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We study the vacuum interaction of a scalar field and two concentric spheres defined by a singular
potential on their surfaces. The potential is a linear combination of the Dirac δ and its derivative.
The presence of the delta prime term in the potential causes that it behaves differently when it is seen from
the inside or from the outside of the sphere. We study different cases for positive and negative values of the
delta prime coupling, keeping positive the coupling of the delta. As a consequence, we find regions in the
space of couplings, where the energy is positive, negative or zero. Moreover, the sign of the δ0 couplings
cause different behavior on the value of the Casimir energy for different values of the radii. This potential
gives rise to general boundary conditions with limiting cases defining Dirichlet and Robin boundary
conditions what allows us to simulate purely electric or purely magnetic spheres.
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I. INTRODUCTION

Casimir forces are measurable effects arising when
vacuum fluctuations of quantum fields are modified by
external conditions such as bodies with different geom-
etries or boundaries. Among many others, some examples
can be found in Refs. [1–3]. A large amount of studies for
different geometries have been carried out over the years,
where a great deal of the work has focused on the
interaction energy between bodies [4–6]. This makes sense
since it is feasible to setup an experiment that measures
forces between objects. The interpretation of the Casimir
interaction energy is clearer and less controversial than that
of the Casimir self-energy of a single body, where surface
divergences are still an open subject [7–9]. As in the
original setup proposed by Casimir [10], most of the
systems studied present two objects outside each other,
even though other configurations like cavities are exper-
imentally realizable. In this context, a lot of work has been
focused on systems as long cylinders [11], configurations
of spheres [12–14] or Casimir-Polder interactions with a
polarizable particle [15,16].

In line with what is mentioned above, the systems
studied with the practical formulation based on functional
determinants proposed in 2006 by Kenneth and Klich
[17–19] also focus on separated interacting bodies. Even
though there is no restriction on the disposition of the objects
as long as they do not overlap, most of the attention has been
directed toward bodies outside each other. However, if one
body is inside the other, the so-called TGTG formula is still
valid, although interior and exterior scattering must be
considered. To our knowledge, this was firstly discussed
in Ref. [20] for the electromagnetic field. With this formal-
ism new results were obtained: corrections to the proximity
force approximation (PFA) [21], analysis of the torque and
alignment of a spheroid inside a cavity [22] and the stability
of certain collections of objects [23], where some previous
plausible configurations for stable levitationwere discarded.
In Ref. [14] it is studied the scalar and electromagnetic fields
interacting in the presence of two bodies outside each other
or one inside the other whose centers are separated a certain
distance. Bimonte [24] particularized the formula to the
interaction between two perfectly conducting spheres in
different arrangements, including the concentric case while
in [25] Bordag et al. calculate the interaction energy of a
cylinder inside another beyond PFA, reaching the next-to-
leading order correction to the vacuum energy for some
cases of the radii of the cylinders.
In this work we compute the interaction energy between

two partially transparent concentric spheres for a scalar
field using the TGTG formula. Quantum vacuum energies
for spherical backgrounds have been largely studied
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(see e.g., [26,27]). When the potentials mimicking the
spherical shells do not overlap the total quantum vacuum
energy of the system is given by

E0 ¼ EðS1Þ þ EðS2Þ þ EC; ð1Þ

where the first two terms are the self-energies of the spheres
individually and EC is the interaction term that we are
interested in. The self-energies contain a finite and a
divergent term: EðSiÞ ¼ EfinðSiÞ þ EdivðSiÞ. For massive
fields there is a well-defined unique finite part of the self-
energy after imposing the mass renormalization condition
and the divergences have been computed analytically [26].
For the massless case a well defined result regularization-
independent depends on the cancellation of certain heat
kernel coefficients, specifically the coefficient a2. When
this cancellation does not occur, the finite part of the self-
energy depends on a regularization parameter that needs a
physical interpretation [28]. This problem will be addressed
in a forthcoming publication. Since EðSiÞ depends on the
radius of the sphere, it contributes to the total quantum
vacuum pressure over the spherical shell Si.

1 However, in
the present paper we focus our attention on the part of the
quantum vacuum energy that couples both spherical shells,
i.e., EC, which we call quantum vacuum interaction energy.
The properties of each sphere enter in the interaction

energy only through its T matrix [30], which can be easily
calculated for spherical bodies. We mimic the spheres by a
generalization of the Dirac δ spherical shell, the so-called
δ-δ0 interaction [31]. Configurations based on the δ poten-
tial have widely appeared in the literature, just to name
some: δ sphere in two and three dimensions [26,32–35],
concentric and nonconcentric δ spheres [14] for both scalar
and electromagnetic fields and the interaction between two
δ lattices [36–38]. The addition of the δ0 term to the
potential that defines the plates was firstly considered in
Ref. [39] in the context of Casimir physics. This is useful,
essentially, in two aspects. First, Robin boundary condi-
tions can be obtained as a finite limit as was shown in
Ref. [39]. Second, although it is still not well understood,
the sign of the force depends strongly on the boundary,
switching from attractive to repulsive forces [40]. Basically,
the only general result concerning this issue is restricted to
mirror symmetric bodies, originally proposed in Ref. [17]
and extended in Ref. [41]. As we shall prove, we can gain
insight in the latter with this interaction. We are able to
identify the configurations in which the energy is positive
or negative as a function of the parameters that define the
potential on the spheres. For parallel plates, this has already
been proved in Ref. [39].

Specifically, the semitransparent δ-δ0 spheres will be
defined by the potentials

V̄iðrÞ¼aiδðr−riÞþbiδ0ðr−riÞ; ai;bi∈R i¼1;2; ð2Þ

where r1 and r2 are the radii of the inner and outer sphere
(r1 < r2), respectively. The definition of the previous
potential is given by suitable matching conditions imposed
on the scalar field [31]. These conditions come from the
original work of Kurasov [42] in one dimensional systems.
The main advantage of these singular potentials is that they
are often exactly solvable and therefore, provide a good
insight for some of the relevant quantum properties.2 Given
the above, the action that governs the dynamics of the
massless scalar field interacting with this background is

SðφÞ ¼
Z

d3þ1y½ð∂φÞ2 − VðxÞφ2�; ð3Þ

where

VðxÞ ¼ V1ðxÞ þ V2ðxÞ

¼
X2
i¼1

λ0;iδðx − xiÞ þ 2λ1;iδ
0ðx − xiÞ: ð4Þ

We have chosen units such that ℏ ¼ c ¼ 1 and introduced a
mass parameter μ in order to work with dimensionless
quantities,

x≡ rμ; xi ≡ riμ; φ≡ ϕ

μ
; ð5Þ

λ0;i ≡ ai
μ
; λ1;i ≡ bi

2
: ð6Þ

The paper is organized as follows. In Sec. II we give an
interpretation of the TGTG formula based on the mode
summation approach when applied to the case of concentric
spheres. In Sec. III we study the solutions of the field
modes for the potential under consideration and calculate
the relevant elements of the TGTG formula, which allow us
to give a simple expression for the interaction energy
shown in Sec. IV together with some numerical results.
Finally, we discuss these results and compare them with
limiting cases. We finish in Sec. V with the conclusions.

II. SCATTERING FORMALISM
INTERPRETATION

The scattering approach to the computation of Casimir
interaction energies between two bodies has been used in1As a consequence, the main statement in Ref. [29] refers only

to the contribution to the total pressure arising from the
interaction terms of the energy. Nevertheless the self-energy
contribution has been considered for a particular case, obtaining
an expansion tendency (p > 0).

2Despite its apparent simplicity, there is a collection of
applications in a variety of areas in modern physics, see Ref. [43]
and references quoted therein.
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many calculations since more than half a century. It is worth
to mention the original work of Balian and Duplantier in
the 1970s [44,45]. Most modern forms of calculating these
energies have been developed by other authors already
mentioned [17,19,20,46,47]. Their method has become
very popular since it is free of divergences and it allows
us to obtain numerical results in a simple way. Examples of
that are the interaction between a compact object and a
plane [48] or more specifically, between a sphere and plane
[49]. In those cases, the authors calculate the Casimir
energy by computing the transition matrices of the scattered
waves on the objects separately (the Lippmann-Schwinger
operators of the bodies [50]), and the translation matrices
from one object’s origin to the other describing the
propagation of the wave between them. In particular if
we denote by T i, i ¼ 1, 2, the Lippmann-Schwinger
operators for each body, and Ui;j, i, j ¼ 1, 2, the free
Green function that represents the translation from the
center of body i to the center of body j the so-called TGTG
formula is given by

EC ¼ 1

2π

Z
∞

0

dχTr lnðI − T1U12T2U21Þ: ð7Þ

Here the integration is over the imaginary frequency.
Concerning our system of two concentric spheres, in
Eq. (7) we denote with subindex 1, quantities referred to
the interior sphere, and the subindex 2 refers to the
analogues for the exterior sphere.
As we have previously stated, our case corresponds to

the interaction of a scalar field on a background of
concentric spheres with singular potential on their surfaces
given by Eq. (2). The great advantage of using Eq. (7) is
that we only need to have information about each of the
bodies individually. It is sufficient to know the shape of the
incident and scattered waves and how they scatter on their
surfaces, something that is determined by the boundary
conditions on the spheres. They select the quantum
fluctuations that will produce the interaction between the
spheres. Due to the spherical symmetry of the problem, it is
convenient to use spherical coordinates so that we expand
the waves in the spherical harmonics from their origins.
Since they share origin, the transition matrices become
diagonal identities [24] (maybe multiplied by a constant
depending on the normalization used).
The components of the Lippmann-Schwinger operators

T1;2 of each object appearing in the TGTG formula that
describes our system combine in such a way that the
formula will pick up the quantum vacuum fluctuations that
give rise to the interaction. Since we have one body inside
the other, it represents the scattering produced by the
exterior and interior sides of the spheres respectively. It
is relevant to notice that the inner and the outer side of the
δ-δ0 sphere do not produce the same interaction. Therefore,

each object will contribute with different components of the
T operator.

III. GENERAL SCATTERING SOLUTIONS
AND T OPERATORS

Let’s consider now a single sphere defined by the
potential given in Sec. I,

V0ðxÞ ¼ λ0δðx − x0Þ þ 2λ1δ
0ðx − x0Þ; x0 ∈ Rþ: ð8Þ

Infinitesimal variations of the action in (3) impose that the
scalar field φðt;xÞ satisfies the equation of motion

−∂μ∂μφðt;xÞ − V0ðxÞφðt;xÞ ¼ 0; ð9Þ

where μ is an index that can take the values f0; 1; 2; 3g.
Since the potential is time independent, the Fourier trans-
form in time allows us to work at a given frequency that
later on, we integrate over the whole range. Then,

φðt;xÞ ¼
Z

∞

−∞
dωφωðxÞe−iωt; x≡ ðx; θ;ϕÞ:

The resulting equation can now be written as

½−Δþ V0ðxÞ�φωðxÞ ¼ ω2φωðxÞ; ð10Þ

where Δ is the Laplacian operator. The nonrelativistic
Schrödinger Hamiltonian in Eq. (10) has been recently
studied in detail in [31], where the potential V0ðxÞ is
defined by matching conditions at the sphere of dimension-
less radius x ¼ x0 over the space of field modes as

�
φðxþ0 ; θ;ϕÞ
_φðxþ0 ; θ;ϕÞ

�
¼

�
α 0

β̃ α−1

��
φðx−0 ; θ;ϕÞ
_φðx−0 ; θ;ϕÞ

�
; ð11Þ

where we have introduced the notation

_φðxÞ≡ ∂φ
∂x ;

xþ0 and x−0 denotes that we approach x0 from the right or
from the left respectively and

α≡ 1þ λ1
1 − λ1

; β̃≡ λ̃0
1 − λ21

; λ̃0 ≡ −
4λ1
x0

þ λ0: ð12Þ

Due to the spherical symmetry of the potential, in Eq. (10)
we perform separation of variables that enables to expand
the solution in the spherical harmonics Ylmðθ;ϕÞ and write
the modes of the field as

φωðxÞ ¼
X∞
l¼0

Xl
m¼−l

ρlðxÞYlmðθ;ϕÞ: ð13Þ
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Accordingly, the radial modes ρlðxÞ satisfy the differential
equation

�
−

d2

dx2
−
2

x
d
dx

þ lðlþ 1Þ
x2

− ω2

�
ρlðxÞ ¼ 0: ð14Þ

Two independent solutions are ρregl ðxÞ ¼ jlðωxÞ and

ρoutl ðxÞ ¼ hð1Þl ðωxÞ. The former is the spherical Bessel
function regular at the origin and the latter is the spherical
Hankel function of the first kind, which determines the
radial part of a purely outgoing wave [51]. Now we make
the scalar field scatters with the sphere in two different
situations.

A. The exterior scattering

As mentioned above, the interior sphere of our system
enters the TGTG formula through the component of the
Lippmann-Schwinger operator that represents the scatter-
ing problem with the source and detector outside the object.
In this sense, the general solution of a radial mode in the
two regions separated by the sphere of radius x0 is

ρlðxÞ ¼
�
Alρ

reg
l ðxÞ x < x0

alρ
reg
l ðxÞ þ blρoutl ðxÞ x > x0

: ð15Þ

If we impose matching conditions, given by Eq. (11), on the
surface of the sphere we obtain the system of equations,

�
alρ

reg
l ðx0Þ þ blρoutl ðx0Þ

al _ρ
reg
l ðx0Þ þ bl _ρoutl ðx0Þ

�

¼ Al

�
α 0

β̃ α−1

��
ρregl ðx0Þ
_ρregl ðx0Þ

�
; ð16Þ

where we have used the quantities and notation defined in
Eq. (12). Then the scattering produced by the sphere in this
situation can be calculated as

Tl
i ¼ −

bl
al

:

Eliminating Al from Eq. (16) we find

TlðωÞ ¼ jlðωx0Þ
ΛðωÞ f½lðα2 − 1Þ − x0αβ̃�jlðωx0Þ

− ðα2 − 1Þωx0jlþ1ðωx0Þg; ð17Þ

where

ΛðωÞ≡ jlðωx0Þ½ðlðα2−1Þ−αβ̃x0Þhð1Þl ðωx0Þ
−α2ωx0hlþ1ðωx0Þ�þωx0jlþ1ðωx0Þhlðωx0Þ: ð18Þ

B. The interior scattering

For the exterior sphere of our system, we need to obtain
the component of the T operator describing a scattering
problem in which both the source of the incident wave and
the detector are inside the sphere. Hence, we consider now
the sphere subject to the same δ-δ0 potential at the surface,
but the source is now inside the body, at its origin.
Therefore, the general solution for the radial part of a field
mode is

ρlðxÞ ¼
�
ãlρ

reg
l ðxÞ þ b̃lρoutl ðxÞ x < x0

Blρ
out
l ðxÞ x > x0

: ð19Þ

The coefficients fBl; ãl; b̃lg above must satisfy the
boundary conditions obtained by plugging Eq. (19) into
Eq. (11),

Bl

�
cρoutl ðx0Þ
_ρoutl ðx0Þ

�

¼
�
α 0

β̃ α−1

��
ãlρ

reg
l ðx0Þ þ b̃lρoutl ðx0Þ

ãl _ρ
reg
l ðx0Þ þ b̃l _ρoutl ðx0Þ

�
: ð20Þ

As in the previous case the desired component of the T
operator is given by the ratio of the reflected flux to the
emitted wave, but this time inside the sphere,

T̃l ¼ −
ãl
b̃l

:

The latter can be easily obtained from the Eq. (20):

T̃lðωÞ ¼ hð1Þl ðωx0Þ
ΛðωÞ f½lðα2 − 1Þ − x0αβ̃�hð1Þl ðωx0Þ

− ðα2 − 1Þωx0hð1Þlþ1ðωx0Þg: ð21Þ

C. On the relation between T and T̃

If we compare the numerators in Eqs. (17) and (21) we
can see that the are related by exchanging jlðωx0Þ ↔
hð1Þl ðωx0Þ. The same property does not hold for the
components TlðωÞ and T̃lðωÞ. This reciprocity corre-
sponds to exchanging the incident and reflected wave.
But as we have noted, the interior and exterior sides of the
sphere are different so we have also to exchange them.
In this sense, taking into account that the inverse of the
matching condition matrix appearing in (16) and (20)

�
α 0

β̃ α−1

�−1
¼

�
α−1 0

−β̃ α

�
ð22Þ

is reached with the coupling transformation fλ0; λ1g →
f−λ0;−λ1g we conclude that
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T̃lðω; x0; λ0; λ1Þ ¼ Tlðω; x0;−λ0;−λ1; jl ↔ hð1Þl Þ: ð23Þ

This result is quite surprising when we compare with the
one dimensional case that enables to mimic two dimen-
sional plates as was shown in Ref. [39]. For the one
dimensional case and the potential V1D¼w0δðxÞþ2w1δ

0ðxÞ
the role played by Tl and T̃l in our case is played by the
reflection amplitudes (see Ref. [39]):

rR¼
−ωw1− iw0

2ωðw2
1þ1Þþ iw0

; rL ¼
ωw1− iw0

2ωðw2
1þ1Þþ iw0

: ð24Þ

In this case it is straightforward to notice that the
transformation

ðw0; w1Þ ↦ ðw0;−w1Þ ð25Þ

acting on the reflection amplitudes enables us to obtain the
analogue of the three dimensional case, i.e.:

rRðω;w0;−w1Þ ¼ rLðω;w0; w1Þ: ð26Þ

Hence, meanwhile the symmetry between reflection ampli-
tudes in the one dimensional δ-δ0 potential only requires the
change of sign of the δ0 coupling, for the spherical three
dimensional case it is necessary, in addition, a change of
sign of the Dirac δ coupling as it is shown in (23). This
additional requirement implies that the Dirac δ potentials
change from being a potential well/barrier to a barrier/well.

IV. ANALYTIC EXPRESSION AND
NUMERICAL RESULTS FOR THE
CASIMIR INTERACTION ENERGY

In order to use Eq. (7) we remind the reader that in our
case object 1 refers to the interior sphere and therefore the
scattering is produced outside. This is described by Tl

1 as
given in Eq. (17) setting x0 ¼ x1, and ðα; β̃Þ ¼ ðα1; β̃1Þ. On
the other hand, the waves reaching object 2 are scattered
from the inside and therefore it corresponds to T̃l

2 as in
Eq. (21) with x0 ¼ x2, and ðα; β̃Þ ¼ ðα2; β̃2Þ. In addition,
we need to obtain the expressions for the T operators for
imaginary frequencies in order to use the TGTG formula in
its euclidean version, where the T operators are Hermitian
and oscillatory behavior in the integrals is avoided.
Therefore, we define ω ¼ iχ with χ > 0. The Bessel
functions with imaginary arguments can be written in
terms of the modified Bessel functions of the first and
second kind [51],

jlðiχxÞ ¼ il
ffiffiffiffiffiffiffiffi
π

2χx

r
Ilþ1=2ðχxÞ

hð1Þl ðiχxÞ ¼ −i−l
ffiffiffiffiffiffiffiffi
2

πχx

s
Klþ1=2ðχxÞ:

Taking into account the equations above and Eqs. (17) and
(21) the euclidean rotated components of the required T
operators become

Tl
1ðiχÞ ¼ C

Iνðy1Þ½Iνðy1Þðlðα21 − 1Þ − α1x1β̃1Þ þ ðα21 − 1Þy1Iνþ1ðy1Þ�
Ξðy1Þ

;

T̃l
2ðiχÞ ¼ C−1Kνðy2Þ½Kνðy2Þðlðα22 − 1Þ − α2x2β̃2Þ − ðα22 − 1Þy2Kνþ1ðy2Þ�

Ξðy2Þ
;

ΞðyiÞ≡ IνðyiÞ½KνðyiÞðlα2i − l − αixiβ̃iÞ − α2i yiKνþ1ðyiÞ� − yiIνþ1ðyiÞKνðyiÞ; ð27Þ

where C≡ ð−1Þlðπ=2Þ, ν≡ lþ 1=2, and yi ≡ χxi, for
i ¼ 1, 2. Before computing the quantum vacuum energy, as
a consistency test, it is straightforward to observe that by
turning off the δ0 term λ1;i ¼ 0 (αi ¼ 1; βi ¼ λ0;i), equations
in (27) become

Tl
1ðiχÞ ¼ C

λ0;1x1I2νðy1Þ
½1þ λ0;1x1Kνðy1ÞIνðy1Þ�

;

T̃l
2ðiχÞ ¼ C−1 λ0;2x2K2

νðy2Þ
½1þ λ0;2x2Kνðy2ÞIνðy2Þ�

: ð28Þ

These expressions are in agreement with the ones for two
concentric spheres having delta potentials on their surfaces
calculated in [14,52]. See also Ref. [26] where they
calculate the same T through the phase shift.

In this sense, the TGTG formula for the interaction
energy when both spheres share center can be written as

EC ¼ 1

2π

X∞
l¼0

ð2lþ 1Þ
Z

∞

0

dχ ln½1 − Tl
1ðiχÞT̃l

2ðiχÞ�: ð29Þ

The expressions in Eqs. (27) and (29) enable us to obtain
numerical results for the quantum vacuum interaction
energy between the two concentric spheres. Regarding
the presentation of the numerical plots of the quantum
vacuum energy we consider different possible scenarios by
changing the couplings in the potential. In all the cases
shown below, we take the coefficient of the δ term to be
positive and allow the coefficient of the δ0 to change sign.
As it has been seen along the paper, the presence of the δ0
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term makes the potential on the spheres behave differently
when the scattering is produced from the inside or from the
outside of the body.
First we consider the couplings to be equal in both

spheres, such that λ0;1 ¼ λ0;2 ¼ λ0 and λ1;1 ¼ λ1;2 ¼ λ1. We
show the results in Fig. 1 for two different values of the
radii. In the plot on the left we have used x1 ¼ 1 and
x2 ¼ 2, and x1 ¼ 1.8 and x2 ¼ 2 in the one on the right.
The color gradient denotes changes on the energy value.
We observe that in both plots there are regions in the space
of couplings where the vacuum energy takes positive,
negative and zero values. When λ1 ¼ 0 we recover the
case of the interaction between two δ (semitransparent)
spheres that is known to be negative. The potentials in both
spheres have the same sign. When λ0 ¼ 0, and since we
have set the couplings of the δ0 term equal, the sign of the
potentials on each sphere is determined by the sign of the δ0
that we know behaves differently from the inside and
outside. Consequently, the interaction energy becomes
positive. When both terms are present in the potential,
one of them is dominant over the other. As λ0 increases,
higher absolute values of λ1 are needed to obtain a positive
energy. This pattern holds for both plots, although the
numerical values depend on the radii.
We also observe in Fig. 1 that the δ0 contribution is not

symmetric under λ1 → −λ1. In the right graph, where the
radii of the spheres do not differ much from each other (and
therefore the situation approaches the parallel plates con-
figuration when the radii are large enough) we see that if
both couplings of the δ0 are positive λ1 > 0, the Casimir
energy shows almost the same pattern as in the case when
both are negative λ1 < 0. This symmetry fades out as the
difference between the values of the radii increases (see plot
on the left); that means, when the inner sphere becomes
comparatively smaller than the outer one. Next we turn

off the delta interaction in the potential by doing
λ0;1 ¼ λ0;2 ¼ 0, so that we are left with concentric spheres
defined by a δ0 potential alone on their surfaces. Results are
shown in the right graph in Fig. 2 for x1 ¼ 1 and x2 ¼ 2.
We observe that when the couplings have the same sign the
interaction energy is positive (as we mentioned above),
while it becomes negative if the couplings have different
sign. We compare this result with the equivalent one from a
plane geometry showed on the left of Fig. 2, where the
same pattern is obtained. For both geometries the results
agree with the change in sign that the δ0 introduces when it
is approached from inside or outside, or equivalently for
planar geometry, from one side or another. We furthermore
observe again how the spherical geometry introduces an
asymmetry on the values of the positive and negative
energies compared with parallel plates.
We test the numerical results by making the radii of the

spheres large while keeping a small constant the difference
between them so that we can compare with the parallel
plates geometry. The plots are presented in Fig. 3. We see a
tendency to recover the behavior of the Casimir energy for
planar geometry studied in Ref. [39]. The plots show the
interaction Casimir energy for different values of the
couplings when these are the same in both bodies.
The plot on the left shows the result for parallel plates

while the one on the right is generated from concentric
spheres with large radii keeping values with small difference
between them. It can be seen that in this situation there is a
tendency to recover the behavior of the quantum vacuum
interaction energy between two plates as the values of x1 and
x2 increase keeping constant the distance between them.
Finally, in Fig. 4 we consider the case in which one

sphere is defined by a δ and the other one by a δ0
interaction. As expected, the sign of the interaction energy
changes from one setup to the other illustrating the

FIG. 1. The quantum vacuum interaction energy obtained from Eq. (29) when λ0;1 ¼ λ0;2 ¼ λ0 and λ1;1 ¼ λ1;2 ¼ λ1. Left plot: radii
x1 ¼ 1 and x2 ¼ 2. Right plot: radii x1 ¼ 1.8 and x2 ¼ 2.
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influence of having the δ0 hit from the interior sphere or the
exterior one.
We wrap up this section stressing a common feature in

the plots showed. We observe maximum absolute values of
EC when jλ1j ¼ 1. In this case the matching conditions (11)
are ill defined and they transform into Robin or Dirichlet
boundary conditions [39,43].
Again, the δ0 term makes the matching condition differ-

ent form one side of the body than from the other,

ρlðx−0 Þ ¼ 0; _ρlðxþ0 Þ ¼ −Dρlðxþ0 Þ if λ1 ¼ 1;

_ρlðx−0 Þ ¼ Dρlðx−0 Þ; ρlðxþ0 Þ ¼ 0 if λ1 ¼ −1; ð30Þ
where D ¼ 4=ðλ0 − 4x0Þ is a constant on the sphere. For
example, in Fig. 2 we see that higher values of the positive

energy are achieved for λ1;1 ¼ λ1;2 ¼ 1 (Robin vs
Dirichlet) rather than for λ1;1 ¼ λ1;2 ¼ −1 (Dirichlet vs
Robin). For negative energies jECj reaches higher values
for λ1;1 ¼ −λ1;2 ¼ 1 (Robin vs Robin) than for λ1;1 ¼
−λ1;2 ¼ −1 (Dirichlet vs Dirichlet). In Figs. 1 and 3 the
two local maximum values of EC are reached for jλ1j ¼ 1

with λ0 ¼ 0. The same holds in Fig. 4, but jECj grows with
λ0 in the range considered. Modeling the spheres in
this way, we can study cases where one of the spheres
behaves purely electric, by imposing Dirichlet boundary
conditions that correspond to TE modes, and the other
purely magnetic, by imposing Robin boundary conditions
that correspond to TM modes, or any other possible
combination.

FIG. 2. Comparison between the quantum vacuum interaction energy of two δ-δ0 plane parallel plates and two concentric δ-δ0 spheres
with λ0;1 ¼ λ0;2 ¼ 0. Left plot: two plates separated unit distance. Right plot: spherical shells with x1 ¼ 1 and x2 ¼ 2.

FIG. 3. Effect of the distance on the quantum vacuum interaction energy of two δ-δ0 spheres for λ0;1 ¼ λ0;2 ¼ λ0 and λ1;1 ¼ λ1;2 ¼ λ1.
Left plot: plates separated 0.1 units of distance. Right plot: radii x1 ¼ 10 and x2 ¼ 10.1.
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V. CONCLUSIONS

We have computed the quantum vacuum interaction
energy between two concentric spheres mimicked by
spherically symmetric δ-δ0 potentials. We have used the
TGTG formula stressing the difference between the two T
operators that enter the system denoted by T and T̃ .
The analytical expressions given in Eqs. (17) and (21)

allowed us to study in detail the physical interpretation of
the socalled T̃ operator in terms of a nonstandard scattering
problem where the source of incident probability flux is
placed in the center of the sphere instead of being
placed at infinity as it happens in most standard scattering
problems.
In addition, the analytical results from Eqs. (17) and (21)

enables us to relate the T̃ operator with the more common T
operator by means of the symmetry transformation given in
Eq. (23). The mentioned transformation requires the
change in sign of the coupling of the δ potential unlike
it happens for the same potential in the one-dimensional
case.
By using Eqs. (27) and (29) we have been able to obtain

numerical results for the quantum vacuum interaction
energy of two concentric δ-δ0 spheres as a function of
the four free parameters entering in the potential. As a
result, it can be seen, in Figs. 1–4, that the quantum vacuum
interaction energy has not a well-defined sign as a function
of the parameters fλ0;i; λ1;igi¼1;2. The positive energy

values are clearly due to the presence of the δ0 term since
we have considered positive contributions of the δ poten-
tials λ0;i > 0. This is due to the fact that the δ0 term behaves
differently on one side of the sphere and the other, causing a
change of sign and affecting the boundary conditions on the
sphere.
We observe maximum values of the quantum vacuum

interaction energy for couplings of the δ0 equal to 1 or −1.
The potential reported could be equivalent to consider
Robin boundary conditions. Moreover, for certain values
of the couplings we can achieve purely Dirichelt or
Neumann boundary conditions. We have shown that our
result can also be extrapolated with success to limiting
cases as parallel plates with δ-δ0 potential or concentric δ
spheres.
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