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Department of Theoretical Physics, Atomic and Optics, Campus Miguel Delibes,

University of Valladolid UVA, Paseo Belén, 7, 47011 - Valladolid, Spain

In the present paper, the 3+1 decomposition of the spacetime onto hypersurface(s) is analysed and
established for theories within the Palatini formalism by considering a general function of the Ricci
scalar in the gravitational action. The corresponding Gauss-Codazzi relations are obtained and the
boundary term that has to be subtracted in the gravitational action is easily deduced. Then, these
relations are applied to the so-called ADM decomposition to describe the foliation of the spacetime
onto hypersurfaces of constant time within these theories. Finally, the junction conditions are
also obtained by using a decomposition in Gaussian normal coordinates, which coincide with the
conditions deduced previously through different approaches.

I. INTRODUCTION

General Relativity (GR) and other gravitational theories are constructed in such way that the equivalence
principle and specially general covariance are preserved. To do it so, gravity is described by spacetime geometry,
which is completely defined through lengths and parallel transportation of vectors. The former is given by the
spacetime metric while the latter is described by covariant derivatives, which are defined in terms of a connection.
By constructing the appropriate scalar invariants that contain the metric, the connection and their derivatives, the
gravitational action is given by the integral over the spacetime volume. Nevertheless, the corresponding covariant
derivative is not unique but depends on the particular gauge prescription that is assumed, preserving in any case
the invariance of the theory under general diffeomorphism. In this sense, it is well known the equivalence of GR
as described by the Levi-Civita connection, which is torsionless and provides non-null curvature spacetimes, and
the so-called Teleparallel version of GR that assumes the Weitzenböck connection that leads to non-null torsion
but null curvature [1]. In this sense, depending on the corresponding prescription, the gravitational action can be
constructed in terms of scalar invariants departing from the Riemann tensor, the torsion tensor or the non-metricity
tensor, all leading to the same dynamics when the gravitational action just contains linear functions of the above
scalars [2]. In the so-called Palatini formalism, the shape of the connection is not assumed a priori but is considered
as an independent field from the metric, with the most general affine connection containing a non-symmetric part
(contortion) and non-metricity part (disformation). Nevertheless, by the projective invariance of the Ricci scalar, any
gravitational action constructed in terms of the Ricci scalar will just depend on the torsionless part of the connection
[3], recovering automatically the Levi-Civita connection for the Hilbert-Einstein action. However, by considering a
more general function of the Ricci scalar at the level of the action, the corresponding field equations do not lead
to the Levi-Civita connection compatible with the spacetime metric but to a connection that is compatible to a
conformal related metric [3]. This is the natural extension of the so-called metric f(R) gravities [4] to the Palatini
formalism, which have been widely considered in the literature in multiple frameworks (for a review see [3, 5, 6]).

Among the extensive analysis and applications of f(R) gravities within the Palatini formalism, one might highlight
the construction of cosmological solutions that circumvent the problem of dark energy in gravitational terms [7–10]
and the analysis of the inflationary paradigm within these theories [11–18] together with the growth of cosmological
perturbations [19]. In addition, these modified gravities are inspired by Born-Infeld electromagnetism [5], as some
regular black hole solutions can be obtained [20], also in combination with non-linear electrodynamics [21], Kerr
black holes might be stable under perturbations in some hybrid versions of the theory [22], and also some regular
cosmologies can be constructed [23]. Some other frameworks that have been analysed within the Palatini formalism
include models for the stellar structure [24], the analysis of the Cauchy problem [25] and the extension of the
formalism to flat geometries [26], among many others.

Here we aim to extend the well known 3 + 1 decomposition of the spacetime to f(R) gravities within the Palatini
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formalism and apply such decomposition to some frameworks. The 3 + 1 decomposition consists on defining an
hypersurface or a family of hypersurfaces that slices the spacetime and then express some geometrical variables as
the Ricci tensor or the curvature, restricted to the hypersurface, in terms of the intrinsic and extrinsic curvatures of
the hypersurface, as well as of the normal vector to the hypersurface(s) and its derivatives, leading to the so-called
Gauss-Codazzi relations [27, 28]. Besides the proper geometrical aspect, such decomposition has multiple applications
in gravitation, from the Arnowitt-Deser-Misner (ADM) decomposition of the spacetime onto hypersurfaces of
constant time [29], which is the starting point to construct the hamiltonian formulation of GR, to the boundary terms
that arise in the gravitational action or the junction conditions on a hypersurface that matches different spacetimes
regions or branes. In this paper, we obtain explicitly the Gauss-Codazzi relations for Palatini f(R) gravities, what
leads to the Gauss-Codazzi action, where the corresponding boundary term, analog to the Gibbons-Hawking-York
term in GR, is subtracted in the action, coinciding with the one obtained in [30] by a well-posed variational
principle. The ADM decomposition is also studied by applying the previous Gauss-Codazzi equations. Finally, the
corresponding junction conditions for f(R) gravities within the Palatini formalism are established, which coincide
with the results obtained in [31] through distributional analysis, and which have been shown to have important conse-
quences in different scenarios, as the deflection of light by compact objects and the formation of (double) shadows [32].

The paper is organised as follows: in section II the main features of Palatini f(R) gravity is reviewed. Section III
is devoted to the 3+ 1 decomposition in these theories and the corresponding Gauss-Codazzi relations. In section IV,
the ADM decomposition is studied, while in Sect. V the corresponding junction conditions are obtained. Finally, the
section VI summarises the results of the paper.

II. MODIFIED PALATINI GRAVITY

The Palatini approach consists on dealing with the spacetime metric and the connection as independent fields. For
the Hilbert-Einstein action, such approach directly leads to the metricity condition, such that the connection reduces
to the Levi-Civita one plus a projective mode and consequently GR field equations are recovered. Nevertheless, this
is not the case for a more general function of the curvature scalar R. Here we are considering the class of theories
described by the following gravitational action:

S =
1

2κ2

∫

dx4√−g [f(R) + Lm] , (1)

where Lm is the matter Lagrangian which is assumed to depend solely on the metric and matter fields. The Ricci
scalar R is defined by the contraction of the Ricci tensor with the spacetime metric gµν :

R = gµνRµν(Γ) , (2)

whereas the Ricci tensor is expressed in terms of the connection as:

Rµν(Γ) = ∂λΓ
λ
µν − ∂νΓ

λ
µλ + Γλ

σλΓ
σ
µν − Γλ

σνΓ
σ
µλ . (3)

In the Palatini formalism, the connection Γ is in principle independent of the spacetime metric. Nevertheless, one
can assume that the connection that enters in the gravitational action through the Ricci tensor is torsionless because
of the projective invariance of the Ricci scalar [30]. The field equations corresponding to variations of the action (1)
with respect to the spacetime metric are [3]:

fRRµν − 1

2
gµνf = κ2Tµν . (4)

Here Tµν = − 2√
−g

δ(
√
−gLm)
δgµν is the energy-momentum tensor and fR = df

dR . Variations of the gravitational action

with respect to the connection Γ provide the other set of field equations [3]:

∇̃λ

(√−gfRgµν
)

= 0 , (5)

where ∇̃ is the covariant derivative defined by the connection Γ. The equation (5) provides directly the expression for
the connection Γ, as imposes to be compatible with a metric that is related to the spacetime metric by a conformal
transformation as follows:

qµν = Ω2gµν , Ω2 = fR , (6)
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Hence, the field equations (5) become:

∇̃λ

(√−qqµν
)

= 0 , (7)

which denotes the metricity condition of the covariant derivative ∇̃ with respect to the metric qµν . Moreover, the
trace of the field equations (4) establishes an algebraic relation among the scalar curvature R and the trace of the
energy-momentum tensor T that is given by:

fRR− 2f = κ2T . (8)

By solving this equation, one obtains R = R(T ), such that the field equations (4) might be expressed just in terms
of the spacetime metric, its derivatives and the energy-momentum tensor by the conformal transformation (6), under
which the Ricci tensor Rµν yields:

Rµν(q) = Rµν(g) +
4

Ω2
∇µΩ∇νΩ− 2

Ω
∇µ∇νΩ− gµν

gρσ

Ω2
∇ρΩ∇σΩ− gµν

�Ω

Ω
. (9)

The covariant derivatives in the rhs of this expression are the Christoffel symbols defined in terms of the spacetime
metric gµν . Finally, the field equations (4) are written as:

Rµν(g)−
1

2
gµνR(g) =

κ2

fR
Tµν − gµν

RfR − f

2fR
− 3

2f2
R

[

∇µfR∇νfR − 1

2
gνµ∇λfR∇λfR

]

+
1

fR
[∇µ∇νfR − gµν�fR] .

(10)
Hence, the set of field equations for f(R) gravity within the Palatini formalism, given by (4) and (5) are now given
by the algebraic equation (8) and by the field equations (10), which are just the Einstein field equations with a
non-standard matter side of the equations. Moreover, the field equations (10) are actually equivalent to the ones of a
Brans-Dicke-like theory, as can be easily shown just by identifying by φ = fR and V (φ) = Rφ− f(R), which can be
used to rewrite the gravitational action (1) as follows:

S =
1

2κ2

∫

d4x
√−g

[

φR(g) +
3

2φ
∂µφ∂

µφ− V (φ) + Lm

]

, (11)

This gravitational action can be easily identified with the one for a Brans-Dicke-like theory with w = −3/2 and a
potential, which shows that the scalar field is non-dynamical, since the corresponding scalar field equation has its
kinetic term missing. Hence, through these tools our aim is to analyse the 3 + 1 decomposition in f(R) gravity and
to obtain the corresponding Gauss-Codazzi relations, in the next section.

III. 3 + 1 DECOMPOSITION AND GAUSS-CODAZZI RELATIONS

To establish the 3 + 1 decomposition of a generic f(R) gravity theory in the Palatini formalism, the spacetime is
conveniently decomposed onto hypersurface(s) and the corresponding Gauss-Codazzi equations are obtained, which
allow us to express the curvature tensor, restricted to the hypersurface(s), in terms of the intrinsic and extrinsic
curvature of the hypersurfaces. Such hypersurfaces might represent the matching hypersurface between different
regions of the spacetime or a domain wall in the braneworld scenario, such that obtaining the corresponding junction
conditions is fundamental and is one of the application performed in this paper of the 3 + 1 decomposition within
these theories. Hence, here we decompose the spacetime and express the variables that characterises a particular
gravitational theory in terms defined on the hypersurface. Let us consider an embedded hypersurface Σ defined as a
subspace of a 3 + 1 dimensional manifold M, as follows:

Σ = {x ∈ M : S(x) = 0} , (12)

where S(x) is a real function that defines the hypersurface. Equivalently, one may think Σ as an embedding hyper-
surface in M, such that the parametric equations among the coordinates defined in Σ (ya) and the coordinates of M
(xµ) are:

xµ = xµ(ya) . (13)

We will use greek indexes for referring to the spacetime coordinates/variables and latin ones when referring to coordi-
nates/variables defined on the hypersurface Σ. The corresponding normal vector to the hypersurface can be expressed
as:

nµ = ǫ
∂µS(x)

√

|gµν∂µS∂νS|
. (14)
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Here ǫ = ±1, depending on whether the hypersurface is timelike or spacelike. The induced metric γµν on Σ is given
by:

γµν = gµν − ǫnµnν , (15)

where gµν is the metric of the spacetime manifold M. This tensor is orthogonal to nµ, and allow us to obtain
the tangential components to the hypersurface Σ of any tensor. Moreover, by the parametric equations (13), the
corresponding induced metric in Σ is given by:

γab =
∂xµ

∂ya
∂xν

∂yb
γµν . (16)

As usual, the extrinsic curvature is defined as the projection of the covariant derivative of the normal vector along
the hypersurface,

Kµν = γα
µγ

β
ν∇αnβ , (17)

which reduces to Kµν = ∇µnν for a family of hypersurfaces extended off Σ along a geodesic vector field. In addition,
the extrinsic curvature (17) can be also expressed in terms of the hypersurface indexes as:

Kab =
∂xµ

∂ya
∂xν

∂yb
Kµν . (18)

Hence, the Ricci scalar, defined by the connection compatible with the spacetime metric, can be expressed in terms
of the intrinsic and extrinsic curvature on the hypersurface Σ as follows:

R = (3)R+ ǫ(KµνK
µν −K2) + 2ǫnµnνRµν , (19)

where (3)R is the three dimensional curvature scalar of the hypersurface. Alternatively, one may substitute the normal
projection of the Ricci tensor by using some identities to yield [28]:

R = (3)R+ ǫ(K2 −KµνK
µν) + 2ǫ∇µ (n

ν∇νn
µ − nµ∇νn

ν) . (20)

This is one of the so-called Gauss-Codazzi relations that eases to construct the ADM formalism in General Relativity
and leads naturally to the Gibbons-Hawking-York (GHY) boundary term, as can be easily shown through the Hilbert-
Einstein action:

SEH =

∫

d4x
√−g

[

(3)R+ ǫ(K2 −KµνK
µν) + 2ǫ∇µV

µ
]

=

=

∫

d4x
√−g

[

(3)R+ ǫ(K2 −KµνK
µν)

]

+ 2

∫

d3y
√−γnµV

µ, (21)

where K = ∇νn
ν and V µ is given by:

V µ = nν∇νn
µ − nµ∇νn

ν . (22)

And we have used the Gauss-Sokes theorem on the total derivative:
∫

M
d4x

√−g∇σV
σ = ǫ

∫

Σ

d3y
√

|γ|nσV
σ . (23)

After some manipulations, the boundary term in (21) can be expressed as:

2

∫

d3y
√−γnµ (n

ν∇νn
µ − nµ∇νn

ν) = −2ǫ

∫

d3y
√−γK . (24)

This is the so-called GHY term that should be subtracted to the Hilbert-Einstein action to have a well-posed variational
principle with standard Dirichlet boundary conditions on the variations of the metric, such that the so-called Gauss-
Codazzi form of the gravitational action for GR is obtained:

S = SEH + SGC =

∫

d4x
√−gR + 2ǫ

∫

d3x
√−γ K =

∫

d4x
√−g

[

(3)R+ ǫ(K2 −KµνK
µν)

]

. (25)
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Let us now extend this formalism to f(R) gravities. To do so, we start by obtaining the corresponding Gauss-Codazzi
action for metric f(R) gravity, where the connection is assumed to be compatible with the metric. A simple way to
proceed lie in expressing the f(R) action in terms of its equivalence scalar-tensor form:

S =

∫

d4x
√−gf(R) =

∫

d4x
√−g [φR − U(φ)] . (26)

By varying the action with respect to the scalar field, the mapping among both actions is easily obtained:

φ = fR , U(φ) = RfR − f . (27)

Hence, just by using the relation (20), the action (26) turns out:

S =

∫

d4x
√−g

[

φ
(

(3)R+ ǫ(K2 −KµνK
µν) + 2ǫ∇µV

µ
)

− U(φ)
]

. (28)

Integrating by parts the term ∇µV
µ, the action (28) yields:

S =

∫

d4x
√−g

[

φ
(

(3)R+ ǫ(K2 −KµνK
µν)

)

− 2ǫV µ∇µφ− U(φ) + 2ǫ∇µ (V
µφ)

]

=

=

∫

d4x
√−g

[

φ
(

(3)R+ ǫ(K2 −KµνK
µν)

)

− 2ǫV µ∇µφ− U(φ)
]

+ 2

∫

d3y
√
γnµV

µφ . (29)

And the boundary term can be expressed as follows:

2

∫

d3y
√
γ φ nµV

µ = −2ǫ

∫

d3y
√
γφ K = −2ǫ

∫

d3y
√
γ fR K . (30)

This is the analog to the GBY in metric f(R) gravities, as shown in [33–36] by variational principles. Then, the
Gauss-Codazzi action for metric f(R) gravity leads to:

S =

∫

d4x
√−gf(R) + 2ǫ

∫

d3y
√
γ fR K =

∫

d4x
√−g

[

φ
(

(3)R+ ǫ(K2 −KµνK
µν)

)

− 2ǫV µ∇µφ− U(φ)
]

. (31)

Note that by varying the action with respect to the scalar field, the mapping (27) is recovered.

The case of modified gravities in the Palatini formalism is a bit more tricky, as one intends to express the Ricci scalar
(3) in terms of the intrinsic and extrinsic curvature of the spacetime hypersurface and the independent connection
does not depend in principle on the spacetime metric. Nevertheless, the equation (7) states that the connection is
compatible with the conformal metric qµν , which is related to the spacetime metric gµν by the conformal transformation
(6. Then, the normal vector and the induced metric on the hypersurface transform as [35]:

ñµ = Ω nµ , γ̃µν = Ω2γµν = qµν − ǫñµñν , (32)

where recall that qµν = Ω2gµν with Ω2 = fR, whereas the extrinsic curvature defined in terms of the connection
compatible to qµν yields:

Kµν = ΩKµν + γµνn
α∂αΩ = ∇̃µñν . (33)

Alternatively to the Brans-Dicke equivalent action (11), we can express the action (1) for the Palatini formalism
similarly to the f(R) metric case as follows:

S =

∫

d4x
√−gf(R) =

∫

d4x
√−g [φR− U(φ)] . (34)

The relation among both actions is analog to the metric case (27), i.e. φ = fR and U = RfR − f(R). By applying
the conformal transformation (6) to the spacetime metric, the Ricci scalar R yields:

R = gµνRµν = Ω2qµνRµν , (35)

while the action (34) is transformed as:

S =

∫

d4x
√−q

[

R̃(q) − U(φ)

φ2

]

, (36)
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where R̃(q) = qµνRµν is the contraction of the Ricci tensor with the conformal metric qµν . Note that now the
gravitational action depends solely on the metric qµν and not on the spacetime metric gµν . Hence, the action for f(R)
in the Palatini formalism reduces to the Hilbert-Einstein action with a cosmological constant in vacuum, equivalently
to the field equations (4) and (5). Hence, by the induced metric γ̃µν and the normal vector ñµ given in (32), the Ricci

scalar R̃ can be expressed in terms of the extrinsic curvature K and the intrinsic curvature (3)R̃ conformally related
to the ones of the spacetime hypersurface, as follows:

R̃ = qµνRµν = Ω−2 R
=

[

(3)R̃+ ǫ(K2 −KµνKµν) + 2ǫ∇̃µ

(

ñν∇̃ν ñ
µ − ñµ∇̃ν ñ

ν
)]

. (37)

This establishes the corresponding Gauss-Codazzi relation for the curvature scalar (3) in the Palatini formalism. Let
us now obtain the boundary term in f(R) gravity and the Gauss-Codazzi action by using the relation (37). By
substituting the relation (37) into the action (36), we get:

S =

∫

d4x
√−q

[

(3)R+ ǫ(K2 −KµνKµν) + 2ǫ∇̃µVµ − U(φ)

φ2

]

. (38)

where Vν = ñν∇̃ν ñ
µ− ñµ∇̃ν ñ

ν . As in the case of the Hilbert-Einstein action, we can apply directly the Gauss-Stokes
theorem on the total derivative, leading to:

2ǫ

∫

d4x∇̃µ

(√−qVµ
)

= 2

∫

d3y
√

γ̃ñµVµ = −2ǫ

∫

d3y
√

γ̃K . (39)

This is the boundary term that has to be subtracted to the Palatini action that was also found in Ref. [30] by following
variational principles. Then, the Gauss-Codazzi action for f(R) gravity in the Palatini formalism yields:

S =

∫

d4x
√−gf(R) + 2ǫ

∫

d3y
√

γ̃K =

∫

d4x
√−q

[

(3)R+ ǫ(K2 −KµνKµν)− U(φ)

φ2

]

. (40)

Hence, the Gauss-Codazzi action in the Palatini formalism is equivalent to the one in GR with a cosmological constant.
Nevertheless, in the presence of a matter Lagrangian, the conformal transformation (6) implies a coupling among the
scalar field and matter, as the action (1) is transformed as:

S =

∫

d4x
√−q

[

R̃(q)− U(φ)

φ2
+

1

φ2
Lm

]

. (41)

The variation of the action with respect to the conformal metric qµν results in the following field equations:

R̃µν − 1

2
qµνR̃+

1

2
qµν

U(φ)

φ2
=

κ2

φ2
T̃µν , (42)

where T̃µν = − 2√
−q

δS̃m

δqµν = Ω2Tµν is the energy-momentum tensor defined in terms of the variation of the matter action

with respect to qµν . While the variation of the action with respect to the scalar field φ provides the complementary
constraint equation:

2U(φ)− φU ′(φ) = κ2T , (43)

which is equivalent to the trace equation (8). Hence, we have reformulated the gravitational action for f(R) in
the Palatini formalism equivalently to a Brans-Dicke theory expressed in the Einstein frame through the conformal
transformation (6), such that the corresponding 3+1 decomposition is easily achieved and the Gauss-Codazzi relations
are obtained. In the next sections, we apply such decomposition to two well known and fundamental frameworks, the
ADM decomposition and the junction conditions.

IV. ADM DECOMPOSITION

The most direct application of the Gauss-Codazzi relations obtained above is the so-called ADM decomposition.
The ADM decomposition consists in a foliation of the spacetime onto hypersurfaces of constant time, such that the
family of normal vectors to the hypersurfaces is given by:

nµ = −N∂µt , (44)
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where N is the so-called lapse function:

N =
1

√

−gµν∂µt ∂νt
. (45)

The spacetime metric can be expressed in terms of the ADM variables as [27]:

ds2 = gµνdx
µdxnu = −N2dt2 + γij

(

dxi +N idt
) (

dxj +N jdt
)

, (46)

where N i is the shift vector and γij is the first fundamental form or induced metric on the hypersurface of constant
time:

γαβ = gαβ + nαnβ . (47)

Whereas the extrinsic curvature is given by [43]:

Kij = − 1

N
(∂tγij −DiNj −DjNi) , (48)

where the covariant derivatives Di are associated to the induced metric γij on the hypersurface Σt. By using the
Gauss-Codazzi equations, the scalar curvature can be written in terms of the intrinsic and extrinsic curvatures as
follows:

R = (3)R +K2 −KijK
ij − 2

N

(

∂tK −N i∂iK
)

− 2

N
DiD

iN , (49)

To extend this decomposition to Palatini f(R) gravity, we can proceed similarly as in the previous section and use
the Gauss-Codazzi equations obtained above to express the scalar curvature in terms of the ADM variables. To do
so, we use the conformal transformation (6) that relates the metric qµν , compatible with the connection that defines
the Ricci tensor Rµν , with the spacetime metric gµν , such that the line element transformed as:

ds̃2 = Ω2ds2 = −N 2dt2 + γ̃ij
(

dxi +N idt
) (

dxj +N jdt
)

, (50)

where we have defined:

N = ΩN , γ̃ij = Ω2γij . (51)

While the conformal metric yields:

γ̃αβ = qαβ + ñαñβ . (52)

And the extrinsic curvature (33) is given by:

Kij = − 1

N (∂tγ̃ij −DiNj −DjNi) , (53)

Here the spatial covariant derivatives Di are compatible to the conformal metric γ̃ij . Finally, by using the correspond-
ing Gauss-Codazzi relation given in (37), the Ricci scalar defined as the contraction of the Ricci tensor Rµν with qµν
is obtained:

R̃ = (3)R+K2 −KijKij − 2

N
(

∂tK −N i∂iK
)

− 2

N DiDiN , (54)

which states the way to apply the ADM decomposition to the action and field equations in f(R) gravity. Alternatively,
one can proceed with this decomposition directly from the equivalent action and field equations expressed as a Brans-
Dicke-like theory, as given in (10) and (11), where the gravitational action and the equations are expressed just in
terms of the spacetime metric and a scalar field that is coupled to the energy-momentum tensor. In the next section,
we will use such picture to obtain explicitly the junction conditions for this class of gravitational theories.



8

V. JUNCTION CONDITIONS

In a previous and recent paper [31], the corresponding junction conditions for this class of theories were obtained
by expressing the field equations in terms of distributions, an extension of the approach studied previously in metric
f(R) gravity [37] and recently in [38]. Here we apply the 3+ 1 decomposition, as done before in metric f(R) theories
[39] or in some extensions of Teleparallel gravity [40], to obtain the corresponding junction conditions in Palatini
f(R) gravity which coincide with the ones calculated in [31]. To do so, the metric tensor is expressed in the so-called
Gaussian-normal coordinates and then through the Gauss-Codazzi relations the matching conditions between two
different regions of the spacetime are obtained. The spacetime metric in Gaussian-normal coordinates is given by:

ds2 = dy2 + γijdx
idxj . (55)

Hence, the boundary/brane between different spacetime regions is located at y = 0, whereas γij is the induced metric
on the matching hypersurface. The corresponding normal vector is given by:

nµ = ∂µy . (56)

While the extrinsic curvature (17) of the hypersurface is easily obtained,

Kij =
1

2
∂yγij . (57)

We can now proceed within two different but equivalent approaches: by applying the conformal transformation (6)
and expressing all the quantities in terms of the qµν tensor, i.e. the field equations (42, 43), or alternatively through
the field equations expressed in terms of the spacetime metric gµν and the trace of the energy-momentum tensor (10).
Both approaches lead to the same conditions but the latter simplifies the calculations, as the hypersurface is defined
through the spacetime metric instead of the conformal metric. Hence, let us deduce the junction conditions through
the field equations (10) and then, will be expressed in terms of the variables defined by the conformal metric. To
do so, the components of the Ricci tensor Rµν(g) can be expressed in terms of the induced metric and the extrinsic
curvature as follows [39]:

Ryy = −γij ∂Kij

∂y
+KijK

ij , Ryj = DiK
i
j −DjK ,

Rij =
(3)Rij −

∂Kij

∂y
+KkiK

k
j + γklKikKlj −KKij , (58)

while the Ricci scalar is given by:

R = −2
∂K

∂y
−KijK

ij −K2 + (3)R . (59)

Hence, the corresponding decomposition of the Einstein tensor yields:

Gyy = −1

2

(

KijK
ij −K2 + (3)R

)

, Gyi = Dj

(

Kj
i − δjiK

)

,

Gij = ∂y (γijK −Kij) + 2Kk
i Kkj − 3KKij +

1

2
γij

(

KklK
kl +K2

)

+ (3)Gij . (60)

As in the GR case, the first junction condition follows directly from (57) in order to avoid powers of Dirac’s delta
distributions as δ2(y) in the Einstein tensor (60) and consequently in the field equations, such that the induced metric
γij has to be continuous across the boundary/brane located at y = 0:

[γij ]
+
− = 0 . (61)

The extrinsic curvature or second fundamental form (57) might be discontinuous, as contains first derivatives of the
induced metric, and enters in the field equations through the ij-component of the Einstein tensor (60), leading to:

∂y (γijK −Kij) = Pijδ(y) , (62)

Integrating across the boundary, we obtain:

Pij = [γijK −Kij ]
+
− . (63)
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In absence of δ’s in the rhs of the field equations, one leads to:

[Kij ]
+
− = 0 , (64)

which imposes continuity on the extrinsic curvature or second fundamental form Kij . This is obviously the case of
GR, nothing surprising as the lhs of the field equations as written in (10) is the same as in GR. Let us now analyse
the rhs of (10), which is given by:

κ2

fR
Tµν − gµν

RfR − f

2fR
− 3

2f2
R

[

∇µfR∇νfR − 1

2
gνµ∇λfR∇λfR

]

+
1

fR
[∇µ∇νfR − gµν�fR] . (65)

From the trace equation (8), we have R = R(T ), such that any derivative in (65) reduces to derivatives on the trace
of the energy-momentum tensor. Given the terms as ∇µfR∇νfR that lead to the products ∂yT∂yT , one requires to
remove any delta function from the trace of the energy-momentum tensor and its first derivative what leads to impose
continuity on its trace, reaching to the second junction condition:

[T ]
+
− = 0 . (66)

In addition, from the ij−component of (65), the D’Alambertien �fR contains second derivatives of the trace of the
energy-momentum tensor that might introduce delta distributions through the term:

− 1

fR
γij�fR → ∂y

[

− 1

fR
γij∂yfR

]

= Sijδ(y) . (67)

Integrating across the boundary, it yields:

Sij =

[

− 1

fR
γij∂yfR

]+

−
= − 1

fR
γij [∂yfR]

+
− . (68)

In order to cancel the deltas in both sides of the field equations, we have to compensate this term with (62), leading
to the third junction condition:

[γijK −Kij ]
+
− = − 1

fR
γij [∂yfR]

+
− . (69)

By taking the trace of (69), the third junction condition can be written in a more compact form as:

[K]+− = −3

2

1

fR
[∂yfR]+− = −3

2

fRR
fR

RT [∂yT ]
+
− . (70)

Hence, the set given by (61), (66) and (70) form the junction conditions for f(R) gravity in the Palatini formalism,
which coincide with the ones found in [31] through a distributional analysis. Note that these conditions might be
found through the conformal frame defined by the conformal transformation (6). Firstly, since the transformation
of the extrinsic curvature (33) contains derivatives of Ω2 = fR(R(T )) and consequently of the trace of the energy-
momentum tensor, such that the second junction condition (66) is automatically achieved. Then, this also implies
the continuity of the induced conformal metric:

[γ̃ij ]
+
− = 0 . (71)

Whereas the third junction condition (70) can be rewritten in terms of the conformal extrinsic curvature by using the
transformations (6), such that the third junction condition (69) yields:

[γ̃ijK −Kij ]
+
− = 0 . (72)

which states basically the continuity of the conformal extrinsic curvature:

[Kij ]
+
− = 0 . (73)

Nevertheless, as far as the energy-momentum tensor contains a singular part τµν , the third condition (72) turns out:

[γ̃ijK −Kij ]
+
− =

κ2

Ω3
τ̃ij , (74)

where τ̃ij = Ω2τij . However, note that due to the presence of terms as ∂yT∂yT in the field equations, besides the
second junction condition (66), one has to impose that the trace of the singular part the energy-momentum tensor
becomes null:

τ = τµµ = 0 . (75)

Hence, we have obtained the junction conditions for f(R) gravity in the Palatini formalism, which reduces actually
to the Israel ones when are expressed in the conformal variables that define the compatibility of the connection.
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VI. SUMMARY

Along this manuscript, we have constructed the framework for expressing the corresponding variables that describe
f(R) gravity within the Palatini approach in terms of the extrinsic and intrinsic curvatures defined on a hypersurface
through the so-called 3 + 1 decomposition. To do it so, one takes the advantage of the field equation that establishes
the compatibility of the -in principle- independent connection with a metric that is conformally related to the
spacetime one, which enables to obtain the conformal related normal vector, extrinsic and intrinsic curvatures for
leading to the Gauss-Codazzi relations for the curvature R. By doing so, we have obtained firstly the corresponding
Gauss-Codazzi relation in metric f(R) theories and then in Palatini f(R) gravities, where the boundary term that
has to be subtracted to the gravitational action is obtained, leading to the Gauss-Codazzi action for both classes of
theories, metric f(R) gravities and Palatini f(R) models. This has also a direct application to the so-called ADM
decomposition of the spacetime, a foliation of this one onto hypersurfaces of constant time, which has been obtained
for these modified gravity theories, enabling the necessary tools for performing a full analysis of the Hamiltonian
formulation of the theory.

Finally, the 3 + 1 decomposition is applied for establishing the corresponding junction conditions in f(R) within
the Palatini formalism, which agree with previous results where other approaches were followed [31]. The set of
matching conditions coincide in vacuum with the ones given in GR but differ in the presence of matter. Nevertheless,
when expressing such conditions in terms of the conformal variables, these ones reduce again to the Israel junction
conditions in GR. In comparison to metric f(R) theories, where the Ricci scalar and its first derivative has to be
continuos in general [37], and in some particular cases double layers might be allowed [41, 42], this not the case for
Palatini f(R) gravity, as naturally arise since the field equations remain second order in comparison to the fourth
order of metric f(R) gravities. Nevertheless, the theory imposes the continuity of the trace of the energy-momentum
tensor which might have important consequences, as was pointed out in [32].

Hence, the 3 + 1 decomposition and Gauss-Codazzi relations obtained here will have important applications and
implications on the development and research on modified gravity theories within the Palatini formalism.
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I would like to thank Dr. Diego Rubiera-Garćıa for valuable comments on this manuscript. DS-CG is funded by
the University of Valladolid (Spain), Ref. POSTDOC UVA20.

[1] R. Aldrovandi and J. G. Pereira, doi:10.1007/978-94-007-5143-9
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