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We compute the conservative van-der-Waals forces between two atoms, one of which is initially
excited, in the limit of identical atoms. Starting with the perturbative calculation of the interaction
between two dissimilar atoms, we show that a time-dependent approach in the weak-interaction
approximation is essential in considering the identical atoms limit in the perturbative regime. In
this limit we find that, at leading order, the van-der-Waals forces are fully-resonant and grow linearly
in time, being different upon each atom. The resultant net force upon the two-atom system is related
to the directionality of spontaneous emission, which results from the violation of parity symmetry.
In contrast to the usual stationary van-der-Waals forces, the time-dependent conservative forces
cannot be written as the gradients of the expectation values of the interaction potentials, but as the
expectation values of the gradients of the interaction potentials only.

I. INTRODUCTION

Dispersion forces between neutral atoms are the re-
sult of the coupling of the quantum fluctuations of the
electromagnetic (EM) field in its vacuum state with the
fluctuations of the atomic charges in stable or metastable
states. Generically, the corresponding forces are known
as van-der-Waals (vdW) forces [1–5]. In the last decades
a renewed interest has been drawn on the interaction be-
tween excited atoms. The interests are twofold. From a
practical perspective, this is the kind of interaction be-
tween Rydberg atoms [6–12] which makes possible the
coherent manipulation of their quantum states, facilitat-
ing the entanglement between separated quantum sys-
tems as well as the storage of quantum information [13–
18]. On the other hand, from a fundamental perspective,
the attention has focused on different aspects of the in-
teraction, namely, its scaling behavior with the distance
[19–25], the role of dissipation [23, 24, 26–28], its inherent
time-dependence [20, 21, 23, 29–31], and the net forces
induced by parity and time-reversal violation [32, 33].

Hereafter and for the sake of simplicity we will con-
sider the interaction between a pair of two-level atoms,
A and B, with resonance frequencies ωA and ωB , nat-
ural linewidths ΓA and ΓB , and ground and excited
states labeled with subscripts + and −, respectively,
|A±, B±〉. In the case of dissimilar atoms, i.e., for
|∆AB | = |ωA−ωB | � ΓA,ΓB , it is possible to use quasi-
stationary perturbation theory to compute the interac-
tion. This is so because the excitation process can be
taken adiabatic with respect to the rate at which the ex-
citation is transferred between the atoms, ∆AB . That is,
denoting by Ω the Rabi frequency of the external exciting
field, an adiabatic excitation holds for |∆AB | � Ω. It was
shown in Ref.[23] that, for arbitrary values of Ω, the re-
sultant resonant interaction contains a quasi-stationary
term which oscillates in space with wavelength cπ/ωA
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and is exponentially attenuated in time at the rate ΓA,
and time-oscillating terms of frequency ∆AB whose am-
plitude is proportional to Ω2/(∆2

AB − Ω2). In the adi-
abatic limit the latter term vanishes [20], and the re-
sult is equivalent to that obtained using adiabatic time-
dependent perturbation theory [23]. Other approaches
based on Heisenberg’s formalism [22, 24, 30] and Feyn-
man’s Lagrangian formalism between asymptotic states
[29, 31] lead to an equivalent quasi-stationary result. In
the opposite limit, that is, for a sudden excitation with
Ω � |∆AB |, quasi-stationary and time oscillating terms
happen to be of the same order [21]. Either way, it was
also found in Refs.[23, 32] that a weak net force acts upon
the center of mass of the two-atom system while excited.

As for the interaction of a binary system of identi-
cal two-level atoms, with one of them initially excited,
neither quasi-stationary nor adiabatic approximations
make physical sense for two reasons. In the first place,
the system becomes degenerate, as the states |A+, B−〉
and |A−, B+〉 posses identical energies, and the station-
ary sates are the symmetric and antisymmetric Dicke’s
states, (|A+, B−〉±|A−, B+〉)/

√
2, respectively. This im-

plies that the use of stationary perturbation theory be-
comes unsuitable. Second, in contrast to the interaction
between dissimilar atoms, the null value of ∆AB makes an
adiabatic excitation unfeasible with respect to the orig-
inal detuning. On the contrary, a sudden excitation is
suitable as long as its associated Rabi frequency Ω is
much greater than the detuning between the stationary
Dicke’s states [2, 34].

In this article we will show that, starting with a bi-
nary system of dissimilar atoms, the identical atoms limit
upon the interaction of the excited system can be formu-
lated in a consistent manner using time-dependent per-
turbation theory in the sudden excitation approximation.
In order to keep the calculation perturbative, we will re-
strict ourselves to the weak-interaction regime, meaning
that the observation time is small in comparison to the
time it takes for the excitation to be transferred from
the initially excited atom to the other, which is of the
order of the inverse of the detuning between the Dicke’s
states. We will show that, for two-level atoms, the van-
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der-Waals forces are dominated by fully-resonant com-
ponents which grow linearly in time and are different
upon each atom. Besides, in addition to the familiar off-
resonant van-der-Waals force, a reciprocal semi-resonant
force arises. Interestingly, the time-dependent forces do
not derive from the gradients of the expectation values of
the interaction potentials, but from the expectation val-
ues of the gradients of the interaction potentials instead.
The non-reciprocal components of the force are explained
in terms of parity symmetry violation, which generate an
asymmetry in the probability of emission of photons from
either atom. The effect of the de-excitation upon the off-
resonant van-der-Waals force is also analyzed.

The article is organized as follows. In Sec.II we per-
form the computation of the vdW forces between two dis-
similar two-level atoms, one of which is suddenly excited.
The origin of non-reciprocal forces is related to the direc-
tionality of spontaneous emission. In Sec.III the identical
atoms limit is considered in the weak-interaction regime.
The conclusions are summarized in Sec.IV together with
a discussion on the extension of our results.

II. VDW INTERACTION OF TWO DISSIMILAR
ATOMS AFTER A SUDDEN EXCITATION

Let us consider two atoms, A and B, located a dis-
tance R apart. Since we are ultimately interested in the
identical atoms limit, |∆AB | � ΓA, ΓA → ΓB , atom A
is assumed to be suddenly excited with an external field
of strength Ω� |∆AB |. This is the situation considered
in Ref.[21], where the calculation was restricted to quasi-
resonant processes, and to observation times T such that
ΓA,BT � 1. Here we will go beyond those restrictions
and we will evaluate all the contributions to the vdW
forces on both atoms, at leading order in the coupling
parameter.

Let us consider a sudden excitation of atom A. The
state of the system at time 0 is |Ψ(0)〉 = |A+〉 ⊗ |B−〉 ⊗
|0γ〉, where (A,B)± label the upper/lower internal states
of the atoms A and B respectively, and |0γ〉 is the electro-
magnetic (EM) vacuum state. At any given time T > 0
the state of the two-atom-EM field system can be writ-
ten as |Ψ(T )〉 = U(T )|Ψ(0)〉, where U(T ) denotes the
time propagator in the Schrödinger representation,

U(T ) = T exp
{
−i~−1

∫ T

0

dt H
}
, (1)

H = HA +HB +HEM +W.

In this equation HA + HB is the free Hamiltonian of
the internal atomic states, ~ωA|A+〉〈A+|+~ωB |B+〉〈B+|,
while the Hamiltonian of the free EM field is HEM =∑

k,ε ~ω(a†k,εak,ε + 1/2), where ω = ck is the photon fre-

quency, and the operators a†k,ε and ak,ε are the creation
and annihilation operators of photons with momentum
~k and polarization ε, respectively. Finally, the inter-
action Hamiltonian in the electric dipole approximation

reads W = WA +WB , with

WA,B ' −dA,B ·E(RA,B). (2)

In this expression dA,B are the electric dipole operators of
each atom, and E(RA,B) is the quantum electric field op-
erators in Schrödinger’s representation evaluated at the
position of the center of mass of each atom, RA,B , re-
spectively. In terms of the EM vector potential,

A(r, t) =
∑
k,ε

√
~

2ωVε0
[εak,εe

i(k·r−ωt)+ε∗a†k,εe
−i(k·r−ωt)],

the electric field E(RA,B) = −∂tA(RA,B , t)|t=0 can be
written as a sum over normal modes,

E(RA,B) =
∑
k

E
(−)
k (RA,B) + E

(+)
k (RA,B)

= i
∑
k,ε

√
~ck
2Vε0

[εak,εe
ik·RA,B − ε∗a†k,εe

−ik·RA,B ],

where V is a generic volume and E
(∓)
k denote the an-

nihilation/creation electric field operators of photons of
momentum ~k, respectively. Strictly speaking, W in-
cludes an additional term in the electric dipole approx-
imation which is referred to as Röntgen term [35]. As
argued in Ref.[36], that term is negligible since its con-

tribution to Eq.(1) contains terms of orders ṘA,B/c and
dA,B · E(RA,B)/mA,B smaller than the contribution of
Eq.(2), with mA,B being the atomic masses.

Next, considering W as a perturbation to the
free Hamiltonians, the unperturbed time propaga-
tor for atom and free photon states is U0(t) =
exp [−i~−1(HA +HB +HEM )t]. In terms of W and U0,
U(T ) admits an expansion in powers of W which can be
developed out of the time-ordered exponential equation,

U(T ) = U0(T ) T exp

∫ T

0

(−i/~)U†0(t)W U0(t)dt, (3)

which can be written as a series in powers ofW as U(T ) =
U0(T ) +

∑∞
n=1 δU(n)(T ), with δU(n) being the term of

order Wn.
The system posseses a conserved total momentum [37,

38], [H,K] = 0,

K = PA + PB + Pγ⊥, (4)

where PA,B are the canonical conjugate momenta of the

centers of mass of each atom and Pγ⊥ =
∑

k,ε ~k a
†
k,εak,ε

is the transverse EM momentum. Further, if the charges
{qi} within the atoms are considered individually at po-
sitions {ri}, the canonical conjugate momenta can be
written as

PA + PB = mAṘA +mBṘB +
∑
i

qiA(ri), (5)

where the first two terms are the kinetic momenta of
the centers of mass of each atom, and the momentum
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within the summation symbol is referred to as longitu-
dinal EM momentum [37], Pγ‖ =

∑
i qiA(ri). Lastly,

in the electric dipole approximation, Pγ‖ reads [35],

Pγ‖ ' −dA ×B(RA)− dB ×B(RB), where B(RA,B) =

∇A,B ×A(RA,B).
Following Refs.[32, 36], the force on each atom is com-

puted applying the time derivative to the expectation
value of the kinetic momenta of the centers of mass of
each atom. Writing the latter in terms of the canonical
conjugate momenta and the longitudinal EM momentum,
we arrive at

〈FA,B〉T = ∂T 〈mA,BṘA,B〉T (6)

= −i~∂T 〈Ψ(0)|U†(T )∇A,BU(T )|Ψ(0)〉
+ ∂T 〈Ψ(0)|U†(T )dA,B ×B(RA,B)U(T )|Ψ(0)〉
= −〈∇A,BWA,B〉T + ∂T 〈dA,B ×B(RA,B)〉T ,

The first term on the right hand side of last equality is
a conservative force along the interatomic axis, which we
will refer to as vdW force. Note hower that, in contrast to
the stationary vdW forces computed in the adiabatic ap-
proximation –cf. Ref.[23], time-dependent conservative
forces cannot be generally written as −1

2 ∇A,B〈WA,B〉T .
We will show latter, including up to two-photon exchange
processes, that the reason is the functional dissymme-
try in the contribution of the two photons to the time-
dependent terms. The second term is a non-conservative
force equivalent to the time derivative of the longitudi-
nal EM momentum at each atom, with opposite sign. We
will show in a separate publication [39] that its contri-
bution is only observable for |∆AB | � ωA,B , being of
the order of max(|∆AB |,ΓA)/ωA times smaller than the
vdW conservative force. Hereafter we will neglect it and
approximate 〈FA,B〉T ' −〈∇A,BWA,B〉T .

A perturbative development of Eq.(6) shows that,
up to terms involving two-photon exchange processes,
twenty-four diagrams contribute to 〈FA〉T for a two-level
atom. They are depicted in Fig.1 and Fig.2. Note that
those in Fig.2 just differ with respect to those of Fig.1 by

the photon embracing the two exchanged photons, which
accounts for the de-excitation of the system via sponta-
neous emission from atom A.

FIG. 1: Diagrammatic representation of twelve of the pro-
cesses which contribute to 〈FA〉T . Solid straight lines stand
for propagators of atomic states, while wavy lines stand for
photon propagators. In diagram (a), atomic and photon
states are indicated explicitly. The atoms A and B are
separated by a distance R along the horizontal direction,
whereas time runs along the vertical. The big circles in black
on the left of each diagram stand for the insertion of the
Schrödinger operator −∇AWA whose expectation value is
computed. Each diagram contributes with two terms, one
from each of the operators inserted. They are sandwiched
between two time propagators, U(T ) and U†(T ) (depicted by
vertical arrows), which evolve the initial state |Ψ(0)〉 towards
the observation time at which −∇AWA applies.

For the sake of illustration we give below the expression
of diagram (a) in Fig.1, which contributes to 〈FA〉T in
the form,

1

~3

∫ ∞
0

Vk2dk

(2π)3

∫ ∞
0

Vk′2dk′

(2π)3

∫ 4π

0

dΘ

∫ 4π

0

dΘ′
{[
i〈A+, B−, 0γ |eiΩ

∗
aT |A+, B−, 0γ〉

∫ T

−∞
dt

∫ t

−∞
dt′
∫ t′

−∞
dt′′

× 〈A+, B−, 0γ | −∇A[dA ·E(−)
k′ (RA)]|A−, B−, γk′〉e−iω

′(T−t)〈A−, B−, γk′ |dB ·E(+)
k′ (RB)|A−, B+, 0γ〉

× e−iΩb(t−t′)〈A−, B+, 0γ |dB ·E(−)
k (RB)|A−, B−, γk〉e−iω(t′−t′′)〈A−, B−, γk|dA ·E(+)

k (RA)|A+, B−, 0γ〉e−iΩat
′′
]

+ [k ↔ k′]†
}
, (7)

where it is implicit that the causality condition T �
R/c holds at the time of observation. In this equation
|A+, B−, 0γ〉 is the initial two-atom-EM-vacuum state,

with atom A excited at time 0, |γk〉 is a one-photon state
of momentum k and frequency ω = ck, the complex time-
exponentials are the result of the application of the free
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time-evolution operator U0(t) = e−i~
−1H0t between the

interaction vertices WA,B , with Ωa = ωA − iΓA/2 and
Ωb = ωB− iΓB/2, where the dissipative imaginary terms

account for radiative emission in the Weisskopf-Wigner
approximation. After integrating in time and solid an-
gles, one arrives at

c2~−1

π2ε20
Re

∫ ∞
0

dk′k
′2∇A[µA · ImG(k′R) · µB ]

∫ ∞
0

dk k2µB · ImG(kR) · µA eiΩ
∗
aT
[ e−iΩaT − e−iωT

(ω′ − Ωa)(Ωb − Ωa)(ω − Ωa)

− e−iΩbT − e−iωT

(ω′ − Ωa)(Ωb − Ωa)(ω − Ωb)
+

e−iω
′T − e−iωT

(ω′ − Ωa)(ω′ − Ωb)(ω − ω′)
− e−iΩbT − e−iωT

(ω′ − Ωa)(ω′ − Ωb)(ω − Ωb)

]
(8)

FIG. 2: Diagrammatic representation of processes which con-
tribute to the fully off-resonant component of 〈FA〉T . In con-
trast to the diagrams in Fig.1, the self-interacting photon on
atom A leads the spontaneous emission from the excited atom.
The omitted diagrams are analogous to those in Fig.1.

where µA = 〈A−|dA|A+〉, µB = 〈B−|dB |B+〉 and

G(kR) is the dyadic Green’s function of the electric field
induced at R by an electric dipole of frequency ω = ck
placed at the origin. It reads

G(kR) =
k eikR

−4π
[α/kR+ iβ/(kR)2 − β/(kR)3], (9)

where the tensors α and β read α = I − RR/R2, β =
I− 3RR/R2.

Operating in an analogous fashion with the rest of the
terms derived from the diagrams of Figs.1 and 2, upon
integration in k and k′ in the complex plane, using the
identity ∇B = −∇A = −∇R, we arrive at

〈FA〉T = −2ω4
Ae
−ΓAT

c4ε20~∆AB

[
µA · ReG(kAR) · µB∇R [µB · ReG(kAR) · µA]− µA · ImG(kAR) · µB∇R [µB · ImG(kAR) · µA]

]
+

2ω4
Be
−(ΓA+ΓB)T/2

c4ε20~∆AB

[
µA · ReG(kBR) · µB∇R [µB · ReG(kBR) · µA]− µA · ImG(kBR) · µB∇R [µB · ImG(kBR) · µA]

]
× cos(∆ABT )

− 2ω4
Be
−(ΓA+ΓB)T/2

c4ε20~∆AB

[
µA · ReG(kBR) · µB∇R [µB · ImG(kBR) · µA] + µA · ImG(kBR) · µB∇R [µB · ReG(kBR) · µA]

]
× sin(∆ABT )

+
2ω4

Ae
−ΓAT

c4ε20~(ωA + ωB)

[
µA · ReG(kAR) · µB∇R [µB · ReG(kAR) · µA]− µA · ImG(kAR) · µB∇R [µB · ImG(kAR) · µA]

]
− 2ω2

Be
−(ΓA+ΓB)T/2

c3ε20~

[
∇R[µA · ReG(kBR) · µB ] cos(∆ABT )−∇R[µA · ImG(kBR) · µB ] sin(∆ABT )

]
×
∫ ∞

0

dq

π

(q2 − kAkB)q2µA ·G(iqR) · µB
(q2 + k2

A)(q2 + k2
B)

+
4ωAωB

(
1− 2e−ΓAT

)
c3ε20~

∫ ∞
0

dq

π

q4µA ·G(iqR) · µB
(q2 + k2

A)(q2 + k2
B)

∇R[µB ·G(iqR) · µA].

(10)

In this equation, negligible and unobservable terms have
been discarded. These are, off-resonant terms whose inte-
grands are attenuated in time as e−cTq and whose contri-

bution is (R/cT )3 � 1 times smaller; and fast oscillating
terms of frequency ωA + ωB which average to zero upon
observation. The origin of the terms in Eq.(10) is as fol-
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lows. The first three terms, which scale as ∼ 1/∆AB ,
are fully resonant and involve the evaluation of the two
residues associated to simple poles in k and k′ in the in-
tegrals stemming from diagram (a). The fourth term,
which scales as 1/(ωA + ωB), fully resonant too, results
from the two resonant photons of diagram (g), which
contains a two-photon intermediate state. The semi-
resonant terms, which entail evaluating the residue as-
sociated to a simple pole in k or k′ only, oscillate in time
at frequency ∆AB . They stem from diagrams (c,d,e,f).

Finally, the last term is the result of the addition of the
off-resonant contributions coming from the twelve dia-
grams of Figs.1 and 2 together. The discarded fast oscil-
lating terms, resonant and semi-resonant, are associated
to diagrams (i,k) and (i,j,k,l), respectively, which contain
two-photon intermediate states.

Analogous diagrams hold for 〈FB〉T , but for the eval-
uation of the operator −∇BWB at atom B –see Figs.3
and 4,

〈FB〉T =
2ω4

Ae
−ΓAT

c4ε20~∆AB

[
µA · ReG(kAR) · µB∇R [µB · ReG(kAR) · µA] + µA · ImG(kAR) · µB∇R [µB · ImG(kAR) · µA]

]
− 2ω2

Bω
2
Ae
−(ΓA+ΓB)T/2

c4ε20~∆AB

[
µA · ReG(kBR) · µB∇R [µB · ReG(kAR) · µA] + µA · ImG(kBR) · µB∇R [µB · ImG(kAR) · µA]

]
× cos(∆ABT )

− 2ω2
Bω

2
Ae
−(ΓA+ΓB)T/2

c4ε20~∆AB

[
µA · ReG(kBR) · µB∇R [µB · ImG(kAR) · µA]− µA · ImG(kBR) · µB∇R [µB · ReG(kAR) · µA]

]
× sin(∆ABT )

− 2ω4
Ae
−ΓAT

c4ε20~(ωA + ωB)

[
µA · ReG(kAR) · µB∇R [µB · ReG(kAR) · µA] + µA · ImG(kAR) · µB∇R [µB · ImG(kAR) · µA]

]
+

2ω2
Ae
−(ΓA+ΓB)T/2

c3ε20~

[
∇R[µA · ReG(kAR) · µB ] cos(∆ABT ) + ∇R[µA · ImG(kAR) · µB ] sin(∆ABT )

]
×
∫ ∞

0

dq

π

(q2 − kAkB)q2µA ·G(iqR) · µB
(q2 + k2

A)(q2 + k2
B)

−
4ωAωB

(
1− 2e−ΓAT

)
c3ε20~

∫ ∞
0

dq

π

q4µA ·G(iqR) · µB
(q2 + k2

A)(q2 + k2
B)

∇R[µB ·G(iqR) · µA].

(11)

FIG. 3: Diagrammatic representation of twelve of the pro-
cesses which contribute to 〈FB〉T . The big circles in gray
on the right of each diagram stand for the insertion of the
Schrödinger operator −∇BWB whose expectation value is
computed.

Note that, as anticipated after Eq.(6), the con-
servative vdW forces cannot be written in the
form −∇R〈WA,B〉T /2 due to the functional dissym-
metry of the time-dependent terms proportional to
ReG(kA,BR)ImG(kA,BR) –for comparison, see also the
expressions for 〈WA,B〉T in the Appendix.

FIG. 4: Diagrammatic representation of processes which con-
tribute to the fully off-resonant component of 〈FB〉T . In con-
trast to the diagrams in Fig.3, the self-interacting photon on
atom A leads the spontaneous emission from the excited atom.
The omitted diagrams are analogous to those in Fig.3.

Comparing equations (10) and (11), we observe that
the only term which is common to both expressions is
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that involving off-resonant photons, which is propor-
tional to (2e−ΓAT −1). That implies that it changes sign
at an observation time T ≈ log 2/ΓA. As for the rest of
the terms, some fully resonant and semi-resonant terms,
either stationary or oscillating at frequency ∆AB , differ
in sign. Those terms constitute non-reciprocal forces and
amount to a net force on the two-atom system. The sta-
tionary non-reciprocal forces were shown in Ref.[32] to
result from the excess of momenta stored in the virtual

photons which mediate the resonant interaction in the
processes depicted by diagrams (a) and (g). In addition,
the slowly oscillating non-reciprocal forces arise after a
sudden excitation only, and their associated momentum
variation is supplied by the resonant photons of diagrams
(a,c,d,e,f). Assuming that |∆AB | � ωA,B for the oscil-
lating forces to be observable, the net force on the atomic
system reads

〈FA + FB〉T '
8e−ΓAT k4

A

ε20~
ωB

ω2
A − ω2

B

µA · ImG(kAR) · µB∇R [µB · ImG(kAR) · µA]

+
2e−(ΓA+ΓB)T/2k2

B

ε20~∆AB

{
µA · ReG(kBR) · µB∇R

[
k2
BµB · ReG(kBR) · µA − k2

AµA · ReG(kAR) · µB
]

− µA · ImG(kBR) · µB∇R

[
k2
BµB · ImG(kBR) · µA + k2

AµA · ImG(kAR) · µB
]}

cos (∆ABT )

− 2e−(ΓA+ΓB)T/2k2
B

ε20~∆AB

{
µA · ReG(kBR) · µB∇R

[
k2
BµB · ImG(kBR) · µA + k2

AµA · ImG(kAR) · µB
]

+ µA · ImG(kBR) · µB∇R

[
k2
BµB · ReG(kBR) · µA − k2

AµA · ReG(kAR) · µB
]}

sin (∆ABT )

− 2e−(ΓA+ΓB)T/2

c3ε20~

∫ ∞
0

dq

π

(q2 − kAkB)q2µA ·G(iqR) · µB
(q2 + k2

A)(q2 + k2
B)

[
∇R[ω2

BµA · ReG(kBR) · µB − ω2
AµA · ReG(kAR) · µB ]

× cos(∆ABT )−∇R[ω2
BµA · ImG(kBR) · µB + ω2

AµA · ImG(kAR) · µB ] sin(∆ABT )
]
, (12)

where the first non-oscillating term coincides with the
net force for the case of an adiabatic excitation [23].

In what follows we study the directionality of one-
photon spontaneous emission and show its relationship
with the net force. Directionality is provided by the
asymmetry in the emission rate of one of the resonant

exchanged photons of the diagrams (a,c,d,e,f) depicted
in Fig.5. Hence, the resultant formula for the directional
emission rate as a function of the solid angle, dΓdir/dΘ, is
not invariant under parity inversion. Hence, the asymme-
try is maximum along the interatomic axis. The evalua-
tion of the one-photon emission diagrams in Fig.5 yields,

dΓdir

dΘ
=

µA · (I− k̂⊗ k̂) · µB
2(πε0~)2



e−(ΓA+ΓB)T/2k5
B

∆AB

[
cos(∆ABT ) [cos(kBR cos θ)µA · ReG(kBR) · µB − sin(kBR cos θ)

×µA · ImG(kBR) · µB ]− sin(∆ABT ) [cos(kBR cos θ)µA · ImG(kBR) · µB
+ sin(kBR cos θ)µA · ReG(kBR) · µB ]

]
+

e−ΓAT k5
A

∆AB
sin(kAR cos θ)µA · ImG(kAR) · µB

−e−(ΓA+ΓB)T/2k3
B [cos(∆ABT ) cos(kBR cos θ)− sin(∆ABT ) sin(kBR cos θ)]

×
∫∞

0
cdqπ

q2(q2−kAkB)
(q2+k2

A)(q2+k2
B)

µA ·G(iqR) · µB for cos θ ∈ (0, 1],

e−(ΓA+ΓB)T/2k2
Bk

3
A

∆AB

[
cos(∆ABT ) [cos(kAR cos θ)µA · ReG(kBR) · µB − sin(kAR cos θ)

×µA · ImG(kBR) · µB ]− sin(∆ABT ) [cos(kAR cos θ)µA · ImG(kBR) · µB
+ sin(kAR cos θ)µA · ReG(kBR) · µB ]

]
+

e−ΓAT k5
A

∆AB
sin(kAR cos θ)µA · ImG(kAR) · µB

−e−(ΓA+ΓB)T/2k3
A [cos(∆ABT ) cos(kAR cos θ)− sin(∆ABT ) sin(kAR cos θ)]

×
∫∞

0
cdqπ

q2(q2−kAkB)
(q2+k2

A)(q2+k2
B)

µA ·G(iqR) · µB for cos θ ∈ [−1, 0).

(13)

In this equation parity symmetry is manifestly broken by the difference between the terms defined in each interval
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of cos θ. In particular, those applicable to cos θ ∈ (0, 1]
contribute to FA upon integration of Eq.(14), while those
for cos θ ∈ [−1, 0) contribute to FB , respectively.

FIG. 5: Diagrammatic representation of the processes
which contribute to the one-photon directional emission rate,
dΓdir/dΘ.

Under the condition |∆AB | � ωA,B and considering
ωA ' ωB for simplicity, we can write the time derivative

of the transverse EM momentum as,

〈Ṗγ⊥〉T ' ~kA
∫ 4π

0

dΘk̂
dΓdir

dΘ
. (14)

Straight integration of this equation leads to Eq.(12) –up
to two-photon emission terms– but for a negative sign in
front, proving that 〈FA +FB〉T = −〈Ṗγ⊥〉T in agreement
with the conservation of the momentum K defined in
Eq.(4).

III. THE IDENTICAL ATOMS LIMIT IN THE
WEAK-INTERACTION REGIME

We proceed to take the identical atoms limit upon the
equations obtained in the previous section. That is, we
consider ωB → ωA = ω0, ΓB → ΓA = Γ0, µA = µB .
Note that, in order for the perturbative computations of
Sec.II to remain valid in this limit, the observation time
T must be small in comparison to the time that it takes
for the excitation to be transferred from atom A to atom
B, i.e., k2

0µA·ReG(k0R) ·µB . ~ε0/T [2, 34]. This is the
weak-interaction regime, which implies that the original
atomic states are quasi-stationary despite the degeneracy
of the system. In this limit, the vdW forces read

〈FA〉T = −2ω4
0e
−Γ0T

c4ε20~
T
[
µA · ReG(k0R) · µB∇R [µB · ImG(k0R) · µA] + µA · ImG(k0R) · µB∇R [µB · ReG(k0R) · µA]

]
− 2e−Γ0T

c4ε20~
∂

∂ω

[
ω4µA · ReG(kR) · µB∇R [µB · ReG(kR) · µA]− ω4µA · ImG(kR) · µB∇R [µB · ImG(kR) · µA]

]
ω=ω0

+
ω3

0e
−Γ0T

c4ε20~

[
µA · ReG(k0R) · µB∇R [µB · ReG(k0R) · µA]− µA · ImG(k0R) · µB∇R [µB · ImG(k0R) · µA]

]
− 2ω2

0e
−Γ0T

c3ε20~
∇R[µA · ReG(k0R) · µB ]

∫ ∞
0

dq

π

(q2 − k2
0)q2µA ·G(iqR) · µB

(q2 + k2
0)2

+
4ω2

0

(
1− 2e−Γ0T

)
c3ε20~

∫ ∞
0

dq

π

q4µA ·G(iqR) · µB
(q2 + k2

0)2
∇R[µB ·G(iqR) · µA], (15)

〈FB〉T =
2ω4

0e
−Γ0T

c4ε20~
T
[
µA · ReG(k0R) · µB∇R [µB · ImG(k0R) · µA]− µA · ImG(k0R) · µB∇R [µB · ReG(k0R) · µA]

]
+

2e−Γ0Tω2
0

c4ε20~

[ ∂
∂ω

[
ω2µA · ReG(kR) · µB

]
ω=ω0

∇R [µB · ReG(k0R) · µA]

+
∂

∂ω

[
ω2µA · ImG(kR) · µB

]
ω=ω0

∇R [µB · ImG(k0R) · µA]
]

− ω3
0e
−Γ0T

c4ε20~

[
µA · ReG(k0R) · µB∇R [µB · ReG(k0R) · µA] + µA · ImG(k0R) · µB∇R [µB · ImG(k0R) · µA]

]
+

2ω2
0e
−Γ0T

c3ε20~
∇R[µA · ReG(k0R) · µB ]

∫ ∞
0

dq

π

(q2 − k2
0)q2µA ·G(iqR) · µB

(q2 + k2
0)2

−
4ω2

0

(
1− 2e−Γ0T

)
c3ε20~

∫ ∞
0

dq

π

q4µA ·G(iqR) · µB
(q2 + k2

0)2
∇R[µB ·G(iqR) · µA], (16)
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FIG. 6: Graphical representation of the net force on a bi-
nary system of identical atoms according to Eq.(17) as a
function of k0R, 〈FA + FB〉idem –solid curve, normalized to

N1 =
|µA|

2|µB |
2ω7

0T

102c7~ε20
; and net force on a binary system of dis-

similar atoms according to Ref.[32], 〈FA + FB〉diss –dashed

curve, normalized to N2 =
|µA|

2|µB |
2ω7

A

102c7~ε20∆AB
, with ωA ≈ ω0.

and the net force upon the atomic system is

〈FA + FB〉T = −4e−Γ0T

c4ε20~
(17)

×
{
ω4

0T
[
µA · ReG(k0R) · µB∇R [µB · ImG(k0R) · µA]

− ω4
0

∂

∂ω

[
µA · ImG(kR) · µB∇R [µB · ImG(kR) · µA]

]
ω=ω0

− 5ω3
0

2
µA · ImG(k0R) · µB∇R [µB · ImG(k0R) · µA]

+ ω3
0µA · ReG(k0R) · µB∇R [µB · ReG(k0R) · µA]

}
,

which contains fully resonant terms only.

As for the one-photon directional emission rate, taking
the identical atoms limit on Eq.(13), we arrive at

dΓdir

dΘ
=
−µA · (I− k̂⊗ k̂) · µB

2(πε0~)2
e−Γ0T

{
Tk5

0 sin(k0R cos θ)µA · ReG(k0R) · µB

− k5
0 sin(k0R cos θ)

∂

∂ω
[µA · ImG(kR) · µB ]ω=ω0 − 2c−1k4

0 sin(k0R cos θ)µA · ImG(k0R) · µB

+H(cos θ)
[
3c−1k4

0[cos(k0R cos θ)µA · ReG(k0R) · µB − sin(k0R cos θ)µA · ImG(k0R) · µB ]

− c−1Rk5
0 cos θ[sin(k0R cos θ)µA · ReG(k0R) · µB + cos(k0R cos θ)µA · ImG(k0R) · µB ]

]}
, (18)

where H is the Heaviside function. The terms of Eq.(18)
are in correspondence with those in Eq.(17) –but for two-
photon emission terms, such that

〈FA + FB〉T = −〈Ṗγ⊥〉T ' −~k0

∫ 4π

0

dΘk̂
dΓdir

dΘ
. (19)

Two-photon emission terms together with those terms
proportional to ω3

0 in Eq.(17) are indeed negligible in
comparison to the term linear in T . In Fig.6 we rep-
resent the net force on a binary system of identical
atoms as a function of the interatomic distance, once
normalized as indicated. For simplicity, the dipole mo-
ments are chosen isotropic, µxA,B = µyA,B = µzA,B . Note
that, in order to preserve the perturbative nature of our
calculation, the following inequality must be satisfied,
24πTr{Re G(k0R)} . k0/Γ0T . Considering the lower
bound value of this inequality, Γ0T ∼ 1, it implies for
isotropic dipoles k0R & 1.3, as indicated with the vertical
straight line in Fig.6. That implies that the actual maxi-
mum value of the net force on identical atoms is achieved
at k0R ≈ 2.5. For comparison, we represent the net force
on a binary system of dissimilar atoms [32], which is of
the order of 1/∆ABT times smaller. The force on dis-

similar atoms presents a maximum at k0R ≈ 1.3, which
coincides approximately with the value at which the force
on the identical atoms vanishes for the first time.

IV. CONCLUSIONS

In the first place, starting with the pertuvative time-
dependent computation of the dipole-dipole interaction
between two dissimilar atoms, up to two-photon ex-
change processes, with one of the atoms suddenly ex-
cited, we have shown that the dipole-dipole forces con-
tain two components. Namely, conservative forces iden-
tifiable with the ordinary van-der-Waals forces; and non-
conservative forces which derive from the time-variation
of the longitudinal EM momentum. In contrast to pre-
vious quasi-stationary computations we find that, gener-
ally, the time-dependent vdW forces cannot be written
as the gradients of the expectation values of the inter-
action potentials, but as the expectation values of the
gradients of the interaction potentials only. As for the
non-conservative forces, they will be computed in a sep-
arate publication [39].
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Second, we have taken the identical atoms limit upon
the perturbative expresions for the vdW forces on dissim-
ilar atoms. That compels us to constraint ourselves to
the weak-interaction regime. We find that, at leading or-
der, the van-der-Waals forces are fully-resonant and grow
linearly in time, being different on each atom. Besides, in
addition to the familiar off-resonant vdW forces, which
change direction at T = log 2/Γ0, semi-resonant recip-
rocal forces arise –Eqs.(15) and (16). The resultant net
force on the two-atom system is related to the direction-
ality of spontaneous emission, which results from the vio-
lation of parity symmetry and is in agreement with total
momentum conservation –Eqs.(18) and (19).

Beyond the weak-interaction regime the calculation of
the vdW forces between identical atoms becomes non-
perturbative as a result of degeneracy. That implies that
non-perturbative time-evolution propagators are to be
computed [40, 41]. Their calculation will be addressed
in a separate publication, together with a proposal for

the experimental observation of the net force on a binary
system of Rydberg atoms.
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Appendix A: Interaction energies

In this Appendix we compile the expressions for the
interaction energies on each atom. Their diagrammatic
representations are analogous to those in Figs.1-4, but for
the replacement of the operators −∇AWA and −∇BWB

at the observation time T with WA and WB , respectively,

〈WA〉T =
2ω4

Ae
−ΓAT

c4ε20~∆AB

[
[µA · ReG(kAR) · µB ]2 − [µA · ImG(kAR) · µB ]2

]
− 2ω4

Be
−(ΓA+ΓB)T/2

c4ε20~∆AB

[
[µA · ReG(kBR) · µB ]2 − [µA · ImG(kBR) · µB ]2

]
cos(∆ABT )

+
4ω4

Be
−(ΓA+ΓB)T/2

c4ε20~∆AB

[
µA · ReG(kBR) · µBµB · ImG(kBR) · µA

]
sin(∆ABT )

− 2ω4
Ae
−ΓAT

c4ε20~(ωA + ωB)

[
[µA · ReG(kAR) · µB ]2 − [µA · ImG(kAR) · µB ]2

]
+

2ω2
Be
−(ΓA+ΓB)T/2

c3ε20~

[
µA · ReG(kBR) · µB cos(∆ABT )− µA · ImG(kBR) · µB sin (∆ABT )

]
×
∫ ∞

0

dq

π

(q2 − kAkB)q2

(q2 + k2
A)(q2 + k2

B)
µB ·G(iqR) · µA −

4ωAωB
(
2e−ΓAT − 1

)
c3ε20~

∫ ∞
0

dq

π

q4[µA ·G(iqR) · µB ]2

(q2 + k2
A)(q2 + k2

B)
, (A1)

〈WB〉T =
2ω4

Ae
−ΓAT

c4ε20~∆AB

[
[µA · ReG(kAR) · µB ]2 + [µA · ImG(kAR) · µB ]2

]
− 2ω2

Aω
2
Be
−(ΓA+ΓB)T/2

c4ε20~∆AB

[
µA · ReG(kAR) · µBµA · ReG(kBR) · µB + µA · ImG(kAR) · µBµA · ImG(kBR) · µB

]
× cos(∆ABT )

− 2ω2
Aω

2
Be
−(ΓA+ΓB)T/2

c4ε20~∆AB

[
µA · ReG(kAR) · µBµB · ImG(kBR) · µA − µA · ImG(kAR) · µBµB · ReG(kBR) · µA

]
× sin(∆ABT )

− 2ω4
Ae
−ΓAT

c4ε20~(ωA + ωB)

[
[µA · ReG(kAR) · µB ]2 + [µA · ImG(kAR) · µB ]2

]
+

2ω2
Ae
−(ΓA+ΓB)T/2

c3ε20~

[
µA · ReG(kAR) · µB cos(∆ABT ) + µA · ImG(kAR) · µB sin (∆ABT )

]
×
∫ ∞

0

dq

π

(q2 − kAkB)q2

(q2 + k2
A)(q2 + k2

B)
µB ·G(iqR) · µA −

4ωAωB
(
2e−ΓAT − 1

)
c3ε20~

∫ ∞
0

dq

π

q4[µA ·G(iqR) · µB ]2

(q2 + k2
A)(q2 + k2

B)
. (A2)

Straight comparison with Eqs.(10) and (11) reveals that −∇A,B〈WA,B〉T /2 6= −〈∇A,BWA,B〉T /2 = 〈FA,B〉T , up
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to two-photon exchange processes.
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