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Abstract

We develop a one step matrix method in order to obtain approximate solutions of first
order non-linear systems and non-linear ordinary differential equations, reducible to first
order systems. We find a sequence of such solutions that converge to the exact solution.
We apply the method to different well known examples and check its precision, in terms
of local error, comparing it with the error produced by other methods. The advantage of
the method over others widely used lies on the great simplicity of its implementation.

1 Introduction

This paper pretends to be a contribution to methods to find the approximate solutions of
nonlinear first order equations (or systems) with given initial values of the form

y′(t) = f(y(t)) , y(t0) = y0 , (1)

where the prime represents first derivative with respect to the variable t. As many higher order
ordinary differential equations either linear or non-linear may be written as a system of the form
(1), our method to obtain approximate solutions will apply also to these kind of equations.

Our approach is based in a generalization of the one-step matrix method developed by
Demidovich and other authors [1–3] some time ago, valid for systems of the form y′(t) =
A(t)y(t). One clear presentation of this method appears in the textbook by Farkas [4] and it
is interesting to compare it with some related procedures, see for instance [6, 7]. It is quite
important to remark that, while the Demidovich matrix method is applied to linear equations
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(with variable coefficients), our matrix method is a generalization to non-linear systems. The
advantage that our method may have in comparison of other one step methods lies on its great
algorithmic simplicity. In addition, our solutions have a reasonable level of accuracy in few
steps and this is workable in a table computer. This method is quite easily programmable and
is very suitable for its use with the package Mathematica. It may be also seen as an alternative
to Runge-Kutta and Taylor methods due precisely to its simplicity and precision. The objetive
of the present study is to obtain approximate solutions of all kind of systems described by
non-linear systems of differential equations (although we may include those linear systems with
variable coefficients), including those who appear from physics.

In the derivation of the present approach, our motivation was rooted in the practice of op-
erational numerical calculus. Nevertheless, we are mainly focused in the mathematical analysis
of our method instead of a detailed analysis of the algorithm or CPU times. As for the case
of one step Taylor polynomial method, ours shows a great conceptual simplicity. As a con-
sequence, our proposal for obtaining approximate solutions of non-linear systems can be very
easily implemented.

The presentation of the method to obtain the approximate solutions is introduced in Section
2. Thus, we have a sequence of approximate solutions, which are defined on a given interval of
the real line. This sequence converges uniformly to the exact solution on the given interval as
is proven in Section 3, where we also discuss a question of order. It is important to remark that
we do not impose any periodicity conditions, so that our results are valid either for periodic or
for non-periodic solutions.

We have applied our method to various examples of two or three dimensional examples. It
is also necessary to test the applicability and accuracy of the method on widely used equations
and/or systems. To this end, we have used the van der Pol [5], Duffing [8], Lorentz [9] equations,
a pseudo diffusive equation depending on a parameter, studied in the standard literature [10], an
epidemic equation and the predator-prey Lotka-Volterra [11, 12] equation. We have compared
the precision of our solutions with the exact solution, whenever this is known. If not, the
comparison is based on Runge-Kutta solutions, for a modern presentation, see [13–15]. Also
with the widely used Taylor method.

The analysis of a variety of examples suggest that our method may be more precise for two
dimensional systems than for higher dimensional ones, although this is not always exact: we
give two examples of three dimensional systems (Lorentz and epidemic equations), for which
our method gives different precisions. And it looks like particularly efficient in the case of
the pseudo diffusive equation we mentioned earlier, at least when compared with the standard
perturbative method studied in [16].

We usually obtain precisions in between of those obtained for the Taylor method of third
and fourth order (although the precision depends also on the length of subintervals in which
is divided the interval in which we are looking for solutions), which is reasonable when we
use a table computer. We close this article with concluding remarks and a conjecture on the
Liénard equation which is motivated by some of our results and confirmed through numerical
experiments.
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2 A matrix method.

We begin with an initial value problem as given in (1). While the function y(t) is a Rn valued
function with real variable t of class C1 on the neighbourhood |t− t0| ≤ a, f(−) is a Rn valued
function with variable in Rn, which is continuous on D ≡ {y ∈ Rn / ||y − y0|| ≤ d} and
satisfies a Lipschitz condition with respect to y. Needless to say that a, d are positive constants.

In relation with the identity (1), we shall use either the denomination of “equation” or
“system” indistinctly. In any case, it is well known that the initial value problem (1) has one
unique solution on the interval |t− t0| ≤ inf(a, d/M) with M := supD ||f ||.

Our objective is to introduce a generalization of a method of solutions of (1) proposed in [4].
This generalization is based in an iterative procedure of numerical integration for equations of
the type f(y) = A(y) · y, where A(−) is an n × n matrix. With this choice for the function
f(−), the differential equation in (1) has the form

y′(t) = A(y(t)) · y(t) . (2)

We assume that the entries of A(y) are continuous on D. Let us define a uniform partition
of the interval [0, tN ] into subintervals Ik ≡ [tk, tk+1], where tk = hk with k = 0, 1, 2, . . . , N ,
with N natural and h = tN)/N , tN < a. We have chosen this form of the interval by simplicity,
needless to say that if the original interval is somehow else, it always may be transformed into
[0, tN ] by a translation. Also, the equal spacing of all subintervals is not strictly necessary,
although it simplifies our notation. Conventionally, we may call nodes to the points {tk}.

We proceed as follows: On each interval Ik, we approximate Equation (2) by

y′N,k(t) = A(y∗N,k) · yN,k(t) . (3)

At each node, tk, we impose yN,k(tk) = yN,k−1(tk), while y∗N,k ∈ Rn is a constant to
be determined. This gives the segmentary solution, which has to be of the form yN(t) ≡
{yN,k(t) ; k = 0, 1, . . . , N − 1}. It satisfies

y′N(t) = A(y∗N) · yN(t) , (4)

where y∗N coincides with y∗N,k on each of the k-th intervals.
These segmentary solutions give a sequence of functions {yN(t)}, t ∈ [0, tN ], that are

approximations to the solution of (2). Here, we shall give a method to obtain each of the
yN(t) and, in next sections, we shall discuss the properties of the sequence.

Then, we proceed to an iterative integration of (4) as follows: Take the first interval I0 and
fix an initial value y(t0). This initial value gives the solution yN,0(t) on I0. Thus, we have the
value yN,0(t1) = yN,1(t1), which serves as the initial value for the solution on the interval I1.
Then, we repeat the procedure in an obvious manner for I2 and so on. For each interval Ik the
matrix A(y∗N,k), which appears in (3), is a constant matrix and, therefore, (3) is a system with
constant coefficients. Therefore, the solution of (3) has the form

yN,k(t) = exp{A(y∗N,k)(t− tk)} · yN,k(tk) , k = 0, 1, 2, . . . , N − 1 , (5)

where we have used the notation yN,0(t0) = y(t0). We determine the numbers y∗N,k through
the following expression:
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y∗N,k = yN,k

(
tk +

h

2

)
= exp

{
A(yN,k(tk))

h

2

}
· yN,k(tk) , (6)

where k = 0, 1, 2, . . . N − 1.
Then, the approximate solution yN(t) gives at t ∈ Ik and on each of the intervals Ik:

yN(t) = exp
{
A(y∗N,k)(t− tk)

}
·
k−1∏
j=0

exp
{
A(y∗N,j)h

}
· y0 . (7)

The determination of the exponential of a matrix may often be rather complicated for large
matrices. Then, we may use the Putzer spectral formula. This establish that if A is a constant
matrix of order n × n with eigenvalues {λk}nk=1, then, its exponential verifies the following
expression:

exp{A t} =
n∑

k=1

rk(t)Pk−1 , (8)

with

P0 ≡ I , Pk =
k∏

j=1

(A− λjI) , k = 1, 2, . . . , n− 1 , (9)

where I is the n×n identity matrix and the coefficients rk(t) are to be determined through the
following first order system of differential equations:

r′1(t) = λ1 r1(t) , r1(0) = 1 ;

r′k(t) = λk rk(t) + rk−1(t) , rk(0) = 0 , (10)

for k = 2, 3, . . . , n.
For simplicity, let us consider the particular case, in which A(y∗N,j) are matrices of order

2× 2. Each of these matrices has two eigenvalues, λ1,j and λ2,j, which may be either different
or equal. Let us assume that λ1,j 6= λ2,j. Then,

exp
{
A(y∗N,j)h

}
=

1

λ1,j − λ2,j
{

(A(y∗N,j)− λ2,j I) exp{λ1,j h} − (A(y∗N,j)− λ1,j I) exp{λ2,j h}
}
. (11)

On the other hand, when λ1,j = λ2,j = λj, we have for the exponential

exp
{
A(y∗N,j)h

}
= exp{λj h} {I + h(A(y∗N,j)− λj I)} . (12)

We conclude here the crude description of the method. In the sequel, we shall show the
convergence of the sequence, {yN(t)}, of approximate segmentary solutions and shall evaluate
the precision of the method.
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3 On the convergence of approximate solutions

In the previous Section, we have obtained a set of approximate solutions of the initial value
problem on a compact interval of the real line. The question is now, assuming we have obtained
by the previous method a sequence of solutions. Does this sequence converges to the exact
solution in any reasonable sense as the length of the sub intervals, here called h, becomes
arbitrarily small. To investigate this possibility is the goal of the present Section. Let us go
back to (4) and rewrite it as

y′N(t) = A(yN) · yN(t) + ηN , (13)

so that,

ηN(t) = (A(y∗N)− A(yN)) · yN(t) . (14)

Let us add and subtract A(y∗N) · y∗N in the right hand side of (14). Then, let us take the
supremum norm on the interval [t − t0, t + t0] and use the triangle inequality of the norm, so
as to obtain the following inequality:

||ηN || ≤ ||(A(y∗N) · y∗N − A(yN) · yN)||+ ||A(y∗N)|| ||y∗N − yN || . (15)

Then, we apply in (15) the Lipschitz condition with respect to the variable y with constant
K > 0. Then, it comes that

||ηN || ≤ (K + ||A(y∗N)||) ||y∗N − yN || . (16)

On each one of the intervals Ik, let us expand yN(t) in Taylor series around tk. We obtain
the following inequality:

||y∗N − yN(t)|| ≤ h

2
||y′n(tk)|| ≤ h

2
max

t0≤t≤tN
||y′N(t)|| . (17)

Since y′N(t) is continuous on the interval t0 ≤ t ≤ tN , the maximum in the right hand
side of (17) exists. Furthermore, A(y) is continuous with respect to y on the neighborhood
||y − y0|| ≤ d, so that there exists a constant C > 0 such that ||A(y)|| ≤ C. Taking norms in
(4), we have that

||y′N || ≤ ||A(y∗N)|| ||yN || ≤ C ||yN || . (18)

Equation (7) implies that

max
t0≤t≤tN

||yN(t)|| ≤ C ′ exp{C(tN − t0)} , (19)

where C ′ > 0 is a constant. After (18-19), we see that ||y′(t)|| is bounded for all t in the interval
[t0, tN ]. Consequently after (16) and (18-19), we have that

||ηN || ≤
h

2
(K + C)C ′ exp{C(tN − t0)} = S h , (20)

where the meaning of the constant S > 0 is obvious.
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Next, le us integrate (13) on the interval [t0, t]. Since for all value of N , we use the same
initial value y(t0), we have

yN(t) = y(t0) +

∫ t

t0

A(yN(s)) · yN(s) ds+

∫ t

t0

ηN(s) ds . (21)

From (21), we have that

||yN+M(t)− yN(t)|| ≤
∫ t

t0

||A(yN+M(s)) · yN+M(s)− A(yN(s)) · yN(s)|| ds+ δN(t) , (22)

with

δN(t) =

∫ t

t0

||ηN+M(s)− ηN(s)|| ds ≤ 2Sh(tN − t0) . (23)

Using the Lipschitz condition in (22), we obtain

||yN+M(t)− yN(t)|| ≤ K

∫ t

t0

||yN+M(s)− yN(s)|| ds+ 2Sh(tN − t0) . (24)

At this point, we use the Gronwall lema, which states the following

Lemma (Gronwall).- Let f(t) : I 7−→ R an integrable function on the compact real
interval I such that there exists two positive constants A and B, with

0 ≤ f(t) ≤ A+B

∫ t

t0

f(s) ds , t0 ∈ I (25)

for all t ∈ I. Then,

f(t) ≤ AeB(t−t0) . (26)

�

Then, we use the Gronwall lema with

f(t) ≡ ||yN+M(t)− yN(t)|| , A ≡Mh := 2S(tN − t0)h , B ≡ K , (27)

to conclude that

||yN+M(t)− yN(t)|| ≤MheK(t−t0) ≤ [M eK(tn−t0)]h = K ′ h , (28)

With K ′ > 0 a positive constant. Therefore,

||yN+M(t)− yN(t)|| 7−→ 0 , (29)

as h 7−→ 0. Since the space C0[t0, tN ] is complete1, (29) implies the existence of a continuous
function z(t) : [t0, tN ] 7−→ R, such that

1Note that tN is fixed and N just denotes the number of intervals in the partition or equivalently, the length
of h.
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z(t) := lim
N→∞

yN(t) , (30)

uniformly.
Now, we claim that z(t) is differentiable on (t0, tN). Furthermore, z(t) is a solution of the

differential equation (2).
The proof goes as follows: The Lipschitz condition applied to our situation implies that

||A(yN+M(t)) · yN+M(t)− A(yN(t)) · yN(t)|| ≤ K ||yN+M(t)− yN(t)|| , (31)

so that A(yN(t)) · yN(t) converges uniformly to A(z(t)) · z(t). In addition, after (20), we have
that

||ηN(t)|| ≤ Sh ≤ S(tN − t0) . (32)

Recall that tN is fixed for whatever value of N . Then, taken limits in (21), we have

z(t) = y(t0) + lim
N→∞

∫ t

t0

A(yN(s)) · yN(s) ds+ lim
N→∞

∫ t

t0

ηN(s) ds

= y(t0) +

∫ t

t0

[ lim
N→∞

A(yN(s)) · yN(s)] ds+

∫ t

t0

lim
N→∞

[ηN(s)] ds . (33)

In the second integral, we may interchange the limit and the integral due to the uniform
convergence of the sequence under the integral to its limit. In the case of the second integral,
we have used the Lebesgue convergence theorem, which can be applied here due to (32). Since
obviously limN→∞[ηN(s)] = 0, we finally conclude that

z(t) = y(t0) +

∫ t

t0

A(z(s)) · z(s) ds . (34)

From (34), we conclude the following:

1.- The function z(t) is differentiable in the considered interval.

2.- The function z(t) is the solution of equation (2) with initial value z(t0) = y(t0).

3.1 A question of order

The expansion into Taylor series on a neighborhood of tk of the solutions of equations (2) and
(3) have these forms, respectively:

y(tk+1) = y(tk)+A(yk) y(tk)h+
1

2
(A2(y(tk)) ·y(tk))h2 +

1

2

d

dt
[A(y(tk)) ·y(tk)]h2 +O(h3) . (35)

Taking into account that
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d

dt
A(y(t)) =

n∑
j=1

∂

∂ yj
A(y(t))

d

dt
yj(t) , (36)

where yj is the j-th component of y, equation (35) becomes:

y(tk+1) = y(tk) + A(yk) y(tk)h+
1

2
(A2(y(tk)) · y(tk))h2

+
1

2

(
n∑

j=1

∂

∂ yj
A(y(tk))

d

dt
yj(tk)

)
· y(tk)h2 + o(h3) . (37)

On the k-th interval, equation (4) takes te formula

yN(tk+1) = yN(tk) + A(y∗Nk
) · yN(tk)h+

1

2
A2(y∗Nk

) · yN(tk)h2 + o(h3) . (38)

Then, we may proceed to expand into Taylor series the matrix A(y∗Nk
) on a neighborhood

of yNk
. Taking into account (5) and after some simple calculations, we obtain:

A(y∗Nk
) = A(yN(tk)) +

n∑
j=1

∂

∂ yj
A(yN(tk)) (yN,j(tk + h/2)− yN,j(tk)) , (39)

where yN,j(t) is the j-th component of yN(t). A first order expansion on the last factor on the
right hand side of (39) gives

yN,j(tk + h/2)− yN,j(tk) =
1

2

d

dt
yN,j(tk)h+ o(h2) , (40)

so that using (40) in (39), we have

A(y∗Nk
) = A(yN(tk)) +

h

2

n∑
j=1

∂

∂ yj
A(yN(tk))

d

dt
yN,j(tk) . (41)

Then, we replace (41) into (38), and performing some simple manipulations, taking into
account that up to second order in h:

1

2
A2(y∗Nk

) · yN(tk)h2 ≈ 1

2
A2(y(tk)) · yN(tk)h2 , (42)

we finally obtain that

y(tk+1) = yN(tk) + A(yN(tk)) · yN(tk)h+
h2

2

n∑
j=1

∂

∂ yj
A(yn(tk))

d

dt
yN,j(tk)

+
1

2
A2(yN(tk)) · yN(tk)h2 + o(h3) . (43)

The advantage that (43) offers with respect to (37) is that in (43) the terms up to second
order in h are correctly shown.
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3.1.1 Going beyond second order

In (3.1), we have found the solution up to second order in h. Would we obtain a better precision
for third or higher order keeping at the same time the simplicity of the method? First of all our
construction is based on equation (3), which is not longer valid if we require an approximation of
order higher than two. To fix ideas, let us take y(t) = (y1(t), y2(t)) bidimensional for simplicity,
a choice which does not affect to our argument. Let us expand A(y(t)) around y∗(t) = (y∗1, y

∗
2)

(where we have omitted the sub-indices N, k for simplicity) and take one more term in the
Taylor span. The result is

A(y(t)) = A(y∗(t)) +
∂

∂y1
A(y∗(t))(y1(t)− y∗1) +

∂

∂y2
A(y∗(t))(y2(t)− y∗2) . (44)

Then, instead of the approximation (3), we have the following, where again we have sup-
pressed the indices N and k:

y′(t) =

[
A(y∗(t)) +

∂

∂y1
A(y∗(t))(y1(t)− y∗1) +

∂

∂y2
A(y∗(t))(y2(t)− y∗2)

]
· y(t) . (45)

The solution to be determined is just y(t) = (y1(t), y2(t)), which now is a part of the Ansatz
(45). One possibility to solve this contradiction is to proceed with the following span on each
of the Ik intervals:

y1(t) = y1(tk) +
∂y1
∂t

(tk) (t− tk) + . . . , (46)

and same for y2(t). If we use these manipulations in (3), we obtain an equation of the type:

y′N,k(t) = GN,k(t) · yN,k(t) , (47)

with

GN,k(t) = A(y∗N,k(t)) +
∂

∂y1
A(y∗N,k(t))(y1(t)− y∗1) +

∂

∂y2
A(y∗N,k(t))(y2(t)− y∗2) + . . . . (48)

Obviously, system (48) is non-autonomic. We have to use a new approximation of GN,k(t)
by a constant on the interval Ik and re-start again.

As we see, advancing to just one higher order of accuracy destroys the simplicity of the
method which is one of its more interesting added values. Therefore, we cannot consider going
to higher orders an advantage. It may slightly improve the precision at the price of destroying
the efficiency and simplicity of the method.

3.2 Some examples

• The van der Pol equation

The van der Pol equation

y′′(t) + µ(y2(t)− 1)y′(t) + y(t) = 0 (49)

9



is a particular case of the Liénard equation,

y′′(t) + f(y) y′(t) + g(y) = 0 . (50)

which will be discussed in the Appendix. In the van der Pol equation, we have obviously
that f(y) = µ(y2(t)− 1) and g(y) ≡ y. This equation can be easily written in the matrix
form (2) by writing y1(t) ≡ y(t) and y2(t) ≡ y′(t), as

(
y′1(t)

y′2(t)

)
=

(
0 1

−1 µ(1− y21)

)(
y1(t)

y2(t)

)
. (51)

Our goal is to compare the precision of our method with a reference solution. No explicit
solutions to the van der Pol equation (49) are known, so that we use the Runge-Kutta
solution of eight order, yrk(t), as reference solution (alternatively, one may consider a
Taylor solution of eighth order, which has a comparable precision). We compare the
precision of our method with the precision of the solutions as obtained by a third or
fourth order Taylor method. As a measure of the error, we use

eh :=
1

N

N−1∑
j=0

(yrk(tj)− y(tj))
2 , (52)

where y(t) is the solution obtained using our method or any other, like the Taylor method.
Then, we need to use given values of the parameters and inicial conditions. In Table 1
below, we compre the errors produced by our method as compared with the error given
with the use of third and fourth order Taylor method for different values of the interval
width h for T = 20, µ = 1/2 and the initial conditions y(0) = 0 and y′(0) = 2.

h Matrix Taylor 3rd Taylor 4rd

10−4 2.63 10−11 8.60 10−7 6.40 10−7

10−3 2.08 10−11 8.30 10−9 6.45 10−9

10−2 1.46 10−8 9.11 10−9 6.60 10−11

10−1 2.04 10−5 1.17 10−4 1.67 10−7

2 10−1 2.30 10−4 2.23 10−3 7.94 10−6

5 10−1 8.10 10−3 1.49 10−1 2.75 10−3

TABLE 1.- Values for the error eh for our matrix method and the Taylor method of orders
three and fourth for distinct values of h for the van der Pol equation.

It is clear that our matrix method has a precision in between those of the third and fourth
orden Taylor method. These results are just an example of the results obtain in multiple
numerical experiments, we have performed showing essentially the same result. However,
Table 1 as well as other numerical experiments show and important tendency: the lower h
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the better our precision as compared with the precision given by the Taylor method. The
reason is clear, the smaller h the bigger the number of operations needed to obtain the
approximate solution. Our matricidal method requieres less operations than the Taylor
method, so that our precision gets better as h gets smaller.

In Appendix B, we give our source code when our method is to be applied in the present
case.

• The Duffing equation

This is another second order non linear equation, which has the following form:

y′′(t) + y(t) + y3(t) = 0 , (53)

where we have omitted the term in the first derivative of the indeterminate, y′(t). For the
Duffing equation, there are explicit solutions in terms of the Jacobi elliptic functions. For
instance, being given the initial conditions y(0) = 1 and y; (0) = 0, we have the following
solution:

ye(t) = −i
√

1 + k sn (u;m) , (54)

where sn (u;m) denotes the elliptic sine. The arguments in (49) denote the following:

u =
1√
2

(t2(1− k) + 2t(c2 − kc1) + (1− k)c22) ,

m =
1 + k

1− k
, k =

√
1 + 2c1 . (55)

The value of the constants included in (55) are c1 = 1.5 and c2 = 1.1920055. The Duffing
equation may be written in matrix form, if we write again y1(t) ≡ y(t) and y2(t) ≡ y′(t),
as

(
y′1(t)

y′2(t)

)
=

(
0 1

−(1 + y21) 0

)(
y1(t)

y2(t)

)
. (56)

We define the error eh as in (52), where we replace yrk(t) by the exact solution, ye(t),
which does exist in the present case. Also y(t) is the solution for which we want to
compare its precision with the exact solution, in our case the solutions obtained by our
matrix method as well as the third or fourth order Taylor solutions. The errors produced
by each method are given on Table 2 below.
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h Matrix Taylor 3rd Taylor 4rd

10−4 1.69 10−9 5.60 10−5 4.13 10−5

10−3 1.03 10−10 5.06 10−7 4.24 10−7

10−2 9.61 10−9 2.47 10−8 4.24 10−9

10−1 1.16 10−5 4.92 10−4 4.12 10−8

2 10−1 1.18 10−4 6.78 10−3 7.56 10−6

5 10−1 82.00 10−3 1.04 10−1 7.73 10−3

TABLE 2.- Values for the error eh for our matrix method and the Taylor method of orders
three and fourth for distinct values of h for the Duffing equation.

We see that the results are quite similar to those obtained with the van der Pol equation.
Similarly, we have made some numerical experiments that confirm these results.

• The Lorenz equation

The Lorenz equation, which is a model for the study of chaotic systems has been intro-
duced in the study of atmospheric behaviour [9]. This equations arises in many problems
of physics, where chaoticity is present [17–20]. The Lorenz equation is usually written in
matrix form and is three-dimensional:

y′1(t)

y′2(t)

y′3(t)

 =


−a a 0

b− y3(t) −1 0

y2(t) 0 −c




y1(t)

y2(t)

y3(t)

 , (57)

a, b and c being positive constants.

This system is very sensitive to the particular choice of the parameters and of initial values,
as may numerical experiments show. Based in these experiments, we have choosed the
following values for the parameters, a = 10, b = 9.996 and c = 8/3, the fixed point
(y1, y2, y3) = (4.88808, 4.88808, 8.996) is an attractor. We proceed as in the previous
case and compare solutions of the errors (52) resulting of the use of the Taylor method
of order two and this Matrix method using as reference the solution obtained with the
Ruge Kutta method of eighth order. We use T = 10 and the solution with initial values
(y1(0), y2(0), y3(0)) = (1, 0, 1). We have obtained a table (Table 3) of errors given in terms
of the interval width h as

h Matrix Taylor second order Taylor third order Taylor fourth order

10−2 5.2 10−6 6.73 10−5 3.6 10−8 3.1 10−10

10−1 5.3 10−2 7.1 10−1 1.8 10−1 5.2 10−2

2 10−1 3.7 10−1 error error error

TABLE 3.- Values of the precision eh in terms of h for T = 10, y1(0) = 1, y2 = 0 and y3(0) = 1.
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The word “error” written in two entries in Table 2 means that the error that appears if
the interval width is of the order of 0.2, when we use the Taylor method, is incontrollable.
We also see that the precision obtained with the matrix method clearly improves the
precision by the Taylor method the larger the length of the subintervals.

• Neutral damping equation.

This equation has been discussed in the literature [10,16] and is

x′′(t) + ε (x′(t))2 + x(t) = 0 , (58)

where the tilde means derivative with respect to the variable t and ε is a real parameter.
As in previous cases, let us define y(t) := x′(t), so that (58) can be written in the following
form:

(−x+ εy2) dx− y dy = 0 . (59)

This equation is integrable with integrating factor:

µ(x, y) ≡ e2εx . (60)

It is readily shown that equation (60) admits the following first integral:

f(x, y) =

[
1

2
y2 +

1

4ε2
(2εx− 1)

]
e2εx (61)

If we write (58) in the standard matrix form as

(
x′

y′

)
=

(
0 1

−1 −εy

)(
x

y

)
, (62)

we readily observe that the only fixed point is the origin. It is also the origin the point
at which the minimum of the first integral (61) lies. All orbits are periodic around the
origin.

In Figure 1, we have depicted the periodic solutions in phase space. Note that, although
equation (58) may look like dissipative, it is not as Figure 1 manifests.

Now, let us repeat the comparison between errors given by our matrix method with the
errors given by the Taylor method at some low orders. As always, we use (47) as the
definition of the error and the numerical Runge-Kutta solution of eighth order as the
reference solution. We obtained the following results, which appear in Table 4, where h
is, as always, the distance between two consecutive nodes:
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h Matrix Taylor 3rd Taylor 4rd

10−4 2.2 10−14 4.2 10−14 3.2 10−11

10−3 1.9 10−14 4.1 10−11 3.1 10−11

10−2 9.0 10−14 4.6 10−13 4.0 10−12

10−1 1.6 10−9 2.7 10−7 8.2 10−11

2.10−1 2.6 10−8 8.6 10−6 1.0 10−9

5.10−1 1.1 10−6 7.5 10−4 6.1 10−6

TABLE 4. Values of the error in terms of h for ε = 0.1, T = 2π (see (47)) and the initial
values x(0) = 1, x′(0) = 0.

We observe that the precision of the matrix method is much higher than the precision of
the third and forth order Taylor method for a distance between nodes h ≤ 0.01. Moreover,
we have to underline that our matrix one step method is much simpler to programming
that the Taylor method as the reader can easily convince him/herself using any of these
examples.

There is another method based in the theory of perturbations in order to obtain approx-
imate solutions to (53), which receives the name of Lindstedt-Poincaré. It is described
in [16]. It consists in a series in terms of ε of the form:

x(t) = x0(t) + ε x1(t) + ε2 x2(t) + . . . . (63)

Coefficients xi(t) may be obtain iteratively, once we have fixed the initial values. For
instance, for x(0) = 1 and x′(0) = 0, we obtain:

x0(t) = cosωt , x1(t) =
1

6
(−3 + 4 cosωt− cos 2ωt) ,

x2(t) =
1

3

(
−2 +

61

24
cosωt− 2

3
cos 2ωt+

1

8
cos 3ωt

)
,

ω = 1− 1

6
ε+ o(ε3) . (64)

We may also evaluate the error for this perturbative method, which is independent of
any division of the interval, in which the solution is considered, into subintervals. This
error is 1.1 10−4, which is obviously higher to those obtained using any of the numerical
method considered.

We finish the present example by proposing another approach to an approximate solution.
By either method, matrix or Taylor, we obtain on each of the nodes {tk} a value, xk, of
the approximate solution. Let us interpolate each interval by means of cubic splines, so
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that we obtain a segmentary approximation by cubic polynomials 2. Let us assume that
the cubit interpolating solution is s(t), then the error of this solution on an interval T ,
with respect to the exact solution is given by (recall that cubic splines admit first and
second continuous derivatives at the nodes)

e =
1

T

∫ T

0

(s′′(t) + ε [s′(t)]2 + s(t))2 dt . (65)

The form of the error for the Taylor method is also given by (60). The resulting errors
appear in the following table (Table 5):

h Spline Taylor 2rd Taylor 3rd Taylor 4rd

10−4 7.2 10−16 4.7 10−16 6.7 10−16 6.5 10−16

10−3 1.8 10−14 1.8 10−14 1.8 10−14 1.8 10−14

10−2 1.9 10−10 1.9 10−11 1.1 10−10 1.1 10−10

10−1 4.6 10−6 6.4 10−6 4.6 10−6 4.6 10−6

2.10−1 6.1 10−5 9.8 10−5 6.0 10−5 6.0 10−5

5.10−1 4.8 10−3 1.2 10−3 4.6 10−3 4.9 10−3

TABLE 5.- Comparison between errors by the cubic spline and Taylor methods.

Finally, for the perturbative method the error obtained is 7.4 10−5. Concerning the con-
servation of the constant of motion, we measure its dispersion by means of the following
parameter, ef , defined as

ef :=
1

T

∫ T

0

(f(x0, y0)− f(x, y))2 dt , (66)

where f(x, y) should be calculated using different approximations such as Taylor, matrix
and the analytic approximate solution as obtained by the perturbative Lindstedt-Poincaré
method mentioned earlier. The point (x0, y0) gives the chosen initial conditions. In the
latter case, we have obtained ef = 1.1 10−4, in all others, we always got ef < 10−8.

• An epidemic equation

A model for an epidemia has been proposed as early as in 1927 [23–25]. If x(t), y(t) and
z(t) are the number, at certain time t, of healthy, sick and dead persons, respectively,
in some society, the model assumes that these functions satisfy the following non-linear
system:

2In [22], we have already proposed segmentary cubic solutions and studied their properties, although in [22]
they were not necessarily cubic splines.
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Figure 1: Periodic orbits around the origin for the neutral damping equation. The horizontal coor-
dinate represents the values of x, while vertical coordinate gives the values of y = x′. Note that these
periodic orbits are represented in phase space.

ẋ(t) = −ax(t) y(t) ,

ẏ(t) = ax(t) y(t)− by(t) ,

ż(t) = by(t) , (67)

where a and b are positive constants and the dot means derivation with respect to time
t. The model assumes infection of healthy persons from sick persons. The latter died
after some time. Note that, in the studied time interval, the sole cause of population
dynamics is the epidemic. For obvious reasons, we consider only positive solutions. The
fixed points for (67) have the form (α, 0, β) with α, β > 0.

Let us consider the following vector field, also called the flux of (62),

F (t) := (−ax(t) y(t), ax(t) y(t)− by(t), by(t)) . (68)

Note that Fx < 0. For x(t) < b/a, we have Fy < 0, while x > b/a, it results that
Fy > 0. Thus, the fixed point is inestable if α > b/a. This is a necessary condition for
the existence of the epidemic. If α < b/a, then the fixed points are asymptotically stable
as depicted in Figure 2, where we have chosen a = 0.0005 and b = 0.1. Different curves
in Figure 2 represent different initial conditions.

Let us write (67) in matricial form as

Ẋ(t) = A(x, y, z) ·X(t) , (69)
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Figure 2: Asymptotic stability of fixed points with a = 0.0005 and b = 0.1 in (67). The horizontal
line represent the scaled number of healthy people, while the vertical figures give the scaled number
of sick people. The arrow means the direction of time. Different curves are obtained using different
initial conditions. Observe the presence of a maximum at a point which is independent on the initial
conditions.
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Figure 3: Number of infected people in relation with time. Observe the existence of a maximum.
After the maximum the curve decreases steeply.

where,

X(t) :=


x(t)

y(t)

z(t)

 , A(x, y, z) :=


0 −ax 0

0 ax− b 0

0 b 0

 . (70)

In Figure 3, we obtain the curve giving the total number of infected people with time.
After a maximum, the number of sick people decays quickly. We have used the values for
the parameters a = 0.0005 and b = 0.1 and the initial values x(0) = 300 > b/a, y(0) = 20,
z(0) = 0.

The form of the error for the method is obtained using (65) again. Next in Table 6, we
compare the errors for given values of h of our Matrix Method as compared to second
and third order Taylor.

h Matrix Method Taylor 2rd Taylor 3rd

0.01 2.2 10−11 4.0 10−11 1.9 10−11

0.1 2.0 10−8 7.3 10−8 2.0 10−11

1.0 2.1 10−4 7.2 10−4 1.7 10−7

2.0 3.6 10−3 1.1 10−2 1.2 10−5

TABLE 6.- Comparison between the errors for the Matrix Method and the Taylor method
in the case of the epidemic model.

We see that the level of error is similar, although our method keeps the advantage of
needing much less arithmetics than any Taylor method.

• Lotka-Volterra equation.
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Models in population dynamics, as for instance the predator-prey competition, were inde-
pendently developed by the american biologist A.J. Lotka [11] and the Italian mathemati-
cian V. Volterra [12], see modern references for the Lotka-Volterra equation in [4,26–28].
The most general form of the Lotka-Volterra equation has the form

ẋ1 = x1(ε1 − a11 x1 − a12 x2) ,

ẋ2 = x2(ε2 − a12 x1 − a22 x2) , (71)

where x1 and x2 are functions of time t and εi, aij, i, j = 1, 2 are constants. Following [26],
we consider here a simpler version, yet non-linear, of (71), which is

ẋ = a x− b xy ,

ẏ = d xy − c y , (72)

and the initial conditions x(t0) = x0, y(t0) = y0.

We may consider the solutions, x = x(t), y = y(t) of (72) as the equations determining
a parametric curve on the x − y plane. Then, by elimination of t and integration, we
obtain:

C(x, y) = xcya exp{−(b+ d)x} . (73)

Note that C(x, y) is a constant on each curve solution (constant of motion) and its value
over each solution is determined via the initial conditions. Equations (71) have two fixed
points, which are (0, 0) and (c/d, a/b). For x > 0 and y > 0 all solutions are periodic.

To apply the method proposed in the present article to this system, let us write it in
matrix form as

Ẋ = A(x, y)X , (74)

where,

X(t) ≡

(
x(t)

y(t)

)
, A ≡

(
a− by 0

0 dx− c

)
. (75)

In order to estimate the precision of the method, we need to choose values for the initial
values as well as for the parameters a, b, c and d. We have use several choices and obtain
in all of them similar values. to show a table comparing the precision of our method with
some others, let us choose as the values of the parameters, a = 1.2, b = 0.6, c = 0.8and
d = 0.3. As the initial values, let us choose, x0 = y0 = 3. In addition, we have to take
an integration time, in our case we took T = 20, which approximately accounts for three
periods.
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In order to determine the error produced by our matrix method is determined by the
formula (65) above. We compare this error with those of second and third order Taylor
method as compared to the numerical solution obtained by a forth order Runge-Kutta.
These errors are shown in Table 7.

h Matrix Method Taylor 2rd Taylor 3rd

0.01 4.1 10−8 3.5 10−8 8.2 10−13

0.1 3.5 10−8 5.4 10−8 2.3 10−9

0.2 2.6 10−3 5.4 10−3 1.0 10−5

TABLE 7.- Comparison between the errors for the Matrix Method and the Taylor method
in the case of the Lotka-Volterra equation.

We see that the precision of our method is equivalent to those of a second order Taylor,
with much less arithmetic operations.

• On the possibility of extending the method to PDE: The Burger’s equation.

Can we extend this precedent discussion to partial differential equations admitting sep-
aration of variables? One possible example would have been the convection diffusion
equation in one spatial dimension [29]:

∂

∂t
u(x, t) =

∂

∂x

[
D(u)

∂

∂x
u(x, t)

]
+Q(x, u)

∂

∂x
u(x, t) + P (x, u) . (76)

Separation of variables for (76) is discussed in [29]. In general, our method is not ap-
plicable here since the resulting equations after separation of variables are not of the
form (1). Nevertheless, another point of view is possible. Assume we want to obtain
approximate solutions of an equation of the type (76) on the interval [0, X] under the
conditions u(0, t) = 0, u(X, t) = 0, u(x, 0) = h(x), h(x) being a given smooth function
and u(0, 0) = u(X, 0) = 0. On the interval [0, X], we define a uniform partition of width
h := X/n and nodes xk = kh, k = 0, 1, . . . , n.

One may propose one discretization of the solution of the form uk(t) := u(xk, t), k =
0, 1, . . . , n. Then, the second derivative in (76) could be approximated using finite differ-
ences [30]:

∂2

∂x2
u(xk, t) =

u(xk − 1, t)− 2u(xk, t) + u(xk+1, t)

h2
, (77)

while for the first spatial derivative, we have

∂

∂x
u(xk, t) =

u(xk + 1, t)− u(xk−1, t)

2h
. (78)

with k = 1, 2, . . . , n− 1, so that equation (76) takes the form
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d

dt
U(t) = F (U(t)) , (79)

where F is a square matrix of order n−1 and U(t) = (u1(t), u2(t), . . . , un−1(t) with uk(t) :=
u(xk, t), k = 1, 2, . . . , n−1 and initial values U(0) = (u(x1, 0), u(x2, 0), . . . , u(xn−1, 0)) and
initial value u(x, 0) = h(x). If it were possible to write equation (79) in the form:

d

dt
U(t) = A(U(t)) · U(t) , (80)

then, we would be able to apply our method to find an approximate solution of (80) on
a given finite interval. This property is not fulfilled by the general convection diffusion
equation (76). However, it is satisfied by a particular choice of this type of parabolic
equations: the non-linear Burger’s diffusion equation, which is [31,32]:

∂

∂t
u(x, t) =

∂2

∂x2
u(x, t)− u(x, t)

∂

∂x
u(x, t) . (81)

We choose [0, 1] as the integration interval for the coordinate variable, so that X = 1 as
above. For the time variable, we use t ∈ [0, 1]. This choice is made just for simplicity
and as an example to implement our numerical calculations. We use the finite difference
method, where the second derivative and first derivatives are replaced as in (77) and (78),
respectively.

Using (77) and (78) in (81), we have for each of the nodes the following recurrence relation:

d

dt
u(xk, t) =

1

h2

((
1− h

2
u(xk, t)

)
u(xk−1, t)− 2u(xk, t) +

(
1 +

h

2
u(xk, t)

)
u(xk+1, t)

)
,(82)

for k = 1, 2, . . . , n−1. When written expressions (82) in matrix form, we obtain a matrix
equation of the form (6) and, then, suitable for applying our method.

In our numerical realization, we have used a small number of nodes, to begin with,
say n = 5. Then, we integrate on the time variable, on the interval t ∈ [0, 1], using
ht := 1/m, where m is a given integer, as the distance between time nodes. Then, we
compare our solution with the solution of (81) given by the sentence NDSolve provided
by the Mathematica software, solution that we denote as v(x, t).

Then, we can estimate the error of our solution as compared with v(x, t). This is given
by

error :=
1

m

m∑
j=0

n−1∑
k=1

(u(xk, tj)− v(xk, tj))
2 , (83)

where tj := jht for all j = 0, 1, 2, . . . ,m. To estimate the error, we have to give values
to m. For m = 10, the error is 1.07 10−4. A similar result can be obtained with m = 20
or even higher, so that m = 10 gives already a reasonable approximation. The solution
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for t = 1 is nearly zero, which one may have expected taking into account that equation
(80) describes a dissipative model. Thus, our approximate solution may be considered
satisfactory also in this case.

A few more words on the comparison of our solution and the solution using the Euler
method, performed through NDSolve. First of all, we use the explicit Euler method, for
which the local error is o(h2t ), through the option “Method → “ExplicitEuler”, “Start-
ingStepSize” → 1/100”, since for ht > 0.01 the result is unstable. Once we have done
the spatial discretization, we integrate (82) with respect to time. The instability often
appears when one uses an explicit method of spatial and time discretization for parabolic
PDE [33]. This instability comes after the errors due to the arithmetic calculations and
are amplified after time integration. Then, let us consider n = 5, where n is the number
of spatial nodes, 0 ≤ t ≤ 1 and m = 100, so that the time integration interval becomes
ht = 0.01. Then, the error (83) is 3.40 10−4.

We may improve time integration using Euler mid-point integration. In this case, one
uses the option “Method → “ExplicitMidpoint”, “StartingStepSize” → 1/10”. Choosing
m = 10, we obtain an error of 1.76 10−4, so that ht = 0.1. This error is of the order given
by our method. Just recalling that the local error given by the mid-point Euler method
is of the order of o(h3t ).

In addition, we may compare the precision of our method and both Euler methods men-
tioned above by the errors obtained using the third and forth order Adams method (see
Chapter III in [34]), which for ht = 0.1 are respectively given by 1.76 10−4 and 1.74 10−4.
This error has always been obtained using (83), where u(x, t) is our solution and v(x, t)
is the solution given by either Euler, Euler mid-point or Adams methods. Nevertheless,
the Adams method is a multi-step method while ours is one step method, which means
that ours is more easily programmable.

4 Concluding remarks

In the present paper, we have generalized a one step integration method, which has been
developed in the seventies of last century by Demidovich and some other authors [1–3]. While
Demidovich and others restrict themselves to the search for approximate solutions of linear
systems of first order differential equations, albeit with variable coefficients, we propose a way
to extend the ideas of the mentioned authors to non-linear systems. The solutions we have
obtained have a similar degree of precision than those proposed in [1–3]. In our method, we
obtain a sequence of approximate solutions on a finite interval of ordinary differential equations,
and we have proven that this sequence converges uniformly to the exact solution. In order to
obtain each approximate solution, we have divided the integration interval into subintervals of
length h. The sequence of approximate solutions can be obtained after successive refinements
of h. For each approximate solution, characterized by a value of h, we have determined the
local error up to o(h3).

It is certainly true, that our one step matrix method does not improve the precision obtained
with the fourth order Runge-Kutta method or other equivalent. However, the great advantage
of the proposed method with any other is that its algorithm of construction, through the
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exponential matrix as described in Section 2, is much simpler than their competitors. Simplicity
that is inherited from its antecesor the Demidovich method [1–3]. This paper is somehow the
continuation of previous research of the authors in the same field [35,36].

We have added some examples of the application of the method, on where we have performed
numerous numerical test on the precision of the method, which lies between second and third
Taylor method. We have used the sofware Mathematica to implement these numerical tests.
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5 Appendix A: A conjecture relative to the Liénard equa-

tion.

As is well known, the Liénard equation has the following form:

y′′(t) + f(y) y′(t) + g(y) = 0 . (84)

Let us assume that the function g(y) is a product of some function, that we also call g(y)
for simplicity, and y, so that equation (67) takes the form:

y′′(t) + f(y) y′(t) + g(y) y(t) = 0 . (85)

This second order equation may be easily transformed into a two dimensional first order
equation (y(t) = y(t), z(t) = y′(t)):(

y′

z′

)
=

(
0 1

−g(y) −f(y)

)(
y

z

)
= A

(
y

z

)
, (86)

where the meaning of the matrix A is obvious. Its eigenvalues are

λ±(y) = −1

2

(
f(y)±

√
f 2(y)− 4g(y)

)
. (87)

The conjecture is the following: A sufficient condition for the solutions of (67) to be bounded
for t > 0 is that the following three properties hold simultaneously: i.) The discriminant in
(60) be negative, i.e., f 2(y)− 4g(y) < 0; ii.) The function f(y) be non-negative, f(y) ≥ 0 and
iii.) The function g(y) is positive and smaller than one, 0 < g(y) < 1.

This conjecture is based in the form of equations (11) and (12) and we have tested it in
several numerical experiments.

Two more comments in relation to the Liénard equation:
1.- The vector field associated to the equation is given by J ≡ (z,−g(y)y − f(y)z), for

which the divergence is div (J) = −f(y) ≤ 0 if f(y) ≥ 0. Therefore, if f(y) is non-negative the
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divergence is always negative, so that the origin (0, 0) is an attractor. We conjecture that this
attractor is also global.

2.- If we take f(y) ≡ 0, then (72) represents a Hamiltonian flow with Hamiltonian given by

H(y, z) =
1

2
z2 + V (y) , (88)

with

V (y) =

∫ y

0

ug(u) du (89)

Under the assumption g(y) > 0, the derivative V ′(y) = yg(y) is positive for y > 0 and
negative for y < 0. Thus the only critical point is y∗ = 0, at this point V ′(0) = 0 and
V ′′(0) = g(0) > 0, so that all the orbits are closed, hence periodic.

6 Appendix B: Source code to use our method in the

van der Pole equation
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H* Example: van der Pol equation *L
Μ = 1 � 2; H* parameter*L
y0 = 80, 2<; H* initial value *L
xmax = 10.; H* integration interval @0, xmaxDD *L
n = 1000; H* number of interval *L
h = xmax � n H* integration step *L
A := 980, 1<, 9-1, +Μ I1 - HPart@yk, 1DL2M == H* matrix *L
B := 980, 1<, 9-1, +Μ I1 - HPart@zk+1, 1DL2M == H* auxiliary matrix*L

DoB:zk+1 = SimplifyBMatrixExpBA
h

2
F.ykF, yk+1 = Simplify@MatrixExp@B hD.ykD>,

8k, 0, n<F H* step by step iterations*L
tabla = Table@8k h, Part@yk, 1D<, 8k, 1, n<D; H* Table with the solution *L

Figure 4: Source Code used when applying the method to our example using the van der Pole
equation.
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