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Abstract: We find supersymmetric partners of a family of self-adjoint operators which are self-adjoint
extensions of the differential operator −d2/dx2 on L2[−a, a], a > 0, that is, the one dimensional
infinite square well. First of all, we classify these self-adjoint extensions in terms of several choices of
the parameters determining each of the extensions. There are essentially two big groups of extensions.
In one, the ground state has strictly positive energy. On the other, either the ground state has zero
or negative energy. In the present paper, we show that each of the extensions belonging to the first
group (energy of ground state strictly positive) has an infinite sequence of supersymmetric partners,
such that the `-th order partner differs in one energy level from both the (`− 1)-th and the (`+ 1)-th
order partners. In general, the eigenvalues for each of the self-adjoint extensions of −d2/dx2 come
from a transcendental equation and are all infinite. For the case under our study, we determine the
eigenvalues, which are also infinite, all the extensions have a purely discrete spectrum, and their
respective eigenfunctions for all of its `-th supersymmetric partners of each extension.

Keywords: supersymmetric quantum mechanics; self-adjoint extensions; infinite square well; contact
potentials

1. Introduction

The study of one dimensional models in quantum mechanics is useful in order to gain
a better understanding of the properties of quantum systems. In particular, the construc-
tion of supersymmetric (SUSY) partners of given potentials allow for an analysis of one
dimensional Hamiltonians that often keep similarities with the original ones. Many studies
have been done in this field and a brief account of references [1–14] only covers a small
part of all previous work.

In the present paper, we intend to investigate the properties of the SUSY partners
of the self-adjoint determinations of the operator −d2/dx2 on L2[−a, a], a > 0 and finite,
with appropriate boundary conditions at the points −a and a. Note that this problem
is closely related to the problem of the definition of the “free” Hamiltonian on the one
dimensional infinite square well potential.

From our point of view, SUSY quantum mechanics is a method that pursues the iden-
tification of the class of Hamiltonians for which their spectral problem can be algebraically
solved. Traditionally, people have investigated SUSY partners of well studied exactly solv-
able Hamiltonians that give rise to other Hamiltonians for which the spectrum coincides
with the spectrum of the original Hamiltonian except for one eigenvalue. In addition,
there are several examples in which one original Hamiltonian produces an infinite chain of
Hamiltonians, the first element of the chain being its SUSY partner and each of the others
is a partner of the previous and the next one. Here, we explore the possibility of obtaining
the whole chain of partners corresponding to self-adjoint extensions of a symmetric one
dimensional Hamiltonian with equal deficiency indices. Since in our case, the variety of
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self-adjoint extensions is quite wide, depending on four real parameters, we have expected
to find interesting new results in the field as it happened to be.

The analysis of these self-adjoint extension has been done in [15]. The task of com-
puting the SUSY partners of all the self-adjoint determinations (also called extensions) of
−d2/dx2 on L2[−a, a], their spectra and their wave functions is not trivial, although can be
carried out systematically.

Although the idea of self-adjoint extensions of symmetric (or Hermitian) operators
on (infinite dimensional) Hilbert spaces is not yet very popular among physicists, it is,
however, possible to find recent papers on the topic [16–24]. Standard quantum mechanics
textbooks refer to the one dimensional infinite square well potential or the harmonic
oscillator as if they were described by a unique self-adjoint Hamiltonian, which produces a
neatly calculable spectrum. The mathematical reality is much more complex and may give
many more possibilities for the study of quantum mechanics systems. Let us briefly address
to this problem, for which a more thorough presentation can be found in mathematical
textbooks [25] as well as papers addressed to the Physics community [15].

Concerning terminology, an operator, A, on a infinitely dimensional separable Hilbert
space (the Hilbert space must be infinite dimensional, since otherwise all operators are
continuous and defined on the whole space. In such a case, this argumentation does not
make sense. A separable Hilbert space is one with a countable orthonormal basis, which is
always the case in ordinary quantum mechanics)H is symmetric, or equivalently Hermitian
if for any pair of vectors ϕ, ψ ∈ D(A), where D(A) is the domain of A, which must be
densely defined, one has that 〈Aϕ|ψ〉 = 〈ϕ|Aψ〉, where 〈−|−〉 denotes the scalar product
on H. This means that the adjoint, A†, of A extends A, A ≺ A† (i.e., D(A) ⊂ D(A†)
and Aψ = A†ψ, for all ψ ∈ D(A)). The deficiency indices are n± := dim Ran(A† ± iI),
where Ran(B) is the range (image space) of the operator B and I is the identity operator.
A symmetric (or Hermitian) operator has self-adjoint determinations (or extensions) if
and only if n+ = n− [25]. If n+ = n− = 0, this extension is unique. On the other hand,
if n+ = n− 6= 0, the number of extensions is infinite and, in the case of Hilbert spaces of
functions, they usually can be determined by some matching or boundary conditions that
the functions in the domain of the extensions should fulfill at some points [15,25–27].

Self-adjoint determinations of the operator −d2/dx2 defined on functions supporting
whatever interval, K, in the real line R are used to define the so call contact potentials
[26,28–31]. These are perturbations of the “free operator” H0 = −d2/dx2, which are
supported on a single point x0 ∈ K. Typical examples of contact potentials are the
Dirac delta δ(x− x0) or its derivative δ′(x− x0), which define Hamiltonians of the type
H0 + δ(x− x0) or H0 + δ′(x− x0) as well defined self-adjoint operators on the Hilbert space
L2(K) [27]. These types of perturbations may serve as a good and tractable approximation
for a very localized spatial perturbation and are defined via matching conditions that
must satisfy the functions on the domain of the operator at x0. Concerning the operator
−d2/dx2 on L2[−a, a], some relations have been found among the boundary conditions
at the borders −a and a and matching conditions defining a δ or δ′ perturbation at the
origin [32,33].

A comment is of relevance here. Let us consider the subspace, D0, of all twice differ-
entiable square integrable functions, ϕ(x), in the interval [−a, a], with second derivative in
L2[−a, a], verifying the boundary conditions ϕ(−a) = ϕ(a) = ϕ′(−a) = ϕ′(a) = 0, and a
differential operator of the form

D = − d2

dx2 + p1(x)
d

dx
+ p2(x), (1)

where p1(x) and p2(x) are continuous real functions (with p1(x) differentiable) on [−a, a].
Then D is Hermitian on D0 with deficiency indices (2, 2). It has been proven in [34] (vol.
2, p. 90) that all self-adjoint extensions of D have a purely discrete spectrum. This is
precisely the case of all the self-adjoint determinations of −d2/dx2 under our study [15].
These self-adjoint extensions are characterized by a set of four real parameters, so that one
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particular choice of these parameters gives a unique self-adjoint determination of −d2/dx2

on L2[−a, a] and vice-versa. Although this is much less known, a similar situation emerges
in the study of the one dimensional harmonic oscillator [35].

The present article intends in the first place, to complete as far as possible, the classifi-
cation of the self-adjoint extensions of −d2/dx2 on L2[−a, a] given by [15]. Once this task
has been done, we intend to obtain the whole chain of SUSY partners of each of the self-
adjoint extensions using standard methods already developed in the theory [1]. This kind
of supersymmetry intends to construct a series of potentials (in our case one-dimensional),
with an energy spectrum closely related and that can be obtained from the spectrum of
the original potential. Thus, being given one of our original self-adjoint extensions and
being known the solution of the spectral problem, we should be able to obtain an infinite
sequence of Hamiltonians such that their spectra coincides with the spectra of the previous
one except for one eigenvalue, and hence from the original one except for a finite number
of energy levels. We must add that all self-adjoint extensions of −d2/dx2 on L2[−a, a] have
a purely discreet spectrum with an infinite number of energy levels.

The ground state for each of these extensions either has a strictly positive, zero or
negative energy. Obviously, in the latter case, this fact comes from extensions which are not
definitely positive . This is somehow paradoxical, due to the form of the original operator,
which is −d2/dx2. This paradox is solved in [15]. For those extensions with a ground state
with strictly positive energy, we have constructed the whole sequence of its SUSY partners
and have given the eigenvalues and eigenfunctions for these partners. As mentioned
earlier, the set of eigenvalues for each partner comes from the set of eigenvalues of the
extension from which we construct the sequence of partners.

The general formalism can also be applied to obtain a sequence of Hamiltonians when
the ground state of the original self-adjoint extension of −d2/dx2 on L2[−a, a] has zero
or negative energy. In this case, partner Hamiltonians may be very different from the
original one in the sense that they may have a finite number of eigenvalues or simply no
eigenvalues. This is due to the presence of nodes in the wave function of the ground state.
Nevertheless, these partners may be obtained and classified, although this discussion is
left for a future publication.

This paper is organized as follows—in Section 2 we reformulate the classification given
by [15] of the self-adjoint extensions of−d2/dx2 on L2[−a, a]. In Section 3, we classify these
extensions in terms of some other sets of parameters, not considered in [15]. In Section 4,
we construct the first SUSY partners for those extensions with positive ground level energy
and give the precise form of its eigenfunctions. In Section 5, we give the complete sequence
of SUSY partners for each of these extensions. We close this article with a Conclusions
Section and an Appendix in which we show what the correct form for the wave functions
for the energy levels should be.

2. Self-Adjoint Extensions: Determination of Their Eigenvalues

Let us go back to the differential operator H0 := −d2/dx2 defined on L2[−a, a], a > 0
and with domain D0 as above, just before (1). On D0, H0 is symmetric (Hermitian) with
deficiency indices (2, 2) [15]. According to the von-Neumann theorem [25], H0 admits an
infinite number of self-adjoint extensions labeled by four real parameters.

The adjoint operator H†
0 acts as −d2/dx2 on the functions of its domain (see [36,37]

for a definition of the domain of the adjoint of a given densely defined operator and its
properties). If φ is a function of such domain, we get integrating by parts:〈

− d2

dx2 φ, φ

〉
= B(φ, φ) +

〈
φ,− d2

dx2 φ

〉
, (2)

where 〈−,−〉 denotes the scalar product on L2[−a, a] and

B(φ, φ) = φ′(a)φ∗(a)− φ(a)φ′∗(a)− φ′(−a)φ∗(−a) + φ(−a)φ′∗(−a), (3)
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the prime being the derivative with respect to the variable x and the asterisk meaning
complex conjugate. The self-adjoint extensions of H0 are equal to −d2/dx2 as an operator
acting on the subdomains of the domain of H†

0 of functions with B(φ, φ) = 0. This happens
if and only if there exists a 2× 2 unitary matrix U such that (see [15] and references quoted
therein): 2aφ′(−a)− iφ(−a)

2aφ′(a) + iφ(a)

 = U

2aφ′(−a) + iφ(−a)

2aφ′(a)− iφ(a)

. (4)

The set of self-adjoint extensions of H0 is in one to one correspondence with the
set of 2× 2 unitary operators U. Thus, each of these extensions will be labeled by its
corresponding operator as Hα. Since there is a set of four real independent parameters
that characterize the set of operators U, then, the set of self-adjoint extensions of Hα is
also characterized by the same parameters [15]. Each of the operators U has the following
form [15]:

U = eiψ

m0 − im3 −m2 − im1

m2 − im1 m0 + im3

 . (5)

Here, ψ and mi, i = 0, 1, 2, 3 are real parameters so that ψ ∈ [0, π] and m2
0 + m2

1 + m2
2 +

m2
3 = 1, which means that only four parameters are independent [15]. The latter relation

is a consequence of unitarity: the modulus of the determinant of U must be a number of
modulus one.

There are some of these extensions with a clear physical interest, which does not mean
that the others are irrelevant from the physics point of view. In [15], the authors distinguish
three categories of extensions:

i.) Those which preserve time reversal;
ii.) Those which preserve parity;
iii.) Those preserving positivity.

Apart from these three categories, there are some other extensions. The reason why the
authors of [15] single out those extensions that preserve positivity is due to the existence of
extensions with negative energies. In fact, as proven in [34] (Theorem 16, vol 2, page 44), Hα

may have one (which may be doubly degenerate) or two (with no degeneration) negative
energy states. All other extensions have non-negative eigenvalues and are called positivity
preserving. Only three of these positivity preserving extensions with special simplicity are
discussed in [15]. We want to determine the energy levels in this situation.

In order to obtain the energy levels for a specific self-adjoint extension, Hα, of
H0 = −d2/dx2 on L2[−a, a], we have to solve the Schrödinger equation and impose on
its solutions the boundary conditions that characterize the extension. These boundary
conditions are given by the (4) and (6). However as stated in [15], the determination
of which operators U satisfy the positivity condition as stated before involves tedious
considerations. To circumvent this difficulty, let us consider the general solution of the
time independent Scrödinger equation −d2φ(x)/dx2 = Eφ(x), with E = s2/(2a)2 ≥ 0,
where 2a is the infinite square well width (Although the energy is given, in our notation,
by h̄2E/2m, we are calling “energy” the quantity represented by E.). This general solution
is

φ(x) = A cos
( sx

2a

)
+ B sin

( sx
2a

)
. (6)

Here, A and B have to be fixed with two conditions: (i) φ(x) should be normalized in
L2[−a, a] and (ii) φ(x) should fulfill the boundary conditions (4)–(5) so that E ≥ 0. Let us
use (6) in relation (4) giving the general matching conditions, so as to obtain the following
homogeneous linear system:(

L(s)−UM(s)
)(A

B

)
= N (s)

(
A
B

)
= 0 , (7)
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where

L(s) =
(

s sin s
2 − i cos s

2 s cos s
2 + i sin s

2

−s sin s
2 + i cos s

2 s cos s
2 + i sin s

2

)
, M(s) =

(
s sin s

2 + i cos s
2 s cos s

2 − i sin s
2

−s sin( s
2 − i cos s

2 s cos s
2 i sin s

2

)
. (8)

The eigenvalues λ±(s) of the matrix N (s) are given by

λ±(s) =
Tr(N (s))

2
±

√(
Tr(N (s))

2

)2

− det(N (s)). (9)

The trace and the determinant of N (s) can be easily calculated and are, respectively:

Tr(N (s)) = e−
1
2 i(s−2ψ)

(
−m3(s + 1) + im2eis(s− 1)

)
, (10)

and
det(N (s)) = −4ieiψ

[
(m0 + cos ψ) sin s + 2s(m1 − cos s sin ψ)− s2(m0 − cos ψ) sin s

]
. (11)

To begin with, let us remark that in order to have non-trivial solutions of (7) we must
have

det(N (s)) = 0. (12)

Then, the set of eigenvalues of N (s) is given by Tr(N (s)) and 0, as may be immedi-
ately seen from (9). The condition (12) gives a relation between the values of the energy,
determined by the real parameter s, since E = s2/(2a)2, and the parameters ψ, m0 and m1,
as in (5). In consequence, the energy levels depend on the values of these three parameters
only. From (11)–(12) , we obtain the following two transcendental equations (one with
plus sign and the other with minus sign):

s sin s =
m1 − cos s sin ψ

m0 − cos ψ
±

√(
m1 − cos s sin ψ

m0 − cos ψ

)2
+

m0 + cos ψ

m0 − cos ψ
sin2 s . (13)

This form of the transcendental equations is quite interesting, since it will serve as
an efficient estimation of the energy levels when these values cannot be exactly calcu-
lated. Otherwise, they permit to obtain exact solutions whenever they exists. Let us now
summarize three of the results provided by [15], which we will need later on:

• The eigenvector (A, B) of N (s) with 0 eigenvalue is given by

A =
[
i + eiψ(im0 + m1 − im2 + m3)

]
sin

s
2
+ s
[
1 + eiψ(m0 + im1 + m2 + im3)

]
cos

s
2

, (14)

B = s
[
−1 + eiψ(m0 + im1 + m2 − im3)

]
sin

s
2
+
[
i + eiψ(im0 −m1 + im2 + m3)

]
cos

s
2

. (15)

These expressions generalize similar ones published in citation [14] of our Refer-
ence [15]. We see that the eigenvector depends on all the parameters (m0, m1, m2, m3, ψ).

• The extensions preserving time reversal invariance, are given by

m2 = 0 . (16)

• The parity preserving extensions of H0 are those for which the eigenfunctions φ(x)
verify :

|φ(x)|2 = |φ(−x)|2 =⇒ |φ(a)|2 = |φ(−a)|2 . (17)
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Parity Preserving Extensions of H0

We are interested now in getting more information on the parity preserving extensions
of H0. Then, if we use (6) in (17) we obtain that Re(A B∗) sin s = 0. Hence, either

sin s = 0 or Re(A B∗) = 0. (18)

Compare to Equation (68) in citation [14] of our Reference [15]. Taking into account
the values of (A, B) given in (14)–(15) and also the fact that det(N (s)) = 0, the second
equation of (18) implies that either m3 = 0 or

(m3 + sin ψ) sin s + 2s(m2 + cos s cos ψ) + s2(sin ψ−m3) sin s = 0. (19)

Solving this equation as if it were a quadratic equation on s gives a pair of transcendental
equations which closely resemble Equation (13). Thus, the complete set of solutions of (18)
are

m3 = 0 , (20a)

sin s = 0 , (20b)

s sin s =
m2 + cos s cos ψ

m3 − sin ψ
±

√(
m2 + cos s cos ψ

m3 − sin ψ

)2
+

m3 + sin ψ

m3 − sin ψ
sin2 s . (20c)

Hence, when the parity is preserved, Equation (13) holds. This happens for three
different situations given by Equations (20a)–(20c). These formulas, plus (13), which
derives from such a general principle as det(N (s)) = 0, should give the energy levels for
the infinite square well with parity preserving self-adjoint extensions, Hα, of H0.

Equation (20a) does not provide any extra information, (13) being the only relation
which gives information on the energy spectrum. This parity preserving condition m3 = 0
has been already used in [15], although in this paper relations (20b) and (20c) are not men-
tioned.

Equation (20b) obviously gives an energy spectrum of the parity preserving extensions
that coincides to the spectrum given by texts in Quantum Mechanics for the extension
with domain given by functions with φ(−a) = φ(a) = 0. Henceforth, we shall call this
extension the textbook extension.

Finally, (20c) gives the energy levels for other parity preserving extensions in terms of
the three parameters (ψ, m2, m3).

In consequence, we have eight different situations for those extension having a non-
negative spectrum, including those with time reversal and parity invariance, as shown in
Table 1. In the next section we will analyze some of these situations.

Table 1. List of how to obtain the possible spectra as a function of the conserved properties.

Generic Spectrum: (13)

Time reversal invariance: (13) and (16), or m2 = 0

Parity preserving:

(13) and (20a)
m2 = 0

m2 6= 0

(13) and (20b)
m2 = 0

m2 6= 0

(13) and (20c)
m2 = 0

m2 6= 0
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3. Spectrum of the Free Particle on a Finite Interval

One of the goals of our study is to solve the eigenvalue problem for all the self-adjoint
extensions, Hα, of the operator H0 = −d2/dx2 on L2[−a, a], which from the point of view
of the physicist is the infinite square well with width 2a. As we have already seen, there
are only a few of these extensions for which we may obtain an exact solution, including
the textbook extension. For most of these extensions the energy levels are solutions of a
transcendental equation and, therefore, no explicit solutions of the eigenvalue problem for
these extensions can be given.

3.1. The Angular Representation of the Self-Adjoint Extensions of H0

Due to the relation between the parameters mi, given by

m2
0 + m2

1 + m2
2 + m2

3 = 1, (21)

a new parametric representation of the self-adjoint extensions, Hα, of H0 = −d2/dx2 on
L2[−a, a] in terms of angular variables only is possible. Apart from the variable ψ, which is
already angular, so that we keep it untouched, we have three other angular variables, θi,
i = 0, 1, 2, defined by means of the following relations:

m0 = cos θ1 cos θ0, m1 = cos θ1 sin θ0, m2 = sin θ1 cos θ2, m3 = sin θ1 sin θ2. (22)

Taking into account that Equation (13) gives the values of s, and hence the energy
levels, in terms of the triplet of parameters (ψ, m0, m1), then, according to (22), s will depend
on the angular variables (ψ, θ0, θ1) only. In general, we cannot solve (13) to find s(ψ, θ0, θ1)
explicitly. Since (13) depends on four parameters (s, ψ, θ0, θ1), we cannot represent this
equation in general but, as in Figure 1, we can plot the square root of the energy (essentially
s) for given values of θ1 and sin θ0 as a function of ψ.

0 π
0

π

2 π

ψ

s

sin(θ0)

-1.0

-0.5

0

0.5

1.0

0 π
0

π

2 π

ψ

s

Figure 1. Two plots of the implicit Equation (13) with the parametrization (22) allow us to see the variation of the parameter
s (remember that E = s2/(2a)2) as a function of ψ and sin θ0: on the left for θ1 = π/4, on the right for θ1 = 4π/3.

The general case can neither be explicitly solved nor represented graphically. Yet,
there are two other situations sharing this negative characteristics. One is m2 = 0 (time
invariance only) and m3 = 0 (parity conservation only). All other cases either can be
explicitly or graphically solved or both.

3.2. Some Simple Cases

In the sequel we are going to deal with the cases of Table 1 that can be treated in some
way, either graphically or analytically.
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3.2.1. Parity and Time Reversal Invariance: m2 = m3 = 0

For m2 = m3 = 0, we have in (21) that m2
0 + m2

1 = 1, that is, we can take θ1 = 0 in (22)
and therefore m0 = cos θ0 and m1 = sin θ0. Then, let us go back to (10), so as to see that
Tr(N (s)) = 0. Since one of the eigenvalues ofN (s) must be zero, the fact that Tr(N (s)) = 0
makes the second eigenvalue also equal to zero. Thus, the matrix N (s) admits a Jordan
decomposition in terms of an upper triangular matrix. Now, the transcendental equation
(13) becomes much simpler, still depending on the sign,±, of the square root. Note that this
sign is positive if s ∈ {(0, π), (2π, 3π)..} and negative if s ∈ {(π, 2π), (3π, 4π), ..}. In these
two situations, the spectral equation, the vector (A, B) and the eigenfunctions have the
following explicit forms:

Positive square root


Spectrum equation: s tan

( s
2
)
= − cot

(
ψ+θ0

2

)
Eigenvector: (A, B) = (1, 0)
Eigenfunction: φ(x) = cos

( s0x
2a
)

Negative square root


Spectrum equation: s cot

( s
2
)
= cot

(
ψ−θ0

2

)
Eigenvector: (A, B) = (0, 1)
Eigenfunction: φ(x) = sin

( s0x
2a
)
.

(23)

In the above expressions for the spectral equations, we may write ψ−θ0
2 = ϕ1 and ψ+θ0

2 = ϕ2,
where ϕi, i = 1, 2 are two independent angles. Both spectral equations are represented
in Figure 2. The combination of both solutions tend to the textbook solution in the limit
ϕ1,2 → 0 for both angles. The ground state for the textbook solution comes from the lowest
state for the even parity preserving extensions. It is remarkable that if ϕ1 ≥ arctan(1/2) :=
γ, then the ground state no longer comes from the even but from the odd parity preserving
extensions, as can be clearly seen in Figure 2.

0 γ π
2

0

π

2 π

3 π

4 π

5 π

φ1,2

s s cot s2   cot(φ1)

s tan s2   -cot(φ2)

Figure 2. Energy levels (E = s2/(2a)2) for odd parity (blue) and even parity (yellow) solution for
m2 = m3 = 0, coming from (23).

3.2.2. Parity Preserving Extensions Fulfilling sin s = 0

In this situation, Equation (20b) implies that s = nπ with n = 0,±1,±2, . . . , so that
E = (n2π2)/(2a)2, n = 1, 2, . . . . The energy levels of all these extensions are the same as
in the textbook’s extension. No negative energy states may exist. In order to obtain the
corresponding eigenfunctions, which may be different from those obtained for the textbook
case, we parametrize these extensions using angular variables. However, we are now using
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a different angle parameterization from (22). Indeed, taking into account (13), we will find
it very useful to use this one:

m0 = cos ψ cos β0, m1 = (−1)n sin ψ, (24)

m2 = cos ψ sin β0 cos β1, m3 = cos ψ sin β0 sin β1, (25)

where the exponent n appearing in the expression for m1 is the same number that labels s.
The eigenfunctions must obey the Schrödinger equation, so that they should be of

the form (6). The coefficients A and B depend on the energy levels and, therefore, should
be functions of s. In the simple case in which s be a even or odd multiple of 2π, these
coefficients can be obtained from the following relations, using (14)–(15) and the new
parameterization:

s = 2qπ :

{
A(s) = 2πq

(
1 + eiβ1 sin β0 − cos β0

)
,

B(s) = i
(
1 + e−iβ1 sin β0 + cos β0

)
,

q = 1, 2, . . .

s = (2q + 1)π :

{
A(s) = i

(
1− eiβ1 sin β0 + cos β0

)
,

B(s) = π(2q + 1)
(
−1 + e−iβ1 sin β0 + cos β0

)
,

q = 0, 1, . . .

(26)

The eigenfunctions depend on the angles (ψ, β0, β1) only. These angles are those
defined in (24)–(25); note the difference with the angles defined in (22). If we take the limits
β0 → 0 and β1 → 0, we recover the eigenfunctions for the textbook extension.

3.2.3. Parity and Time Reversal Invariance Extensions Fulfilling (20c)

We have seen that (13) has a general validity, which is independent of the particular
situation under study. On the other hand, (20c) is valid for extensions that preserve parity
invariance. Note that the left hand side in both equations is the same: s sin(s). This suggests
that the identity between both right hand sides would help to solve the spectral equation
in this case. This identity gives:

m1 − cos s sin ψ

m0 − cos ψ
±

√(
m1 − cos s sin ψ

m0 − cos ψ

)2
+

m0 + cos ψ

m0 − cos ψ
sin2 s

=
m2 + cos s cos ψ

m3 − sin ψ
±

√(
m2 + cos s cos ψ

m3 − sin ψ

)2
+

m3 + sin ψ

m3 − sin ψ
sin2 s , (27)

which may be written in polynomial form as cos4 s+ P1 cos3 s+ P2 cos2 s+ P3 cos s+ P4 = 0,
where the functions Pi depend on the parameters (m0, m1, m2, m3, ψ). We do not write the
precise form of this polynomial relation in here, since it is extremely long and it does not
show interesting features. Nevertheless, it is important to note that this is a fourth order
polynomial on the variable cos s with coefficients depending on the parameters. Two of
these solutions of (27) are

cos s = ±1 . (28)

These solutions may be written as sin s = 0, which coincide with (20b), so that no new
solutions for the spectral problem arise from (28). The other two solutions are quadratic as
function of the parameters and are rather huge and intractable. To simplify this problem as
much as possible, let us define a third and last angle re-parameterization of the mi:

m0 = sin ω1 cos ω2 , m1 = cos ω1 sin ω0 , m2 = cos ω1 cos ω0 , m3 = sin ω1 sin ω2 . (29)

This parameterization is quite similar to (22), where we have interchanged the expres-
sions for m0 and m2. In terms of the new angular variables, an expression for the energy
levels as functions of s is given by
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cos s = − cos ω1 cos(ω0 + ω2) cos(ω2 − ψ) (30)

− sec ω1

[
sin(ω0 + ω2) sin(ω2 − ψ)± i

√
sin4 ω1 cos2(ω0 + ω2) sin2(ω2 − ψ)

]
.

As we want s to be real (in order to have positive eigenvalues of the energy), the imag-
inary term in (30) must vanish. Note that all factors under the square root are positive, so
that the eigenvalues of the energy can be found, with all those in Equation (30) for each of
the factors under the square root vanishing. There are three possibilities, which yield the
following equations:

sin ω1 = 0 =⇒ cos s = ± cos(ω0 + ψ) =⇒ s = nπ ± (ω0 + ψ) , (31a)

cos(ω0 + ω2) = 0 =⇒ cos s = ± sec ω1 sin(ω2 − ψ) , (31b)

sin(ω2 − ψ) = 0 =⇒ cos s = ± cos ω1 cos(ω0 + ψ) . (31c)

Equations (31a) and (31c), give rise to an equally spaced spectrum on the variable s (not
for the energy), for which s = nπ + f (ω0, ω1, ψ), n = 0, 1, 2, . . . . In any case, the minimal
energy level is given by f (ω0, ω1, ψ). The determination of this minimal energy is not a
trivial matter for (31c), since its solution s = arccos(cos(ω1) cos(ω0 + ψ)) is given by a
multi-valued function.

Equation (31b) is even more problematic, as its right hand side may be bigger than
one in modulus. One may think that this formula provides the negative energy values for
| cos s| > 1. However, we have to keep in mind that there are only possible two negative
energy levels, if any, or if there is only one, this could be either single or doubly-degenerate,
so that (31b) may not give solutions to the energy spectrum and should be discarded,
in principle.

3.3. About the Negative and Zero Energies

Up to now, we have not been interested in zero and negative values of the energy.
Observe that the transcendental equation (13), which gives the energy levels, is valid for
those extensions, Hα, having positive energies only. These energy levels are, in all positive
energy cases, infinite.

If we wanted to analyze those Hamiltonians Hα with negative energy levels, we
need to perform the replacement s → −ir in the wave function (6) as well as in (13).
The latter appears in terms of hyperbolic functions and may have one or two solutions
with zero or negative energies. If there were just one negative energy level, this is doubly
degenerate [34].

When the ground state shows a negative energy, its wave function is similar to (6),
where the trigonometric functions have been replaced by hyperbolic functions. In this
case, the ground state wave functions may have zeros (nodes) on the interval [−a, a]. Here,
the general formalism says that the procedure to obtain the SUSY partners is not valid [1].
Nevertheless, this formalism gives a procedure and this procedure may still be applied in
this case. The result is clear—instead of obtaining a new potential with a countable infinite
number of equally spaced values of the square root of the eigenvalues of the Hamiltonian
(s), we obtain new Hamiltonians with either a finite number of eigenvalues or a continuous
spectrum only. In the first case, these energy eigenvalues come from a transcendental
equation. In the second case, partner potentials are often singular, showing an infinite
divergence. We shall discuss this situation in detail in a forthcoming publication. A similar
situation emerges when the ground state has zero energy.

From now on, we will concentrate in obtaining the SUSY partners of the self-adjoint
extensions that we have analyzed up to now.
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4. Supersymmetric Partners for the Simplest Extensions

In this section we shall consider the first and second order supersymmetry transfor-
mation applied to some of the self-adjoint extensions Hα so far considered in here.

4.1. First Order SUSY Partners

The technique to obtain the SUSY partner corresponding to a given self-adjoint opera-
tor with discrete spectrum has been discussed in [1]. To begin with, let us fix some notation
and call Hα to the self-adjoint extension characterized by the values α := (m0, m1, m2, m3, ψ)
of the parameters.

Then, let us follow the procedure of [1] to obtain the SUSY partners of Hα. First of
all, we need to determine the ground state φ

(0)
α (x) of Hα. This ground state has energy

E(0)
α = (s(0)α /(2a))2, which may be in principle either positive or negative. In the present

paper, we shall deal with those extensions having the ground level with positive energy
and, for all energy levels, s(n)α , n = 0, 1, 2, . . . , we have s(n)α = (n + 1) s(0)α .

In general, there are two supersymmetric partners of the self-adjoint extension Hα,
which are Hamiltonians of the form −d2/dx2 + V(j)

α , where V(j)
α , j = 1, 2, are a pair of new

potentials which is called partner potentials. In order to obtain each of the V(j)
α , pick the

ground state φ
(0)
α (x) of Hα. The explicit form of this ground state is, after (6),

φ
(0)
α (x) = A(s0) cos

( s0

2a
x
)
+ B(s0) sin

( s0

2a
x
)

, (32)

where we have used the simplified notation s0 := s(0)α , which we shall henceforth keep
for simplicity unless otherwise stated. Since (32) must be in the domain of Hα, the co-
efficients A(s0) and B(s0) must satisfy the boundary conditions defining this domain.
Although these coefficients depend on the energy ground state s0, we shall also omit this
dependence, unless necessary. Then, we construct the partner potentials V(j)

α , j = 1, 2 using
an intermediate function called the super-potential, Wα(x), which is defined as

Wα(x) := −∂xφ
(0)
α (x)

φ
(0)
α (x)

, (33)

where ∂x means derivative with respect to x.
Now, we construct the partner potentials V(j)

α , j = 1, 2, as [1]

V(1)
α (x) = W2

α (x)−W ′α(x) = −
( s0

2a

)2
, (34)

V(2)
α (x) = W2

α (x) + W ′α(x) =
( s0

2a

)2
1 + 2

(
A sin

( s0
2a x
)
− B cos

( s0
2a x
)

A cos
( s0

2a x
)
+ B sin

( s0
2a x
))2

 . (35)

According to (34), it comes that V(1)
α (x) is constant and equal, in modulus, to the

original system lowest energy level. We see that this solution is trivial, as only shifts the
energy levels. If we represent as φ(1)(x) and E(1)

n the wave function of the ground state and
the n-th energy level in this situation, we have that

φ(1)(x) ≡ φ(0)(x) , E(1)
n =

( s0

2a

)2
(n2 − 1) ≡ E(0)

n − E(0)
n=1 , (36)

and n = 1, 2, . . . is arbitrary. In the sequel, we omit the subindex α for simplicity in the
notation, unless otherwise stated for necessity.

The Schrödinger equation coming from the second potential in (35) is
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− d2

dx2 φ(2)(x) +
( s0

2a

)2
1 + 2

(
A sin

( s0
2a x
)
− B cos

( s0
2a x
)

A cos
( s0

2a x
)
+ B sin

( s0
2a x
))2

φ(2)(x) = E(1)
n φ(2)(x) , (37)

where the meaning of φ(2)(x) is obvious. Next, let us define a new variable z as

s0

2a
z = iW(x) =

is0

2a
A sin

( s0
2a x
)
− B cos

( s0
2a x
)

A cos
( s0

2a x
)
+ B sin

( s0
2a x
) . (38)

Under this change of variables, the Schrödinger Equation (37) takes the form:

(1− z2) ∂2
zφ(2)(z)− 2z ∂zφ(2)(z) +

(
`(`+ 1)− n2

1− z2

)
φ(2)(z) = 0 , with ` = 1, (39)

where ∂z represents the derivation with respect to z. This is a particular case of associated
Legendre equation when ` = 1, and their solutions are well known. One of them is given
by the associated Legendre functions of second kind:

Qn
` (z) := (−1)n (1− z2)n/2 dn

dzn Q`(z) , (40)

where Q`(z) are the Legendre functions of the second kind [38]. These solutions for (39)
provide the solutions for (37):

φ
(2)
n (x) = Qn

1

(
i
A sin

( s0
2a x
)
− B cos

( s0
2a x
)

A cos
( s0

2a x
)
+ B sin

( s0
2a x
)) , (41)

where, of course, we have taken the value ` = 1.
In addition, there is another set of solutions given by the first kind associated Legendre

functions Pn
1 (z). These functions have not been considered as solutions to our problem,

since they show singularities within the open interval (−a, a) and are not square integrable,
as shown in Appendix A. In Figure 3, we represent some of the wave equations just obtained
in (41) for the lowest energy levels. Let us consider now the second partner Hamiltonian,
H(2)

α := Hα + V(2)
α , or H(2) in brief. The solution Q1

1(z) shows a logarithmic singularity
at each of its extremes and, therefore, it is not square integrable. Nevertheless, for n ≥ 2,
these solutions are square integrable, as is proved in the Appendix A.

- s0
2 a

s0
2 a

n  2

n  3

n  4

n  5

n  6

- s0
2 a

s0
2 a

Figure 3. First order supersymmetric (SUSY) states φ
(2)
n (x) from (41) when the ground state of the original system is either

purely even, that is B = 0 (plot on the left), or purely odd, that is A = 0 (plot on the right). Note that the quantum number n
of the Legendre function in (41) is the number of the nodes of the function.

4.2. Second Order SUSY Partners

Once we have obtained the first order SUSY partners for the self-adjoint extensions
Hα with ground state of positive energy, let us inspect how we may obtain an infinite chain
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of higher order partners for Hα. In the all above discussed cases, the bound state has wave
function given by Q2

1(z) (which is obviously not the same for all cases, since the definition

of z changes). Then, we obtain the super-potential W(2)(x) by replacing φ
(0)
n=1(x) by Q2

1(z)
(and then write z in terms of x) in (33). This procedure gives rise to two second order
potential partner candidates, which are:

V(2,1)(x) = W2
(2)(x)−W ′(2)(x) =

( s0

2a

)2
1 + 2

(
A sin

( s0
2a x
)
− B cos

( s0
2a x
)

A cos
( s0

2a x
)
+ B sin

( s0
2a x
))2

− 3
( s0

2a

)2
, (42)

V(2,2)(x) = W2
(2)(x) + W ′(2)(x) =

( s0

2a

)2
1 + 3

(
A sin

( s0
2a x
)
− B cos

( s0
2a x
)

A cos
( s0

2a x
)
+ B sin

( s0
2a x
))2

 . (43)

Although the notation used in (42) and (43) should be clear, we need a generalization
of it, as we are going to consider further order partners next. Thus, we shall use V(i,j)(x)
and W(i)(x), where the index i gives the order of the partner, which in the above case is
i = 2. This index may take all possible values i = 1, 2, 3, . . . The index j always takes
two possible values, j = 1, 2. From this point of view, V(i)

α (x) in (34) could be written as
V(1,i)(x). Analogously, we may use for the i-th partner Hamiltonian the notation H(i,j).
To simplify the notation, we have always omitted the subindex α, which labels the precise
self-adjoint extension we are considering.

Observe that according to (42) and (34), V(2,1)(x) = V(1,2)(x)− 3(s0/(2a))2 = V(2)
α −

3(s0/(2a))2, so that H(2,1) and H(1,2) have the same eigenvalues shifted by 3(s0/(2a))2.
Thus, we ignore (42) and solely consider (43). For (43), we may do a similar analysis than in
the previous case, that is, first order SUSY partner, so that the bound state wave functions
are given by

φ
(2,2)
n (x) = Qn

2

(
i
A sin

( s0
2a x
)
− B cos

( s0
2a x
)

A cos
( s0

2a x
)
+ B sin

( s0
2a x
)) . (44)

In this second order SUSY, both functions Q1
2(z) and Q2

2(z) have logarithmic singulari-
ties at the points x = ±a, so that they are not square integrable on [−a, a] and, consequently,
should be discarded as proper eigenfunctions of H(2,2). Thus, the ground state for H(2,2)

has a wave function given by Q3
2(z). This is a general behaviour that could be checked at

each step going from a SUSY partner to the next one, as is shown in Figure 4.

Figure 4. Different energy levels of first and second supersymmetry Hamiltonians.

5. Supersymmetric Self-Adjoint Extensions of the Infinite Well at `-Order

Let us begin this Section with a summary of the notation employed so far and its
meaning:



Symmetry 2021, 13, 350 14 of 19



Hα Original Hamiltonian, which is a self-adjoint extension of H0 = −d2/dx2.

φ
(0)
n Wave function of Hα associated to the n−level.

E(0)
n Energy spectrum of Hα.

φ
(i,1)
n Wave function of first SUSY partner at i order associated to the n− level.

φ
(i,2)
n Wave function of second SUSY partner at i order associated to the n− level.

W(i) Super potential at i order, calculated from the second partner wave function.

of previous SUSY order, that is, φ
(i−1,2)
i .

V(i,1), V(i,2) Partner potentials of i−order SUSY constructed from W(i).
A(i), (A(i))† Annihilation/Creation operator of SUSY at i−order.

Creation (A(i))† and annihilation A(i) operators will be defined later.
So far, we have obtained potentials and wave functions for the first and second SUSY

partners for self-adjoint extensions of H0 = −d2/dx2 with ground level of positive energy.
With the help of the induction method, we may find potentials as well as wave functions
and energy levels for arbitrary order ` SUSY partners for the same class of self-adjoint
extensions. We have seen already that from the SUSY partners V(i,1), V(i,2), only the last
one is really interesting and we will focus on it in the sequel.

In order to apply the inductive method, let us assume that the ground state for the
`-th SUSY partner, H(`,2), of Hα is given by

φ
(`,2)
`+1 (x) = Q`+1

`

(
i
A sin

( s0
2a x
)
− B cos

( s0
2a x
)

A cos
( s0

2a x
)
+ B sin

( s0
2a x
)), (45)

as in the previous cases (41) and (44). Then, the super-potential takes the following form:

W(`+1) = −
∂2

xφ(`,2)(x)
φ(`,2)(x)

=
s0(`+ 1)

2a

(
A sin

( s0
2a x
)
− B cos

( s0
2a x
)

A cos
( s0

2a x
)
+ B sin

( s0
2a x
)) = −i

s0(`+ 1)
2a

z , (46)

where ∂2
x denotes the second derivative with respect to the variable x. Once we have the

super potential, we readily obtain the partner potentials at `+ 1 order, which are

V(`+1,1)(x) = (W(`+1))
2 − ∂xW(`+1) =

s2
0(`+ 1)
(2a)2

−1 + `

(
A sin

( s0
2a x
)
− B cos

( s0
2a x
)

A cos
( s0

2a x
)
+ B sin

( s0
2a x
))2

 , (47)

V(`+1,2)(x) = (W(`+1))
2 + ∂xW(`+1) =

s2
0(`+ 1)
(2a)2

1 + (`+ 2)

(
A sin

( s0
2a x
)
− B cos

( s0
2a x
)

A cos
( s0

2a x
)
+ B sin

( s0
2a x
))2

 . (48)

Note that although the label α is not written explicitly on the above equations and
many others, potentials and wave functions must depend on α. This dependence is hidden
in s0, where we have not made it explicitly for simplicity in the notation.

The Schrödinger equation for the first (`+ 1)-th order partner potential, V(`+1,1), is

− ∂2
xφ(`+1,1)(x) + V(`+1,1)(x)φ(`+1,1)(x) = E(`+1)φ(`+1,1)(x) . (49)

If we change it to the z variable, (49) takes the form:

(1− z2)2∂2
zφ(`+1,1)(z)− 2z(1− z2)∂zφ(`+1,1)(z)− (`+ 1)(1 + `z2)φ(`+1,1)(x) =

(
2a
s0

)2
E(`+1)φ(`+1,1)(x) . (50)

Equation (50) is a new Legendre-type equation for which solutions are known. The re-
spective eigenfunctions and eigenvalues are
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φ
(`+1,1)
n (x) = Qn

`

(
i
A sin

( s0
2a x
)
− B cos

( s0
2a x
)

A cos
( s0

2a x
)
+ B sin

( s0
2a x
)) , E(`+1)

n =
( s0

2a

)2(
n2 − (`+ 1)2

)
. (51)

Observe that the first partner wave functions of order `+ 1 are the same as the second
partner wave functions of order `, that is, φ

(`+1,1)
n (x) ≡ φ

(`,2)
n (x). The Schrödinger equation

with potential V(`+1,2)(x) is

− ∂2
xφ(`+1,2)(x) + V(`+1,2)(x)φ(`+1,2)(x) = E(`+1)

n φ(`+1,2)(x) , (52)

which in terms of the z variable becomes:

(1− z2)2∂2
zφ(`+1,2)(z)− 2z(1− z2)∂zφ(`+1,2)(z) + (`+ 1)(1− (`+ 2)z2)φ(`+1,2)(x) =

(
2a
s0

)2
E(`+1)

n φ(`+1,2)(x) . (53)

Equation (53) is again of Legendre type and its solutions in terms of eigenfunctions
have the form:

φ
(`+1,2)
n (x) = Qn

`+1

(
i
A sin

( s0
2a x
)
− B cos

( s0
2a x
)

A cos
( s0

2a x
)
+ B sin

( s0
2a x
)) . (54)

The energy spectrum is given by

E(`+1)
n =

( s0

2a

)2
(n2 − (`+ 1)2). (55)

Finally, one defines the annihilation, A(`+1), and creation, (A(`+1))† operators, which
transform the eigenvectors of H(`+1,1) into the eigenvectors of H(`+1,2) and reciprocally,
respectively, as:

A(`+1) = ∂x + W(`+1)(x) =
is0

2a
(1− z2)∂z − i(`+ 1)

s0

2a
z , (56)

(A(`+1))† = −∂x + W(`+1)(x) = − is0

2a
(1− z2)∂z − i(`+ 1)

s0

2a
z . (57)

These creation and annihilation operators have been already constructed for the
general formalism of SUSY potential partners in [1].

The relation between the Hamiltonian partners H(`,1) and H(`,2) for ` arbitrary are
shown in Figure 5. For ` = 0, there is a unique Hamiltonian, which is Hα. Now, the creation
and annihilation operators in the z variable give the recurrence identities for the associated
Legendre functions.

Figure 5. Energy scheme of different SUSY transformations up to order `.

6. Conclusions and Outlook

We have discussed the results of [15] for the self-adjoint extensions of the differential
operator H0 = −d2/dx2 and gone beyond these results in the sense of addressing some
cases not treated in [15]. Also, we have proposed a more detailed classification of the
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spectrum of these extensions in terms of the parameters that characterize each one of these
extensions. We have seen that it is possible to classify these extensions in terms of other sets
of variables with the sense of angles, which permits us to go beyond [15]. These self-adjoint
extensions may have at most two negative eigenvalues, a ground state of zero energy and
ground states with strictly positive energy.

In addition, in this paper, we have obtained analytically the form of the SUSY partners
for the self-adjoint extensions of H0 (that we denote as Hα, where α includes the four real
parameters that gives each of these extensions) with a ground state with positive energy.
We have obtained all Hamiltonian partners of each of the Hα with positive spectrum
to all orders, their energy levels and their eigenfunctions. At each step, we find two
distinct Hamiltonian partners of `-th order. Creation and annihilation operators related the
eigenfunctions for these two partners were also evaluated.

Although we have obtained the eigenfunctions for the whole sequence of SUSY
partners of each of the Hα, these eigenfunctions depend explicitly on the square root of the
ground state energy of Hα, which in most cases can be obtained by solving a transcendental
equation. However, this transcendental equation looks rather intractable in a few cases.
This situation poses some difficulties in obtaining the eigenvalues for some of the Hα,
although the explicit form of their eigenfunctions and of the eigenfunctions of their SUSY
partners can always be given, as functions of the square root of the ground state energy of
Hα.

We have not obtained the SUSY partners for those extensions, Hα, with a ground state
with zero or negative energy. Here, we may also obtain a sequence of SUSY partners form
each of the Hα in this class. Unlike the partners for extensions Hα with ground states with
strictly positive energies, these partners may have a finite number of eigenvalues or even
none, and the potential partners may show singularities. A classification of the partners for
these exceptional extensions is left for a forthcoming paper.
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Appendix A

In this Appendix, we justify the correct choice of the wave functions for the bound
states of the supersymmetric partners of each of the extensions Hα with strictly positive
ground state energy. In Appendix A.1, we derive a general solution for these wave functions
as a linear combination of the associated Legendre functions Pn

` and Qn
` with argument

− tan((s0x)/(2a)). In Appendix A.2, we show that the component with Pn
` should be

discarded, since it does not meet the requirement of square integrability. On the other hand,
the component with Qn

` should give the wave function as is square integrable, as proven in
Appendix A.3.

Appendix A.1

Comments in these Appendices are valid for those self-adjoint extensions Hα with
ground states with positive energy. For each of these extensions, the ground state energy is
E(0)

0 = (s0/(2a))2, where s0 depends on the chosen self-adjoint extensions and, therefore,
on the values of the parameters. As we have seen, in terms of the auxiliary variable s,
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the spectrum is equally spaced in this case, so that all other energy values are E(0)
m =

(s0/(2a))2m2. For the ground state, the wave function is

φ
(0)
m=1(x) = A cos

( s0

2a
x
)
+ B sin

( s0

2a
x
)

. (A1)

The coefficients A and B, as complex numbers, should have the same phase in order to
have a real partner potential. To see it, let us write A = Ceiϕ1 and B = Deiϕ2 , with C := |A|
and D := |B|. Then, (A1) is

φ
(0)
m=1(x) = Ceiϕ1 cos

( s0

2a
x
)
+ Deiϕ2 sin

( s0

2a
x
)

. (A2)

Using Definitions (42) and (43) for the potential partners of `-th order, we have for the
first `-th partner:

V(`+1,1) =
s2

0(`+ 1)
(2a)2

−1 + `

(
Ceiϕ1 sin

( s0
2a x
)
− Deiϕ2 cos

( s0
2a x
)

Ceiϕ1 cos
( s0

2a x
)
+ Deiϕ2 sin

( s0
2a x
))2

 , (A3)

for which the imaginary part is given by

Im
(

V(`+1,1)
)

= Im

 s2
0(`+ 1)
(2a)2

−1 + `

(
A sin

( s0
2a x
)
− B cos

( s0
2a x
)

A cos
( s0

2a x
)
+ B sin

( s0
2a x
) )2



=
CD`(`+ 1)s2

0

(
(C− D)(C + D) sin

( s0 x
a

)
− 2CD cos(ϕ1 − ϕ2) cos

( s0 x
a

))
a2
(
2CD cos(ϕ1 − ϕ2) sin

( s0 x
a

)
+ (C− D)(C + D) cos

( s0 x
a

)
+ C2 + D2

)2 sin(ϕ1 − ϕ2) , (A4)

so that potential (A3) is real if sin(ϕ1− ϕ2) = 0, or equivalently, if ϕ1 = nπ + ϕ2. Thus, if A
and B have the same phase as complex numbers, we have guaranteed that the potential
partner V(`+1,1) is real. The same is valid for V(`+1,2). Thus, (A2) becomes:

φ
(0)
m=1(x) = Ceiϕ cos

( s0

2a
x
)
+ Deiϕ sin

( s0

2a
x
)

. (A5)

This ground state is not yet normalized. Its normalization gives∫ a

−a
dx φ

(0)
m=1(x)

(
φ
(0)
m=1(x)

)∗
= 1 =⇒ C2 + D2 = 1 =⇒ C = cos δ, D = sin δ . (A6)

Finally, the ground state wave function has the form:

φ
(0)
m=1(x) = eiϕ cos

( s0

2a
x + δ

)
. (A7)

Let us recall that our goal is to show that the solution of the Schrödinger equation
with component Qn

` is square integrable and the solution with Pn
` is not. To begin with, let

us define a new independent variable using the shift x = y− 2aδ/s0. The ground state has
now the form,

φ
(0)
m=1 = eiϕ cos

( s0

2a
y
)

. (A8)

With this notation, the wave function of the second partner of `-th order is

φ
(`,2)
m = C1Pn

`

(
−i tan

( s0y
2a

))
+ C2Qn

`

(
−i tan

( s0y
2a

))
. (A9)

Next, we shall analyze the square integrability of each of the components in (A9).
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Appendix A.2. Trigonometric Expansion of Pn
`

(
−i tan

( s0y
2a
))

Let us use the change of variable z = −i tan
( s0y

2a
)

and consider the hypergeometric
form of the associated Legendre functions with argument z [38]:

Pn
` (z) =

1
`!

(
−1

2

)`(1 + z
1− z

)n/2
(1− z)`

Γ(2`+ 1) 2F1

(
−`, n− `;−2`;− 2

z−1

)
Γ(`− n + 1)

=
1
`!

(
−1

2

)`(1 + z
1− z

)n/2
(1− z)`

`

∑
j=0

(
(2`− j)!(−`)j

)
j!Γ(−j + `− n + 1)

(
2

1− z

)j

=

(
− 1

2

)`
Γ(2`+ 1)

`!Γ(`− n + 1)
e−

is0(n−`)
2a y

cos`
( s0y

2a
) `

∑
j=0

(−1)jΓ(`+ 1)(2`− j)!
j!Γ(−j + `+ 1)Γ(−j + `− n + 1)

(
2e−

is0
2a y cos

( s0y
2a

))j

=
`

∑
j=0

(−1)j+`2j−`Γ(`+ 1)(2`− j)!
j!`!Γ(−j + `+ 1)Γ(−j + `− n + 1)

e−
is0y(j−`+n)

2a cosj−`
( s0y

2a

)
. (A10)

Due to the presence of negative powers of the cosine in (A10), the resulting wave
function is not square integrable and, therefore, not acceptable as a wave function of a
bound state.

Appendix A.3. Trigonometric Expansion of Qn
` (−i tan

( s0y
2a
)
)

Similarly, we can express Qn
` (z) in terms of a hypergeometric function [38] as:

Qn
` (z) =

1√
π

2−`−1(−1)`+n+1(z− 1)−`−1Γ
(
−`− 1

2

)(
z + 1
z− 1

)n/2
(`+ n)! 2F1

(
`+ 1, `+ n + 1; 2(`+ 1);− 2

z− 1

)
.

Then, let us perform again the change of variables given by z = −i tan
( s0y

2a
)
, so as to

obtain:

Qn
`

(
−i tan

( s0y
2a

))
=

1√
π

2−`−1(−1)nΓ
(
−`− 1

2

)
Γ(`+ n + 1)e−i s0

2a y(`+n+1) cos`+1
( s0y

2a

)
× 2F1

(
`+ 1, `+ n + 1; 2(`+ 1); 2e−i s0y

2a cos
( s0y

2a

))
.

If again, we perform a series expansion around z = 0 we obtain the following power
series in terms of positive powers of cosines:

Qn
`

(
−i tan

( s0y
2a

))
=

1
2
(−1)−`+n+1e−i s0

2a nyΓ(n− `)Γ(`+ n + 1)
n

∑
j=`+1

(−1)jΓ(j) 2jeij s0
2a y

Γ(j− `)Γ(j + `+ 1)Γ(−j + n + 1)
cosj

( s0

2a
y
)

.

This solution is acceptable as is square integrable.
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