273

the parity operator P. All these operators are continuously extensible to S×.274

6. Concluding remarks275

We have studied how invariance properties on the real line under geometric trans-276

formations like translations, dilations and inversions can be represented as unitary277

mappings on L2(R). This representation transforms the basis of Hermite functions in278

new basis of functions, which generalize the notion of Hermite functions. In the process,279

we arrive to the Euclidean group on the line E(1).280

The properties of the Fourier transform and, in particular, that one that transform281

coordinates into momenta and viceversa, FT[ f (x), x, p] = f̂ (p), have forced us to intro-282
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duce an enlarged group adding a new generator, so as to extend the Weyl-Heisenberg283

group H(1) to the group H̃(1). This group is isomorphic to the central extension of the284

Poincaré group in (1+1) dimensions enlarged with the P T transformation. Analogously,285

H̃(1) is isomorphic to the central extension group of isometries of the two dimensional286

space R2 with signature (+,−). This extension is denoted as P̃(1, 1) or also Ẽ(1, 1).287

One representation of the infinitesimal generators of Ẽ(1, 1) as operators on L2(R) is288

explicitly given by X = x, P = −(i/h) ∂x, D = − i
2h (x∂x + ∂x x), I = h. While X and P289

algebraically express the connection between configuration and momenta representation290

described analytically by the Fourier transform, the dilatation operator is given so as to291

obtain the factor e∓d/2. This factor is necessary in order to normalize the representation292

(73), (96) and (101). Finally, if we choose for h the value 1/h̄, we recover all the well293

known results of Quantum Mechanics.294

We have introduced a generalisation of the Hermite functions, which are quite295

appropriate to our discussion due to their behaviour under transformations by the group296

H̃(1). These new generalized Hermite functions also provide a 3-parameter family of297

bases of L2(R). However, these generalized Hermite functions are not eigenvectors of298

the Fourier transform on L2(R), no matter if the Fourier transform maps orthonormal299

basis into orthonormal basis. We may say that, from this point of view, the usual Hermite300

functions are those with better properties among all types of generalized Hermite301

functions.302

As a final remark, let us mention that the generalized Hermite functions are discrete303

bases in a rigged Hilbert space on which the generators of H(1) or H̃(1) are continuous.304

Appendix G Factor systems of semidirect products305

Let G be a connected Lie group acting transitively on a differentiable manifold X.
A unitary realization of G on the vector space of functions f : X → C can be defined as
[32,33]

(U(g) f )(gx) = η(g, x) f (x) , (A141)

where η is a function η : G× X → U(1) verifying

η(g′, gx) η(g, x) = ω(g′, g) η(g′gx) , (A142)

where ω is a system of factors of G, i.e.,

G× G ω−→ U(1) (A143)

such that

ω(g1, g2)ω(g1g2, g3) = ω(g2, g3)ω(g1, g2g3) , ∀g1, g2, g3 ∈ G . (A144)

and

ω(e, e) = ω(e, g) = ω(g, e) = 1 , e = identity element of G , ∀g ∈ G . (A145)

The factors or factor system ω is a 2-cocycle. The set of 2-cocycles is denoted by
Z2(G, U(1)) [34]. We recall that

U(g1g2) = ω(g1, g2)U(g1)U(g2) . (A146)

Two factor systems ω1 and ω2 are said equivalent if there is aλ : G → U(1) such that

ω1(g1, g2) = λ(g1) λ(g2) λ(g1, g2)
−1 ω2(g1, g2) (A147)

A factor system ω is said trivial or equivalent to 1 (or a 2-coboundary) if

ω1(g1, g2) = λ(g1) λ(g2) λ(g1, g2)
−1 . (A148)
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The 2-cocycles verifying (A148) or 2-coboundaries belong to B2(G, U(1)). The set of306

classes de equivalence of 2-cocycles determines the second cohomology group of G:307

H2(G, U(1)) = Z2(G, U(1))/B2(G, U(1)).308

Let us consider a nonconnected Lie group, a subgroup H ⊂ G of index 1 or 2 in G
and a realization of G on the group of linear and antilinear operators in a Hilbert space
such that O(g) be linear or antilinear if g ∈ H or g ∈ G − H. Hence the action on a
function f (x) would be

(U(g) f )(x) = η(g, x) f g(g−1x) , (A149)

such that f g(x) = f (x) or f g(x) = f (x)∗ if g ∈ H or g ∈ G− H, respectively. We have
the following relation

η(g′, gx) η(g, x)g′ = ω(g′, g) η(g′gx) . (A150)

The factor system verifies

ω(g1, g2)ω(g1g2, g3) = ω(g2, g3)
g1 ω(g1, g2g3) . (A151)

Let G be a nonconnected Lie group which is a semidirect product G = Go � V,
where Go is the connected component of the identity and V = πo(G) is the group of the
connected components, with the action

g ∈ G α∈V−−→ gα ∈ G . (A152)

By H we denote a closed subgroup of G of index 1 or 2. The action of G on U(1) is
denoted by ∗H such that

β ∈ U(1)
g∈G−−−→
H⊂G

βg =

 β if g ∈ H

β∗ if g ∈ G− H
(A153)

and their restrictions to Go and V give the actions of Go and V on U(1) (denoted by ∗H
∣∣
Go

and ∗H
∣∣
V respectively). In this case ∗H

∣∣
Go

is trivial. Then for each [ω] ∈ H2
∗H(G, U(1))

we can find a factor system ω which is an element of Z2
∗H(G, U(1)) given by

ωG(g1, α1; g2, α2) = ωGo (g1, gα1
2 )ωV(α1, α2)Λ(g2, α1) , (A154)

where ωGo ∈ Z2
∗H
∣∣

Go

(Go, U(1)), ωV ∈ Z2
∗H
∣∣

V

(V, U(1)) and Λ : Go × V → U(1)309

verifying310

ωGo (gα
1 , gα

2) = ωGo (g1, g2)
∗H
∣∣

V
(α) Λ(g1g2, α)(Λ(g1, α)Λ(g2, α))−1 , (A155)

Λ(g, α1α2) = Λ(gα2 , α1) (Λ(g, α2))
∗H
∣∣

V
(α1) . (A156)

For more details see [13] and references therein.311
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