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Abstract
In this work we study the Casimir effect for massless scalar fields propagating in
a piston geometry of the type I × N where I is an interval of the real line and N
is a smooth compact Riemannian manifold. Our analysis represents a generalization
of previous results obtained for pistons configurations as we consider all possible
boundary conditions that are allowed to be imposed on the scalar fields. We employ
the spectral zeta function formalism in the framework of scattering theory in order to
obtain an expression for the Casimir energy and the corresponding Casimir force on
the piston. We provide explicit results for the Casimir force when the manifold N is
a d-dimensional sphere and a disk.
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1 Introduction

The Casimir effect is undoubtedly one of the most interesting physical phenomena
predicted by quantum field theory. Since the seminal work of Casimir in 1948 [12],
interest on the subject, and more generally on the influence that external conditions
have on a quantum system, has steadily increased. In fact the literature regarding the
Casimir effect has grownnot only in the number ofworks produced but also in its scope.
When it was first theoretically predicted in [12], the Casimir effect focused simply on
the attraction between two perfectly conducting neutral plates. Since then the Casimir
effect has been studied for a plethora of different geometric configurations, quantum
systems and boundary conditions (see for instance [8,9,39,43] and references therein
for a review on the subject). One of themost interesting andwidely analyzed geometric
configurations is the piston geometrywhichwas first introduced byCalvalcanti in [13].
While one can find a number of specific piston configurations throughout the literature
( [4,15–17,32,33,36–38,40,41] represents a, necessarily incomplete, list of examples),
themost general one can be described as consisting of two compactmanifolds, referred
to as chambers, possessing a common boundary of co-dimension one representing the
piston.

The reason for the widespread interest enjoyed by piston configurations lies mainly
in the following important feature: In general calculations of the Casimir energy for
quantum systems propagating in a given geometric configuration and subject to suit-
able boundary conditions lead, by the very nature of the phenomenon, to divergent
quantities. In this case one is confronted with the non-trivial task of extracting, from
these divergent results, meaningful physical information about the Casimir effect.
In the case of piston configurations these problems are somewhat mitigated. In fact,
while the Casimir energy of pistons might be divergent, the Casimir force acting on
the piston itself is, is many instances, a well-defined quantity. In this regard, it is
worth pointing out that piston configurations with non-vanishing curvature can have
a divergent Casimir force acting on the piston [25–27]. The Casimir force acting on a
piston depends not only on the specific geometry of the piston configuration but also
on the boundary conditions that are imposed on the quantum field. In fact the Casimir
force acting on a piston of a specific geometry can vary substantially as the bound-
ary conditions are changed. For this reason, a precise and comprehensive analysis of
the influence that the boundary conditions have on the Casimir force is of paramount
importance for a deeper understanding of the Casimir effect. Studying the effect that
boundary conditions have on the Casimir force on pistons is not only of theoretical
significance but it could also shed some light on the Casimir effect of quantum systems
consisting of real, as opposed to idealized, materials. In fact, suitable boundary con-
ditions can be utilized to describe physical properties of real materials. Some results
regarding the Casimir effect with general boundary conditions have been obtained,
for instance, in [3] for the case of parallel plates and in [22–24] in regards to piston
configurations. It is important to mention, for completeness, that real materials could
be modeled by smooth potentials with compact support rather than boundaries (see
e.g. [1,5,20,28,29]).

This work is mainly aimed at generalizing the results, obtained in [22,24], for the
Casimir effect in piston configurations. We consider a piston configuration of the type
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I × N where I ⊂ R is a closed interval of the real line and N is a smooth compact
Riemannianmanifoldwith orwithout boundary ∂N .We analyze amassless scalar field
propagating in the aforementioned geometric configuration endowed with the most
general boundary conditions for which the Laplace operator describing its dynamics
admits strongly consistent self-adjoint extensions. It is important to emphasize, at this
point, that the results presented in this paper for the Casimir energy and corresponding
force on the piston encompass all possible boundary conditions that can be imposed
on scalar fields propagating on pistons of the type I × N , and, hence, represent an
exhaustive analysis of the Casmir effect for scalar fields propagating on these types
of pistons. In order to perform such general analysis we exploit the results obtained
in [2] which enable one to characterize all self-adjoint extensions of the Laplacian.
By following the techniques employed in [42], we will utilize spectral zeta function
regularization methods in order to derive explicit expressions for the desired Casimir
energy and the corresponding force on the piston. We perform the analysis of the
spectral zeta function of the piston configuration by relying primarily onmethods from
scattering theory. While there are other methods to obtain the spectral zeta function
of the system under consideration, we are of the opinion that the formalism based on
scattering theory provides a somewhat more transparent physical interpretation of our
results.

The outline of the paper is as follows. In the next section we describe in detail the
piston configuration and the general boundary conditions to be imposed on the scalar
field. Subsequently, we utilize scattering methods in order to obtain an integral repre-
sentation of the spectral zeta function.We then analytically continue the representation
and derive an expression for the Casimir energy and corresponding force on the piston
for the piston under consideration. In the last sections we present some particular cases
as examples of our general results. The conclusions provide a summary of our main
results and some ideas for possible further studies in this area.

2 Generalities about the quantum vacuum

For the sake of completeness we include a brief description of the main physical ideas
underlying the scalar Casimir energies and forces. Typically the quantum field Hamil-
tonian that governs the dynamics of a quantum scalar field without self-interaction is
given by

HQFT =
∑

ω

�ω

(
N̂ω + 1

2

)
, (2.1)

where the set {ω} are the normal modes of the quantum scalar field, and N̂ω is the
number operator for the particular frequency ω. As can be seen, a quantum scalar field
without self-interaction is nothing but a grand canonical ensemble of non relativistic
quantum harmonic oscillators. The frequencies {ω} of the collection of harmonic
oscillators are determined by the spectrum of a Schrödinger operator K̂ . Specifically,
the frequencies are the positive square roots of the eigenvalues of the operator K̂ , i. e.
{ω} = {ω ∈ R

+ such that ω2 ∈ σ(K̂ )}, beingσ(K̂ ) the spectrumof the operator K̂ . In
order to have a well-defined quantum field theory, such that the quantum Hamiltonian
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HQFT is self-adjoint, all the frequencies {ω} of the quantum field’s normal modes must
be real and non negative. Hence the Schrödinger operator K̂ must be self-adjoint and
non-negative, to ensure that HQFT is self-adjoint.

The vacuum of a quantum field theory defined under the conditions mentioned
above, is the state in which there are no particles for any of the modes of the field, i.
e. all the harmonic oscillators are in their fundamental state. Hence, if we denote the
vacuum by |0〉, the expectation for the number operators in this state is

〈0|N̂ω|0〉 = 0,

which immediately enables one to obtain a formal expression for the quantum vacuum
energy, defined as the expectation value of the quantum field Hamiltonian for the
vacuum state:

E0 = 〈0|HQFT |0〉 =
∑

ω2∈σ(K̂ )

�ω

2
. (2.2)

As it usually happens in quantum field theory this expression is divergent, because the
Schrödinger operator K̂ is non-negative and unbounded. This does not mean that the
expression in Eq. (2.2) is meaningless. To extract a physically meaningful quantity
out of this last expression we need to regularize and renormalize the quantum vacuum
energy. There are many regularization methods that are useful for different situations,
that have been used in the last 30 years (see Ref. [8] for a review). In this paper we will
use the zeta function regularization. We can regularize the quantum vacuum energy
in Eq. (2.2) by introducing a dimensionless complex parameter s and a regularization
mass μ, to rewrite the regularized quantum vacuum energy as

E0(s) = = μ2(s+1/2)

2
�

∑

ω2∈σ(K̂ )

ω−2s = μ2(s+1/2)

2
� ζK̂ (s), (2.3)

where μ is a regularization parameter with dimension of a mass, and ζK̂ (s) is the zeta
function associated with the operator K̂ , namely

ζK̂ (s) =
∑

ω2∈σ(K̂ )

ω−2s .

The formal quantum vacuum energy in Eq. (2.2) corresponds to s = −1/2. Typically,
ζK̂ (s) has the following expansion about s = −1/2,

ζK̂

(
−1

2
+ ε

)
= 1

ε
Res ζK̂

(
−1

2

)
+ FP ζK̂

(
−1

2

)
+ O(ε), (2.4)

where Res denotes the residue and FP stands for the finite part at ε = 0, which
corresponds to the O(ε0)-term in this Laurent expansion. One then has
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E0

(
−1

2
+ ε

)
= 1

2ε
Res ζK̂

(
−1

2

)

+ 1

2

[
FP ζK̂

(
−1

2

)
+ Res ζK̂

(
−1

2

)
lnμ2

]
+ O(ε), (2.5)

and defines

ECas = 1

2

[
FP ζK̂

(
−1

2

)
+ Res ζK̂

(
−1

2

)
lnμ2

]
, (2.6)

indicating that the Casimir energy generally has finite ambiguities that are propor-
tional to Res ζK̂ (−1/2). For massive fields an extra renormalization condition can be
imposed to remove the regularization dependence. On the other hand, for massless
fields this regularization dependence can not be removed in general.

The quantum vacuum force Despite the possible regularization dependence of the
quantum vacuum energy for the case of massless scalar fields, the physical quantity
that is measured in a laboratory to detect the quantum vacuum energy is the force it
does produce between two macroscopic objects. It has been demonstrated that the part
of the quantum vacuum energy that contains the distance between two macroscopic
objects is independent of the regularization parameter even for massless fields (see
e.g. Refs. [21,34]). This result holds in particular for piston systems like the case we
will study in this paper because Res ζK̂ (−1/2) for the relevant K̂ will not depend on
the position of the piston.

To finish this section, we would like to remark that henceforth we set � = 1.

3 The general setup: U(4) boundary conditions

We begin our analysis by considering a direct product manifold M of the type M =
I × N . In this setting we define I = [0, L] ⊂ R to be a closed interval of the real
line and N to be a smooth compact d-dimensional Riemannian manifold with or
without a boundary ∂N . It is clear from the above definition that M has dimension
D = d + 1. The piston configuration can be obtained from the manifold M following
the construction detailed in [22,24]. The two chambers of the piston are realized by
dividing the manifold M with a cross-sectional manifold Na at the point a ∈ (0, L).
The manifold Na represents the piston itself. The two chambers MI and MI I are, by
construction, smooth compact D-dimensional Riemannian manifolds with boundary
∂MI = N0 ∪ Na ∪ ([0, a]×∂N ) and ∂MI I = Na ∪ NL ∪ ((a, L]×∂N ), respectively.

Let ψ(t, x) with x ∈ M denote a massless scalar field propagating on the piston
configuration outlined above, and φ(x) denote the normal modes in which the scalar
field decomposes after writing down the Fourier mode decomposition for ψ(t, x) in
the time coordinate. Due to the direct product structure of M we can write the equation
characterizing the normal modes of the scalar field φ as the eigenvalue equation

−
(

d2

dx2
+ 	N

)
φ = α2φ, (3.1)
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where 	N denotes the Laplacian on the manifold N . By using separation of variables
we can write the solution φ as the product of a longitudinal part and a cross-sectional
one, namely φ = f (x)Y (�) where x is the coordinate in the interval I and � denotes
the coordinates on N . The functions Y (�) are eigenfunctions of the operator	N with
eigenvalue λ

− 	NY (�) = λ2Y (�), (3.2)

while f (x) satisfies the simple second-order differential equation in the space I =
[0, a) ∪ (a, L]

− d2

dx2
fλ(x, k) = k2 fλ(x, k), (3.3)

where, for notational convenience,wehave introduced theparameter k2 = α2−λ2. The
parameter k2 becomes the eigenvalue once the differential equation (3.3) is augmented
by appropriate boundary conditions. As previously stated, wewill consider all possible
boundary conditions that can be imposed on fλ(x, k) which lead to a self-adjoint
boundary value problem. According to the methods developed in [2] this is equivalent
to considering all possible non-negative self-adjoint extensions of the operator in (3.3).
We would like to point out that we will consider only strongly consistent self-adjoint
extensions of the operator in (3.3), that is all the self-adjoint extensions that are non-
negative independently on the size of the interval I [42]. We would like to mention
at this point that the theory of self-adjoint extensions of Sturm–Liouville operators
on two intervals is well-known and can be found, for instance, in [45] and references
therein. However, in this work we choose to utilize a formalism to describe all the
relevant self-adjoint extensions that is rooted in the physical language [2]. In addition,
we will be using quantum mechanical scattering theory which does offer a clearer
and much more immediate physical interpretation of the formal discussions that will
follow.

3.1 General boundary conditions: U(4)

The boundary of I consists of four points, namely ∂I = {x = 0, x = a−, x =
a+, x = L}. According to the formalism developed in [2,3,42], the boundary con-
ditions that characterize a given self-adjoint extension of the differential operator in
(3.3) are expressed in the following form

ϕ − i ϕ̇ = U (ϕ + i ϕ̇), (3.4)

where ϕ is a vector with entries being the boundary values of the function fλ(x, k),
and ϕ̇ denotes a vector whose entries are the outgoing normal derivative of fλ(x, k)
at the boundary (c.f. [3,42]), that is

ϕ =

⎛

⎜⎜⎜⎝

fλ(0, k)

fλ
(
a−, k

)

fλ
(
a+, k

)

fλ(L, k)

⎞

⎟⎟⎟⎠ ;
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ϕ̇ =

⎛

⎜⎜⎜⎜⎝

− f ′
λ(0, k)

f ′
λ

(
a−, k

)

− f ′
λ

(
a+, k

)

f ′
λ(L, k)

⎞

⎟⎟⎟⎟⎠
⇒ ϕ ± i ϕ̇ =

⎛

⎜⎜⎜⎜⎝

fλ(0, k) ∓ i f ′
λ(0, k)

fλ
(
a−, k

) ± i f ′
λ

(
a−, k

)

fλ
(
a+, k

) ∓ i f ′
λ

(
a+, k

)

fλ(L, k) ± i f ′
λ(L, k)

⎞

⎟⎟⎟⎟⎠
≡ �±. (3.5)

Since the set of self-adjoint extensions of the differential operator in (3.3) defined over
I is in one-to-one correspondence with the elements of the groupU (4) [2], the matrix
U in (3.5) must be an element of the unitary groupU (4). This means that for any given
U ∈ U (4) we obtain a corresponding self-adjoint extension of the second derivative
operator in (3.3) defined on the domain [42]

DU = { fk(x) ∈ H2([0, L], C) : ϕ − i ϕ̇ = U (ϕ + i ϕ̇)}, (3.6)

which is a subspace of the Sobolev space H2([0, L], C). It must be noted, that not all
self-adjoint extensions give rise to a well-defined quantum field theory. Taking into
account the fact that the normal modes of the scalar massless quantum field confined
in the piston are characterized by the non-relativistic Schrödinger eigenvalue problem
(3.1), only those self-adjoint extensions that are non-negative can be used to construct
a meaningful scalar quantum field theory on the piston.

In order to explicitly implement the boundary conditions (3.4) we need a solution
of the differential equation (3.3) which can be easily found to be of the form

fλ(x, k) =
{
A1eikx + B1e−ikx 0 ≤ x ≤ a−

A2eikx + B2e−ikx a+ ≤ x ≤ L,
(3.7)

where the constants {A1, B1, A2, B2} are to be determined as to satisfy the boundary
conditions and the normalization condition. By using the explicit solution (3.7), the
boundary vectors �(±) defined in (3.5) are given by

�(±) =

⎛

⎜⎜⎝

(1 ± k)A1 + (1 ∓ k)B1

eiak(1 ∓ k)A1 + e−iak(1 ± k)B1

eiak(1 ± k)A2 + e−iak(1 ∓ k)B2

eikL(1 ∓ k)A2 + e−ikL(1 ± k)B2

⎞

⎟⎟⎠ = M± ·

⎛

⎜⎜⎝

A1
B1
A2
B2

⎞

⎟⎟⎠ , (3.8)

where we have introduced the following matrix

M± ≡

⎛

⎜⎜⎝

1 ± k 1 ∓ k 0 0
eiak(1 ∓ k) e−iak(1 ± k) 0 0

0 0 eiak(1 ± k) e−iak(1 ∓ k)
0 0 eikL(1 ∓ k) e−ikL(1 ± k)

⎞

⎟⎟⎠ . (3.9)
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By substituting (3.8) into (3.4) we obtain the homogeneous linear system

(M− −U · M+) ·

⎛

⎜⎜⎝

A1
B1
A2
B2

⎞

⎟⎟⎠ = 0. (3.10)

The above linear system has a non-trivial solution for the parameters {A1, B1, A2, B2}
if and only if the determinant of the matrix (M− −U · M+) vanishes, that is

det(M− −U · M+) = 0. (3.11)

This expression represents an equation for the parameter k whose solutions determine
the eigenvalues of the boundary value problem consisting of the differential equation
(3.3) and the boundary conditions associated with U ∈ U (4). In order to obtain
an explicit expression for (3.11) we need an appropriate representation of a generic
element U ∈ U (4). One way of proceeding is to notice that U (4) ∼= (SU (4) ×
U (1))/Z4 and , hence, an element U ∈ U (4) can be written as U = eiθ Ū where
θ ∈ [0, 2π ] and Ū ∈ SU (4) which, in turn, can be represented in terms of Euler
angles and 4 × 4 Gell-Mann-type matrices as shown in [44]. Since dim(U (4)) = 16,
the relation (3.11) would contain sixteen free real parameters. Although with the help
of a computer algebra program one could in principle obtain an explicit expression for
(3.11) in terms of the required free parameters, it is, in our opinion, more instructive
to consider simpler cases. Indeed, the large number of free parameters to follow by
considering the full U (4) would certainly obfuscate the main physical properties of
the quantum system which represent the focus of our work.

To this end, starting with the next section, we will restrict our attention to boundary
conditions that are represented by matrices belonging to the direct product subgroup
U (2) ×U (2) ⊂ U (4).

4 U(2)× U(2) reductions and topology change

The restriction to the subsetU (2)×U (2) ofU (4) allows us to analyze themost general
boundary conditions that relate pairs of boundary points of I. If we denoteU1 ∈ U (2)
and U2 ∈ U (2) as

U1 =
(
a11 a12
a21 a22

)
, and U2 =

(
b11 b12
b21 b22

)
, (4.1)

then a generic element of U (2) × U (2) ⊂ U (4) describing boundary conditions that
relate pairs of boundary points of I have one of the following forms:

V =

⎛

⎜⎜⎝

a11 a12 0 0
a21 a22 0 0
0 0 b11 b12
0 0 b21 b22

⎞

⎟⎟⎠ , W =

⎛

⎜⎜⎝

a11 0 0 a12
0 b11 b12 0
0 b21 b22 0
a21 0 0 a22

⎞

⎟⎟⎠ ,
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R =

⎛

⎜⎜⎝

a11 0 a12 0
0 b11 0 b12
a21 0 a22 0
0 b21 0 b22

⎞

⎟⎟⎠ . (4.2)

It is not very difficult to realize that each of thematrices displayed in (4.2) characterizes
a specific class of boundary conditions.

Boundary conditions described bymatrices of the form V in (4.2) couple the bound-
ary conditions at x = 0 and x = a− through aU (2)matrix and the boundary conditions
at x = a+ and x = L through, in general, another U (2) matrix. In more detail, by
using V in (4.2) in the relation (3.4) we get

(
fλ(0, k) + i f ′

λ(0, k)

fλ(a−, k) − i f ′
λ(a

−, k)

)
= U1

(
fλ(0, k) − i f ′

λ(0, k)

fλ(a−, k) + i f ′
λ(a

−, k)

)
, (4.3)

(
fλ(a+, k) + i f ′

λ(a
+, k)

fλ(L, k) − i f ′
λ(L, k)

)
= U2

(
fλ(a+, k) − i f ′

λ(a
+, k)

fλ(L, k) + i f ′
λ(L, k)

)
. (4.4)

This case represents two disconnected chambers, since the quantum vacuum fluctua-
tions in one chamber are independent from the ones in the other chamber. The spectrum
of the boundary value problem (3.3) and (3.4) is given, in this situation, simply by the
union of the spectra of the self-adjoint extension defining the dynamics in each of the
chambers. The disconnected chamber configuration has been already covered in [22]
and, hence, will not be discussed further in this work.

Matrices of the form W in (4.2) describe, instead, the case in which the boundary
conditions at x = 0 and x = L are coupled through a U (2) matrix and the boundary
conditions at x = a− and x = a+ are coupled, generally, through another U (2)
matrix. That is, the condition (3.4) becomes,

(
fλ(0, k) + i f ′

λ(0, k)

fλ(L, k) − i f ′
λ(L, k)

)
= U1

(
fλ(0, k) − i f ′

λ(0, k)

fλ(L, k) + i f ′
λ(L, k)

)
, (4.5)

(
fλ(a−, k) − i f ′

λ(a
−, k)

fλ(a+, k) + i f ′
λ(a

+, k)

)
= U2

(
fλ(a−, k) + i f ′

λ(a
−, k)

fλ(a+, k) − i f ′
λ(a

+, k)

)
, (4.6)

which can easily be obtained by replacing U in (3.4) with W defined in (4.2). In
this case, as it is clear from (4.6), the quantum fluctuations are allowed to travel
through the piston itself, a situation which occurs when the piston is not opaque. Using
the boundary conditions (4.6) is equivalent to modeling the piston itself as a point
supported potential. This case would complement the analysis of semi-transparent
pistons [41] and pistons with transmittal boundary conditions [24]. The boundary
conditions in (4.5) can induce a topology change as they allow for the two ends
x = 0 and x = L of the piston configuration to be identified. In this case the piston
configuration would have the topology of a torus.

Matrices of the form R in (4.2) characterize the situation in which boundary con-
ditions at x = 0 are coupled, through a U (2) matrix, to the boundary conditions at
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x = a+ while boundary conditions at x = a− are coupled to the ones at x = L
through another U (2) matrix. Although formally this case leads to a boundary value
problem which is strongly self-adjoint, it is not suitable for describing a piston con-
figuration. In fact, fields propagating in the left chamber would be constrained by
the boundary at x = 0 but would have no constraints on the right boundary of that
chamber, namely x = a−. This leads to a scenario which would de facto elimi-
nate the left chamber since fields propagating in it would “feel” the left boundary
but not the right one. A similar argument applies to the fields propagating in the
right chamber since, in this case, the piston itself is completely opaque. Because of
the remarks above, we will be focusing our analysis on the membrane configura-
tion.

4.1 Membrane configuration

There are basically two approaches that can be applied to the analysis of themembrane
configuration. The first consists of writing a solution of the differential equation (3.3)
as a linear combination of sine and cosine functions and then impose the boundary
conditions in (4.5) and (4.6). The second approach, instead, is based on the formalism
of scattering theory where the solutions are written in terms of transmission and
reflection amplitudes. In the analysis that will follow we use the latter approach since,
in our opinion, it describes the Casimir effect for the membrane configuration in
a physically more meaningful way. To carry out the calculation we will follow a
procedure consisting of two steps:

1. We start by studying the piston wall over the entire real line. In this case the piston
wall can be described as a potential supported at the point x = a defined by
the boundary conditions (4.6) through the unitary matrix U2. The scattering states
obtained in this case will satisfy (4.6) independently of the presence of the external
walls at x = 0, L .

2. Afterwards we built the quantum field normal modes as linear combinations of the
previously found scattering states and impose, on them, the boundary condition
(4.5), given by the unitary matrixU1, at the external points of the piston x = 0, L .

With this approach we can characterize the spectrum of normal modes of the massless
quantum scalar field in terms of non-relativistic scattering data of the piston wall. This
characterization enables one to have a better intuition about the phenomena appearing
in the Casimir force in terms of the physical properties of the piston that are encoded
in the scattering data. To this end, we express the eigenfunctions of (3.3) with the
boundary conditions (4.5) and (4.6) as the following linear combination

fλ(x, k) = Aλ(k)ψ
R
λ,k(x;U2) + Bλ(k)ψ

L
λ,k(x;U2), (4.7)

whereψ R
λ,k(x;U2) andψ L

λ,k(x;U2) are the left-to-right and the right-to-left scattering
states, respectively, and should be determined by the boundary condition (4.6). On the
other hand the coefficients Aλ(k) and Bλ(k) are determined by the boundary condition
(4.5).



Casimir pistons with generalized boundary conditions: a… Page 11 of 28    70 

4.1.1 The piston on the real line

The functions ψ R
λ,k(x;U2) and ψ L

λ,k(x;U2) are solutions to the scattering problem
consisting of a point supported potential, positioned at x = a, described by the unitary
matrixU2. According to standard scattering theory, the left-to-right (ψ R

λ,k(x;U2)) and

the right-to-left (ψ L
λ,k(x;U2)) scattering states can be written as

ψ R
λ,k(x;U2) =

{
e−ikx r̃R + eikx −∞ < x < a

eikx t̃R a < x < ∞ ;

ψ L
λ,k(x;U2) =

{
e−ikx t̃L −∞ < x < a

eikx r̃L + e−ikx a < x < ∞.
(4.8)

In order to determine the scattering data {t̃R, r̃R, t̃L , r̃L} we impose the boundary
conditions (4.6) on the functions ψ R

λ,k(x;U2) and ψ L
λ,k(x;U2) separately.

By using ψ R
λ,k(x;U2) in (4.6) we obtain

(
e−2ikar̃R(1 − k) + (1 + k)

t̃R(1 − k)

)
= U2

(
e−2ikar̃R(1 + k) + (1 − k)

t̃R(1 + k)

)
. (4.9)

An explicit expression for the linear system that determines the coefficients r̃R and t̃R
can be found by exploiting the Euler parametrization for U2, that is

U2 = eiθ
[
I cos(γ ) + i sin(γ ) (q1σ1 + q2σ2 + q3σ3)

]
, (4.10)

where σ j represents the Pauli matrices, (q1, q2, q3) is a unit vector q21 + q22 + q23 = 1,
and θ ∈ [−π, π ] and γ ∈ [−π/2, π/2]. The solution to the linear system (4.9) with
the parametrization (4.10) can then be written as t̃R = tR and r̃R = e2ikarR where
tR and rR are the scattering amplitudes for the case in which the piston is located at
x = 0

tR = −2ik (q1 − iq2) sin(γ )

DU2(k)
,

rR =
(
k2 + 1

)
cos(γ ) + (

k2 − 1
)
cos(θ) + 2ikq3 sin(γ )

DU2(k)
, (4.11)

where we have introduced the function

DU2(k) =
(
k2 + 1

)
cos(θ) +

(
k2 − 1

)
cos(γ ) + 2ik sin(θ). (4.12)

By imposing the boundary conditions (4.6) to the right-to-left scattering state
ψ L

λ,k(x;U2) one finds a linear system for the coefficients t̃L and r̃L similar to the
one in (4.9). By using the parametrization (4.10) one can write the solutions for the
right-to-left scattering coefficients as t̃L = tL and r̃L = e−2ikarL where
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Fig. 1 Bound states distribution
in the θ − γ plane

tL = −2ik (q1 + iq2) sin(γ )

DU2(k)
,

rL =
(
k2 + 1

)
cos(γ ) + (

k2 − 1
)
cos(θ) − 2ikq3 sin(γ )

DU2(k)
. (4.13)

We would like to point out that the scattering coefficients in ψ R
λ,k(x;U2) and

ψ L
λ,k(x;U2) do satisfy the usual relations |rR |2 + |tR |2 = 1 and |rL |2 + |tL |2 = 1,

which imply, in particular, that the function DU2(k) cannot vanish for real k > 0.
However, it is possible for DU2(k) to have zeroes on the positive imaginary k-axis.
In fact, the solutions of the equation DU2(iκ) = 0 with κ > 0 determine the bound
states of the system [30]. The solutions can be found to be

κ± = − tan

(
θ ± γ

2

)
. (4.14)

Since θ ∈ [−π, π ] and γ ∈ [−π/2, π/2], it is not difficult to realize that it is possible
to have either no bound states, one bound state, or two bound states. The regions in
the θ − γ plane leading to no, one, or two bound states is given in Fig. 1.

It is important to notice, that in order to have a unitary quantum field theory all
the normal modes of the field must have real non-negative frequencies. This means,
in particular, that the scattering problem we have just analyzed can not have bound
states. Hence we have to restrict ourselves to those unitary matrices U2 that give rise
to non negative self-adjoint extensions, i. e. the dark purple zone in Fig. 1.

4.1.2 The confined piston

The eigenfunctions fλ(x, k) in (4.7) automatically satisfy the boundary conditions on
the piston itself whenwe useψ R

λ,k(x;U2) andψ L
λ,k(x;U2) in (4.8) with the coefficients

found in (4.11) and (4.13). Our next task therefore is to impose the remaining boundary
conditions on fλ(x, k), namely the ones at the edges x = 0 and x = L of the piston
configuration. The scattering states ψ R

λ,k(x;U2) and ψ L
λ,k(x;U2) allow us to write the

column vector of the boundary data of fλ(x, k) in (4.5) as
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(
fλ(0, k) ± f ′

λ(0, k)

fλ(L, k) ∓ i f ′
λ(L, k)

)
= M̃±

(
Aλ(k)

Bλ(k)

)
, (4.15)

where we have defined the matrices

M̃± =
(
1 ∓ k (1 − r̃R) + r̃R (1 ± k)t̃L

eikL(1 ± k)t̃R e−ikL
(
(1 ∓ k) + e2ikL(1 ± k)r̃L

)
)

. (4.16)

With this notation the boundary condition (4.5) reads

(M̃+ − U1M̃−)

(
Aλ(k)
Bλ(k)

)
=

(
0
0

)
. (4.17)

In order for (4.17) to have non-trivial solutions, the determinant of the coefficients of
the linear system must vanish, that is one obtains the secular equation

Fλ(k, a; S,U1) := det(M̃+ − U1M̃−) = 0. (4.18)

The last condition represents an equation in the variable k whose solutions pro-
vide, through the relation α2 = k2 + λ2, the eigenvalues of the problem (3.3) with
boundary conditions (4.5) and (4.6). By utilizing (4.18) and after some lengthy but
straightforward calculations one obtains an explicit expression for Fλ(k, a; S,U1) as
follows

Fλ(k, a; S,U1) = e−ikL
[
C+
U1

+ k2C−
U1

− 2k(1 − det(U1))
]

− eikL det(S)
[
C+
U1

+ k2C−
U1

+ 2k(1 − det(U1))
]

+ (rRe
ik(2a−L) + rLe

−ik(2a−L))
[
C+
U1

− k2C−
U1

]

+ 2k(rRe
ik(2a−L) − rLe

−ik(2a−L))(u11 − u22)

+4k(u21tR + u12tL), (4.19)

where ui j are the entries of the matrix U1, and we have defined, for any 2 × 2 matrix
m, the quantities

C±
m = Cm(±1) = 1 + det(m) ∓ tr(m), (4.20)

which are nothing but the characteristic polynomial Cm(x) ofm evaluated at x = ±1.
It is clear from (4.19) that the function Fλ(k, a; S,U1) depends explicitly on the unitary
matrix U1 ∈ U (2), and on the matrix U2 ∈ U (2) through the scattering matrix for the
point supported potential described by the unitary matrix U2

S(k;U2) =
(
t̃R r̃L
r̃R t̃L

)
. (4.21)
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The determinant of the matrix in (4.21) can be computed by using the expressions in
(4.11) and (4.13) of the scattering coefficients. One finds explicitly

det(S) = −DU2(−k)

DU2(k)
. (4.22)

Introducing the notation ρR,L ≡ DU2(k)rR,L and τR,L = DU2(k)tR,L allows us to
rewrite (4.19) as

Fλ(k, a; S,U1) = 1

DU2(k)

{
DU2(k)e

−ikL
[
C+
U1

+ k2C−
U1

− 2k(1 − det(U1))
]

+ DU2(−k)eikL
[
C+
U1

+ k2C−
U1

+ 2k(1 − det(U1))
]

+ (ρRe
ik(2a−L) + ρLe

−ik(2a−L))
[
C+
U1

− k2C−
U1

]

+ 2k(ρRe
ik(2a−L) − ρLe

−ik(2a−L))(u11 − u22)

+ 4k(u21τR + u12τL)} . (4.23)

By exploiting now Euler’s parametrization of the group U (2) for U1, that is

U1 = eiα [I cos(β) + i sin(β) (n1σ1 + n2σ2 + n3σ3)] , (4.24)

with α ∈ [−π, π ] and β ∈ [−π/2, π/2], one finds the relations

C∓
U1

= 1 + det(U1) ± tr(U1) = 2eiα(cos(α) ± cos(β)), (4.25)

1 − det(U1) = −2ieiα sin(α), u11 − u22 = 2in3e
iα sin(β) (4.26)

u12 = ieiα sin(β)(n1 − in2), u21 = ieiα sin(β)(n1 + in2), (4.27)

which can be used in (4.23) to obtain the following expression

Fλ(k, a; S,U1)

= 2eiα

DU2(k)

{
DU2(k)e

−ikL
[
cos(α) − cos(β) + k2(cos(α) + cos(β)) + 2ik sin(α)

]

+ DU2(−k)eikL
[
cos(α) − cos(β) + k2(cos(α) + cos(β)) − 2ik sin(α)

]

+ (ρRe
ik(2a−L) + ρLe

−ik(2a−L))
[
cos(α) − cos(β) − k2(cos(α) + cos(β))

]

+ 2ikn3 sin(β)(ρRe
ik(2a−L) − ρLe

−ik(2a−L))

+ 2ik sin(β)((n1 + in2)τR + (n1 − in2)τL)
}
. (4.28)

One final remark regards the overall factor in (4.28). It is easy to realize, from the defi-
nition in (4.12), that DU2(k) has no poles. This implies that the factor 2eiα(DU2(k))

−1

does not contribute to the zeroes of the function Fλ(k, a; S,U1) and can, hence, be
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safely discarded. We can therefore conclude that the function Fλ(k, a; S,U1) has the
same zeroes as the following function

hλ(k, a; S,U1) = e−iα

2
DU2(k)Fλ(k, a; S,U1), (4.29)

which is the one we will utilize in order to analyze the spectral zeta function of our
piston configuration.

5 The spectral zeta function and Casimir energy

The function hλ(k, a; S,U1) can be used to derive an expression for the spectral zeta
function associated with the piston configuration which is defined in terms of the
eigenvalues α of our system as follows

ζ(s, a) =
∑

α>0

α−2s . (5.1)

The above zeta function is known to be convergent for �(s) > D/2 [18,19,35] and
can be analytically continued to a meromorphic function in the whole complex plane
possessing only simple poles. The spectral zeta function can be utilized to compute
the Casimir energy of suitable quantum systems [8,9,11,18,19,35], and in particular
for the piston configuration under consideration in this work. In this framework, as
outlined in Sect. 2, the Casimir energy of a piston is expressed as (replacing ζK̂ (s)
with ζ(s, a))

ECas(a) = 1

2

[
FP ζ

(
−1

2
, a

)
+ lnμ2Res ζ

(
−1

2
, a

)]
. (5.2)

From the expression for the Casimir energy in (5.2) one obtains the Casimir force
acting on the piston by simply differentiating with respect to the position a of the
piston, that is

FCas(a) = − ∂

∂a
ECas(a). (5.3)

From the formulas (5.2) and (5.3) it is not very difficult to realize that the Casimir force
acting on the piston is a uniquely defined quantity only if the residue of the spectral
zeta function at s = −1/2 is independent of the position a of the piston, because this
ensures that the result obtained is independent of the regularization parameter μ.

The eigenvalues α of our system are only known implicitly as the positive zeroes
of the function hλ(k, a; S,U1) through the relation α2 = k2 +λ2. One can, therefore,
employ a contour integral representation, based on Mittag-Leffler’s theorem, to write
the spectral zeta function as follows [6,7,35]

ζ(s, a) = 1

2π i

∑

λ

d(λ)

∫

γ

(
k2 + λ2

)−s ∂

∂k
ln hλ(k, a; S,U1) dk, (5.4)



   70 Page 16 of 28 G. Fucci et al.

valid in the region of the complex plane �(s) > D/2. Here, γ represents a contour
that encloses, in the counterclockwise direction, all the positive zeroes of the function
hλ(k, a; S,U1). In addition, d(λ) denotes the degeneracy of the eigenvalues λ of the
Laplacian on the transverse manifold N . In order to analyze the Casimir energy of
the system and the corresponding force, the expression in (5.4) for ζ(s, a) needs to
be analytically extended to a neighborhood of the point s = −1/2. The first step in
the analytic continuation consists of deforming the contour γ to the imaginary axis
[35]. Before performing the contour deformation, it is very important to analyze the
small-k behavior of the function hλ(k, a; S,U1). By using the definition (4.29) and
the expression (4.28) one obtains the following asymptotic behavior as k → 0

hλ(k, a; S,U1)

= {
8 cos(θ) cos(α) − 8 cos(γ ) cos(β) + 4 sin(θ)[L(cos(α) − cos(β)) − 2 sin(α)]

+ 4(cos(γ ) − cos(θ))[a(a − L)(cos(α) − cos(β)) + L sin(α)]
− 4(2a − L)[(cos(α) − cos(β))q3 sin(γ ) + (cos(γ ) − cos(θ))n3 sin(β)]
+ 8 sin(β) sin(γ )(n1q1 + n2q2 − n3q3)

}
k2 + O(k4). (5.5)

Since hλ(k, a; S,U1) is of order k2 as k → 0, a simple contour deformation to the
imaginary axis would allow the integral to acquire an unwanted contribution from the
origin k = 0. In order to avoid this spurious contribution we replace the representation
(5.4) of the spectral zeta function with the following one

ζ(s, a) = 1

2π i

∑

λ

d(λ)

∫

γ

(
k2 + λ2

)−s ∂

∂k
ln

[
hλ(k, a; S,U1)

k2

]
dk. (5.6)

By exploiting the fact that the function hλ(k, a; S,U1) satisfies the property

hλ(ik, a; S,U1) = hλ(−ik, a; S,U1), (5.7)

which can be proved bynoticing that for anyw ∈ C,ρR(−w) = ρL(w) and τR(−w) =
τL(w), the contour deformation to the imaginary axis leads to the expression

ζ(s, a) =
∑

λ

d(λ)ζλ(s, a), (5.8)

where we have introduced the zeta function

ζλ(s, a) = sin(πs)

π

∫ ∞

λ

(
z2 − λ2

)−s ∂

∂z
ln

[
hλ(i z, a; S,U1)

z2

]
dz. (5.9)

The integral representation (5.9) is valid in the region of the complex plane 1/2 <

�(s) < 1. The upper bound on the region of validity is obtained by requiring the
integral to be convergent at the lower limit of integration and by noticing that, as
z → λ, the integrand behaves as



Casimir pistons with generalized boundary conditions: a… Page 17 of 28    70 

(z2 − λ2)−s ∂

∂z
ln

[
hλ(i z, a; S,U1)

z2

]
∼ (z − λ)−s . (5.10)

As z → ∞ the function hλ(i z, a; S,U1) displays, instead, the following behavior

hλ(i z, a; S,U1) = DU2(i z)e
zL

[
cos(α) − cos(β)

− z2(cos(α) + cos(β)) − 2z sin(α)
]
[1 + ε(i z, a)],

(5.11)

where ε(i z, a) represents exponentially small terms. The expression (5.11) allows us
to conclude that, as z → ∞, the integrand in (5.9) behaves as

(z2 − λ2)−s ∂

∂z
ln

[
hλ(i z, a; S,U1)

z2

]
∼ Lz−2s, (5.12)

which togetherwith the requirement that the integral representation (5.9) be convergent
at the upper limit of integration, provides the lower bound �(s) > 1/2.

In order to analyze the Casimir energy and the corresponding force, we need to
extend the definition of the zeta function in (5.9) to the region of the complex plane
�(s) ≤ 1/2. This is accomplished by simply subtracting and then adding in the
integral representation (5.9) a suitable number of terms of the asymptotic expansion
as z → ∞ of ln

[
z−2hλ(i z, a; S,U1)

]
. By using the definition (4.12) we can write a

formula which we can use as a starting point of the asymptotic expansion

ln
[
z−2hλ(i z, a; S,U1)

]
� zL − 2 ln z + ln�(z; θ, γ ) + ln�(z;α, β), (5.13)

where we have discarded the exponentially small terms and we have introduced, for
convenience, the function

�(z; x, y) = m−(x, y) − 2z sin x − z2 m+(x, y), (5.14)

with
m±(x, y) = cos x ± cos y. (5.15)

From the expressions (5.13)–(5.15) it is not difficult to see that the specific form
of the asymptotic expansion depends on whether or not the coefficients m+(α, β),
sin α,m+(θ, γ ), and sin θ vanish. In order to consider all the cases simultaneously we
introduce the function

δ(x) =
{
1 if x = 0
0 if x �= 0

, (5.16)

and rewrite the logarithm of (5.14) as follows

ln�(z; x, y) = [
2 − δ(m+(x, y))(1 + δ(sin x))

]
ln z + τ(x, y)
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+ [
1 − δ(m+(x, y))

]
ln

[
1 + 2 sin x

m+(x, y)z
− m−(x, y)

m+(x, y)z2

]

+ δ(m+(x, y))[1 − δ(sin x)] ln
[
1 − m−(x, y)

2z sin x

]
, (5.17)

where

τ(x, y) = [
1 − δ(m+(x, y))

]
m+(x, y) + δ(m+(x, y))[1 − δ(sin x)] ln(2 sin x)

+ δ(m+(x, y))δ(sin x) ln[m−(x, y)]. (5.18)

The large-z asymptotic expansion of the quantity in (5.17) can be obtained by following
the argument presented in [42]. More explicitly one finds

ln�(z; x, y) = [
2 − δ(m+(x, y))(1 + δ(sin x))

]
ln z

+ τ(x, y) +
∞∑

n=1

ωn(x, y)

zn
, (5.19)

where (cf. [42])

ωn(x, y) = [
1 − δ(m+(x, y))

]
(−1)n+1

[ n
2

]
∑

n=0

2n−2 j�(n − j)

j !�(n − 2 j + 1)
(sin x)n−2 j m j

−(x, y)

mn− j
+ (x, y)

− δ(m+(x, y))[1 − δ(sin x)] (cot x)
n

n
. (5.20)

By exploiting the formula (5.19) it is not very difficult towrite the large-z asymptotic
expansion of (5.13), that is

ln
[
z−2hλ(i z, a; S,U1)

]
� zL + χ(θ, γ, α, β) ln z + τ(θ, γ ) + τ(α, β)

+
∞∑

n=1

ωn(θ, γ ) + ωn(α, β)

zn
, (5.21)

where we have introduced the function

χ(θ, γ, α, β) = 2− δ(m+(θ, γ ))[1+ δ(sin θ)]− δ(m+(α, β))[1+ δ(sin α)]. (5.22)

The above asymptotic expansion can now be used to perform the analytic continuation
of the spectral zeta function. By subtracting and then adding the first N terms of the
asymptotic expansion (5.21) in the integrand of (5.9) we get

ζ(s, a) = Z(s, a) +
N∑

i=−1

Ai (s), (5.23)
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where Z(s, a) is an analytic function in the region �(s) > (d − N − 1)/2 and has the
form

Z(s, a) = sin(πs)

π

∑

λ

d(λ)

∫ ∞

λ

(
z2 − λ2

)−s ∂

∂z

{
ln

[
hλ(i z, a; S,U1)

z2

]
− zL

− χ(θ, γ, α, β) ln z − τ(θ, γ ) − τ(α, β) −
N∑

n=1

ωn(θ, γ ) + ωn(α, β)

zn

}
dz.

(5.24)

The remaining quantities in (5.23), i.e. Ai (s), are obtained by integrating the terms of
the asymptotic asymptotic expansion that have been added back and are meromorphic
functions of s possessing only isolated simple poles. It is not difficult to prove that

A−1(s) = L

2
√

π�(s)
�

(
s − 1

2

)
ζN

(
s − 1

2

)
, (5.25)

A0(s) = 1

2
χ(θ, γ, α, β)ζN (s), (5.26)

and, for i ≥ 1,

Ai (s) = −ωi (θ, γ ) + ωi (α, β)

�(s)�
( i
2

) �

(
s + i

2

)
ζN

(
s + i

2

)
, (5.27)

where in the previous expressions we have used the following definition of the spectral
zeta function associated with the Laplacian −	N on the manifold N

ζN (s) =
∑

λ

d(λ)λ−2s . (5.28)

Before exploiting these results for the Casimir energy, let us remark that the above
equations are also perfectly suited to compute the heat kernel coefficients for the
piston setting. It is known that only the A j (s), j = −1, 0, 1, . . ., contribute to the
coefficients and (5.21) and (5.22) clearly show how contributions split into (θ, γ )

and (α, β) dependent parts, which have been treated in [42]. Results for heat kernel
coefficients will therefore simply be sums of results given in [42] and we will not
present more details in this context.

We will now employ the analytically continued expression of the spectral zeta
function in (5.23) and the definition in (5.2) to derive a formula for the Casimir
energy of the piston. By setting N = D in (5.23) we obtain a representation for the
spectral zeta function valid in the region −1 < �(s) < 1 and, hence, suitable for
the calculation of the Casimir energy. According to the definition (5.2) the Casimir
energy is computed by setting s = ε − 1/2 in (5.23) and by subsequently taking the
limit ε → 0. During this limiting process, the meromorphic structure of the spectral
zeta function ζN (s) plays an important role. In accordance with the general theory of
spectral zeta functions, [31,35] one has
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ζN (ε − n) = ζN (−n) + εζ ′
N (−n) + O(ε2), (5.29)

ζN

(
ε + d − k

2

)
= 1

ε
Res ζN

(
d − k

2

)
+ FP ζN

(
d − k

2

)
+ O(ε), (5.30)

ζN

(
ε − 2n + 1

2

)
= 1

ε
Res ζN

(
−2n + 1

2

)
+ FP ζN

(
−2n + 1

2

)
+ O(ε), (5.31)

where n ∈ N0 and k = {0, . . . , d − 1}. Since Z(s, a) is an analytic function for
−1 < �(s) < 1, we can simply set s = −1/2 in its expression. For the terms Ai (s)
we find instead (c.f. [22])

A−1

(
ε − 1

2

)
= L ζN (−1)

4πε
+ L

4π

[
ζ ′
N (−1) + (2 ln 2 − 1)ζN (−1)

] + O(ε),

(5.32)

A0

(
ε − 1

2

)
= 1

2
χ(θ, γ, α, β)

[
1

ε
Res ζN

(
−1

2

)
+ FP ζN

(
−1

2

)]
+ O(ε),

(5.33)

and

D∑

i=1

Ai

(
ε − 1

2

)

= 1

ε

[
ω1(θ, γ ) + ω1(α, β)

2π
ζN (0) +

D∑

i=2

ωi (θ, γ ) + ωi (α, β)

2
√

π�
( i
2

) �

(
i − 1

2

)

×Res ζN

(
i − 1

2

) ]
+ ω1(θ, γ ) + ω1(α, β)

2π

[
ζ ′
N (0) + 2(ln 2 − 1)ζN (0)

]

+
D∑

i=2

ωi (θ, γ ) + ωi (α, β)

2
√

π�
( i
2

) �

(
i − 1

2

) [
FP ζN

(
i − 1

2

)

+
(
2 − γ − 2 ln 2 + �

(
i − 1

2

))

×Res ζN

(
i − 1

2

) ]
+ O(ε). (5.34)

The above results together with the formula (5.2) allow us to write an explicit expres-
sion for the Casimir energy of the piston configuration as follows

ECas(a)

= 1

2

(
1

ε
+ lnμ2

) [
L

4π
ζN (−1) + 1

2
χ(θ, γ, α, β)Res ζN

(
−1

2

)

+ω1(θ, γ ) + ω1(α, β)

2π
ζN (0)
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+ O(ε). (5.35)

The above expression clearly shows that the Casimir energy of the piston configuration
is, in general, not a well-defined quantity. The ambiguity in the force is proportional
to ζN (−1), ζN (0), and the Res ζN ((i − 1)/2) with i = 0, . . . , D. These quantities
depend, in turn, only on the geometry of the transverse manifold N and the boundary
conditions imposed on the fields propagating on N through the coefficients aNk/2 of
the asymptotic expansion of the heat kernel associated with 	N . This is due to the
well-known relations with n ∈ N0 [31,35]

�

(
d − k

2

)
Res ζN

(
d − k

2

)
= aNk

2
,

�

(
−2n + 1

2

)
Res ζN

(
−2n + 1

2

)
= aNd+2n+1

2
,

(−1)n

�(n + 1)
ζN (−n) = aNd

2 +n
. (5.36)

While the Casimir energy is generally ambiguous, the Casimir force acting on the
piston is a well-defined quantity since the terms responsible for the ambiguity in the
energy do not depend on the position of the piston. In fact, by using (5.35) and the
definition provided in (5.3) we obtain the following simple expression for the Casimir
force acting on the piston

FCas(a) = −1

2

d

da
Z

(
−1

2
, a

)
= 1

2π

∑

λ

d(λ)
d

da
Jλ(a). (5.37)

where Z
(− 1

2 , a
)
is given by formula (5.24), and we have introduced the notation

Jλ(a) ≡
∫ ∞

λ

(
z2 − λ2

) 1
2
∂z [ln(hλ(i z, a; S,U1) − As(z; S,U1)] dz , (5.38)
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with As(z; S,U1) being the asymptotic terms subtracted in Eq. (5.24); note, that these
terms do not depend on the position of the piston a. If we integrate by parts in Jλ(a),
and take into account that the boundary terms cancel, we can write

Jλ(a) = −
∫ ∞

λ

z
(
z2 − λ2

) 1
2

[ln(hλ(i z, a; S,U1) − As(z; S,U1)] dz. (5.39)

Hence the Casimit force can finally be written as

FCas(a) = − 1

2π

∑

λ

d(λ)

∫ ∞

0
∂a

[
ln(hλ(i

√
w2 + λ2, a; S,U1)

]
dw, (5.40)

after performing the change of variables w = √
z2 − λ2. The formula (5.40) for the

Casimir force will be used in the next section to generate graphs of the Casimir force
on the piston for different geometries and boundary conditions.

6 Casimir force for particular piston geometries

It is clear from the expression (5.40) that the Casimir force acting on the piston
can be obtained numerically once the manifold N and the boundary conditions have
been specified. In this section we consider the following two manifolds N : the two-
dimensional disk and the d-dimensional sphere. Before proceeding with these two
cases we would like to make a remark about the piston configuration constructed
from a generalized torus. This particular piston configuration is obtained by imposing
periodic boundary conditions at x = 0 and x = L . In this case the left edge and
the right one of the piston configuration are identified. Periodic boundary conditions
can be obtained by setting α = π/2, β = ±π/2, and n1 = ∓1 in U1 [42]. With
this particular choice of parameters, it is not difficult to realize that the terms with
the dependence on the position of the piston a in hλ(k, a; S,U1) in (4.29) vanish
identically. This implies that in a generalized torus the piston itself does not incur
any force. This result should be expected because identifying the two edges of the
piston is equivalent to reducing the piston configuration to a single chamber. More
generally, for any configuration where α = π/2, 3π/2, β = ±π/2, and n3 = 0 all
the terms dependent on the position of the piston a that appear in hλ(k, a; S,U1) [see
Eq. (4.29)] vanish identically.We can, therefore, conclude that in these situations there
is no Casimir force acting on the piston. In addition, if the selfa-djoint extension that
characterises the piston gives rise to an opaque piston wall, i.e. rR = rL = 0 the
Casimir force vanishes as well since all the a-dependent terms in hλ(k, a; S,U1) are
proportional to either ρR or ρL . Nevertheless, the special case of α = π/2 = −β and
n3 = 0 ⇒ n1 = cos(ξ), n2 = sin(ξ) is of great interest when the cross section of the
piston geometry degenerates to a point. In this case we interpret the free parameter ξ as
the quasi-momentum of a one-dimensional crystal lattice where the lattice points are
mimicked by identical point-supported potentials, generalising the result of reference
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[10]. For the examples that we consider in this section we will assume, for simplicity,
that L = 1.

6.1 The d-dimensional sphere

In this example we consider the base manifold to be a d-dimensional sphere. The
eigenvalues of the Laplacian 	N on a d-dimensional sphere are known to be

λ2 = l(l + d − 1), (6.1)

with l ∈ N0, and the associated degeneracy has the form

d(ν) = (2l + d − 1)
(l + d − 2)!
l!(d − 1)! . (6.2)

In order to obtain specific graphs of the Casimir force on the piston as a function of
the position a we set d = 2 and we use the eigenvalues and degeneracy (6.1) and (6.2)
in the expression (5.37). Once particular boundary conditions are chosen, a numerical
analysis of the Casimir force (5.40) can be performed. It is important to point out that
the dimension d = 2 has been chosen only for simplicity and that our formula for
the Casimir force (5.37) holds for any dimension d. Figures 2, 3, 3 and 5 show the
behavior of the Casimir force on the piston for specific boundary conditions imposed
on the field.

The figures have been generated by utilizing a two colors scheme. The blue and red
areas denote those regions in the space of parameters in which the Casimir force is
negative, respectively, positive. The shadeof the color gives ameasure of themagnitude
of the force on the piston: The darker the color, the smaller the magnitude, the lighter
the color the higher the magnitude. The white areas appearing in graphs are those
in which the magnitude of the force exceeds the range of the graph. However, the
white areas at the two edges of the piston, x = 0 and x = 1, reflect the fact that

Fig. 2 (color online) Behavior of the Casimir force (5.40) as a function of the parameter θ of the piston
characterised by U2 and the position a of the piston, for different values of β. The rest of the parameters
are fixed to L = 1, α = 2.8, n1 = q1 = 1, and γ = 0. The curves separating positive force (red color
scale) and negative force (blue color scale) correspond to zero Casimir force situations
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Fig. 3 (color online) Behavior of the Casimir force (5.40) as a function of the parameter β of the piston
characterised by U1 and the position a of the piston, for different values of α. The rest of the parameters
are fixed to L = 1, θ = γ = π/2, n1 = q3 = 1, and γ = 0. The curves separating positive force (red color
scale) and negative force (blue color scale) correspond to zero Casimir force situations

Fig. 4 (color online) Behavior of the Casimir force (5.40) as a function of the parameter β of the piston
characterised by U1 and the position a of the piston, for different values of α. The rest of the parameters
are fixed to L = 1, θ = 1.5, γ = 0, n1 = q2 = 1, and γ = 0. The curves separating positive force (red
color scale) and negative force (blue color scale) correspond to zero Casimir force situations

the Casimir force grows without bounds as one approaches the edges. The growth is
positive (negative) if the white area near one of the edges appears right next to a red
(blue) region.

Taking into account Eq. (5.40) we observe some remarkable behaviors:

1. In all caseswe are considering, except for the ones in Fig. 3,wehave thatn3 = q3 =
0. It is not difficult to realize that for n3 = q3 = 0, the function hλ(k, a; S,U1)

is proportional to cos[k(2a − L)], and, hence, is an even function with respect to
the midpoint a = L/2. Obviously the Casimir force, being the k-integral of the
logarithmic derivative of hλ(k, a; S,U1), is an odd function with respect to the
midpoint a = L/2. This implies, in particular, that in these cases the Casimir force
is always zero at, at least, a = L/2. Let us point out that the force can vanish at
other points of the interval, however these points of vanishing Casimir energy need
to appear in pairs which are symmetric with respect to a = L/2. This behavior
can be clearly observed from the graphs. For the cases in Fig. 3 we have, instead,
n3 = 0, q3 = 1, and γ = θ = π/2. In these cases the function hλ(k, a; S,U1)

becomes proportional to sin[k(2a−L)]. By following the argument outlined in the
previous paragraph, the Casimir force is, then, an even function of a with respect
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Fig. 5 (color online) Behavior of
the Casimir force (5.40) as a
function of the parameter β of
the piston characterised by U1
and the position a of the piston.
The rest of the parameters are
fixed to L = 1, α = 2.378,
θ = 2, γ = 1.14, n1 = q2 = 1,
and γ = 0. The curves
separating positive force (red
color scale) and negative force
(blue color scale) correspond to
zero Casimir force situations

to a = L/2. This means that the Casimir force at a = L/2 does not have to be
necessarily zero.

2. There exist regions in the space of free parameters for which the resulting Casimir
force on the piston is either non-negative or non-positive for all values of the
position a. In these situations the Casimir force will tend to move the piston to
the right edge (if the force is non-negative) or to the left edge (if the force is
non-positive). An example of this behavior can be seen, for instance, in the first
plot of Fig. 3. For β = 0 the force is always negative and, hence, the piston is
moved towards the left edge. In the situation we are considering, if any points of
zero force are present, they would represent points of unstable equilibrium for the
piston.

3. In Figs. 2, 4 and 5 the Casimir force is, as explained earlier, an odd function of a
with respect to a = L/2. In these situations the points of vanishing force, which
necessarily exist, can be points of either stable or unstable equilibrium. Let ε > 0.
If a0 is a point for which FCas(a0) = 0, then a0 is a point of stable equilibrium
for the piston if FCas(a0 − ε) > 0 and FCas(a0 + ε) < 0. On the other hand, if
FCas(a0 − ε) < 0 and FCas(a0 + ε) > 0 then a0 is a point of unstable equilibrium
for the piston. Since the Casimir force in Figs. 2, 4 and 5 is an odd function of
a, then we must have an odd number of points where the force vanishes. These
points of stable and unstable equilibrium must alternate as it can be clearly seen
in the graphs.

6.2 Disk

As a further example we consider the transverse manifold N to be a disk of unit radius.
The eigenfunctions of the Laplacian	N can be found by using separation of variables
once	N is written in polar coordinates (r , ϑ). By imposing periodicity of the solution
with respect to the angular variable ϑ and Dirichlet boundary conditions at r = 1, the
eigenvalues can be easily found to be λ2kn which can be determined as the zeroes of
the Bessel function of the first kind
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Jn(λkn) = 0. (6.3)

One can show that the degeneracy of the eigenvalues satisfies the relations d(λk0) = 1
and d(λkn) = 2 for n ≥ 1. The zeroes of the Bessel function of the first kind with
integer order are well known and can be found in tables or with the help of a computer
program. The figures for the Casimir force look qualitatively the same as for the sphere
presented in the previous subsection and we therefore do not include any more details.

7 Concluding remarks

In this workwe have studied the Casimir energy and force for a scalar field propagating
in a piston configuration of the type I × N . The field is constrained by boundary
conditions that lead to a selfa-djoint boundary value problem for the Laplacian on the
piston. We have focused, here, primarily on all non-negative self-adjoint extensions
that can be described by matrices in the subgroupU (2) ×U (2) ofU (4). In particular
we have studied the most general boundary conditions that relate the edges x =
0 and x = L and the two opposite edges of the piston itself. By using scattering
theory we were able to find an expression whose zeroes implicitly determined the
eigenvalues of the Laplacian with the general boundary conditions considered. This
secular equation has been used as a starting point of an integral representation for the
spectral zeta functionwhichwas subsequently analytically continued to a larger region
of the complex plane. Moreover, the use of non-relativistic scattering theory enables
one to understand the physics behind the Casimir force in terms of thewell known non-
relativistic scattering theory in one-dimension. The Casimir energy associatedwith the
piston configuration and the corresponding force have been computed by exploiting
the analytically continued expression of the spectral zeta function. The formula that
we found for the Casimir energy and force is written in terms of the spectral zeta
function associated with the Laplacian on the transverse manifold N and is valid for
any d-dimensional compact Riemannian manifold N with or without boundary. We
have found the Casimir energy for a piston configuration is, in general, not a well-
defined quantity with the ambiguity depending on the geometry of the manifold N .
This aspect of the Casimir energy on piston configuration has already been observed
in the literature (see e.g. [8,22]). While the energy might not be well-defined, the force
on the piston is free of ambiguities. The general expression we obtained for the force
allowed us to derive the graphs presented in the previous section for specific manifolds
N and a number of particular boundary conditions. It is important to point out that
our formula (5.37) can be used to perform a numerical analysis of the Casimir force
for any suitable transverse manifold N and for any allowed values of the parameters
in U1 and U2 that characterize the boundary conditions.

Further comments Although the restriction to the membrane configuration taken in
this paper enabled us to study the Casimir force for a piston with significant generality,
there is still more that can be investigated for this system. For instance, it would be very
interesting to analyze the case in which the matrix of the general boundary condition
(3.4) is allowed to be any element ofU (4). In this situation it is not possible to use the
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advantages provided by the quantum mechanical scattering theory for 1D systems. In
addition enabling the general boundary condition to be given by an arbitrary element
ofU (4)will provide much richer physical phenomena, since more bound states might
appear, and the four boundaries will be completely entangled.

The study carried out in this paper can as well be extended to Dirac fields. In this
case the separability of the problem is not possible in general, so the parallel and
orthogonal modes are not completely decoupled, as one can see easily from Ref. [14].
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