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1 Introduction

The problem of integrability of a given system of differential equations is a very interesting and ac-
tive field of research along thelastyears (see e.g. [1]). The most satisfactory situation would be the
integrability by quadratures. By such integrability we mean the possibility of finding the general
solution in an algorithmic'way, and in this task the existence of additional structures, for instance
compatible symplectic structures;y may be useful. In the geometric approach an autonomous system
of first order differential equations is replaced by a vector field X on a manifold M in such a way
that the system ig used te compute in a local coordinate system the integral curves of the vector
field. The determination of the integral curves of X is not an easy task and the knowledge of its
infinitesimal symmetries is very helpful. With this aim one uses to look for invariant under X geo-
metric strugtures{ For instance the complete Liouville integrability is developed in the framework of
symplectic, and more generally Poisson, structures. So, if we consider a 2n-dimensional symplectic
manifold M, for instance the cotangent bundle T*(Q endowed with its natural symplectic structure
wp, completely dntegrable systems are defined by vector fields X € X(M) admitting a set of n first
integrals for X dn involution, giving rise to a Lagrangian foliation of M and then using appropriate
agtion-angle variables we can carry out the determination of the integral curves of X.

If there are more than n functionally independent first integrals for the vector field X we say that
the system is superintegrable and moreover when there exists the maximum number, i.e. 2n —1, of
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functionally independent first integrals we say that X is maximally superintegrable! There are not
so many maximally superintegrable systems known, but the importance of identifying such systems
is strengthened not only by their interesting mathematical properties but also by the factithat they
can be used as approximation to non-integrable systems.

Let us now consider two conformally related vector fields X and f X, where, f is a non vanishing
function. They have the same constants of motion and therefore the integral ecurves of f X are
obtained from those of X by a different reparametrization of each orbit. In fact'this change of the
vector field X by a conformal one f X corresponds to a generalization of the so-called Sundman
transformation [2], or infinitesimal time reparametrization, which hadspreviously been used by
Levi-Civita [3, 4], in the theory of differential equations

dt =rdr, (1)

but now in this generalization the radial coordinate r is replacediby@n arbitrary function f of the
position coordinates.

We are interested in the case of a Lagrangian system. First we note that the new velocities o
must be obtained by making use of the new time 7 and therefore they do not coincide with vt but
are given by v = fov'. Moreover, in addition we regall that in the framework of the Lagrangian
formalism the relevant concept is the actiom,defined by the Lagrangian, and in order to preserve
the action, if a system was defined by a Lagrangian L, then the new system must be described in
terms of the new time 7 by a new Lagrangian L(q,®).given by

(g, 0) = fL (q, ;) :

In the particular case of a free motion on a Riemann manifold (@, g), where the Lagrangian L is
just the g-dependent kinetic enérgy function 7, € C>°(T'Q) given by

\Fg(v) = %g(v,v), veTM, (2)

then the new Lagrangian will be the kinetic energy determined by the metric (1/f) g because g is
quadratic in velocities and we have therefore f L(q,v/f) = (1/f)L(q,v). For a system of mechanical
type, described bysa Lagrangians L = T, — 7*V (where V is a potential function defined on the
configuration space @), the considered generalized Sundman transformation amounts to change not
only the Riemann structure from g to g = (1/f)g but also the potential function V to V = fV,
and when passing to the Hamiltonian formalism, by making use of the Legendre transformation,
the Hamiltonian' H of the mechanical type system must be replaced by H = f H.

The usefulnessyof such a correspondence has been shown in many examples. For instance, a
mechanical typeisystem for which there is a coordinate system such that the potential function is
a sum.V(g) = Vi(q1) + ...+ Vi(gn) and the local expression of the Riemann structure is diagonal,
ie.

1 n n
Lig,v) = 5 > ailg)v; =Y Vi),
i=1

i=1
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is separable as a sum of one-dimensional systems and hence integrable by quadratures. A general-
isation of such system is due to Liouville [5] and consists on the Hamiltonian

Hi4:0) = gy ol + 5 3 Vi) g

i=1

where W(q) = Wi(q1) + ... + Wy (gn). These systems are called Liouyille systems [6, 7] and one
can check that the n functions

~

1
F, = gai(@)pi + Vile) = Wi H, =10 .m

are constants of motion {H, F;} = 0, but they are not independent because » ;" |, F; = 0.

Therefore, starting from an appropriate Hamiltonian H we will analyze, inspired by these results,
the possible functions f such that the new Hamiltonian 4/ H satisfies‘the required properties. Note,
however, that Xy is different from fXp, that is X; g = f Xy 4Y, the difference being the vector
field Y such that i(Y)wp = H df. We also note that, in the general case, f Xy is not a Hamiltonian

vector field. 3

It is known that systems that admit Hamilton-Jagobi (Schrodinger in the quantum case) sepa-
rability in more than one coordinate systempare superintegrable with quadratic in the momenta
constants of motion. In fact the modern studiesion superintegrability started with ref. [8] (prob-
ably the oldest study on this matter was the theorem of Bertrand [9] although of course without
using this word) in which the authots proved. the existence in the Euclidean plane of four families
of potentials separable into two differentysets of coordinates; two of them were related with the
harmonic oscillator and the other two with the Kepler problem; in fact most of the superintegrable
known systems (but not all) are related with these two important systems. Later on different
authors have considered this question from different points of view. The 3-dimensional Euclidean
systems with multiple separability and quadratic integrals were first studied by Evans [10] and then
other different systems werestudied. in different situations as on two-dimensional pseudo-Euclidean
spaces [11, 12], on spaces with gonstant curvature [13]-[23], and even on more general curved spaces
[24]-]27] (see [28] for a review). We also note that the multiple separability of some Hamiltonian
systems with linear terms in thefmomenta has also been studied [29, 30].

Until recently, most studies(on superintegrability were concentrated on the quadratic case but
in these last years the existence of systems possessing integrals of motion of higher-order in the
momenta (not arising from separability) has also been studied [31]-[37] but mainly in the two-
dimensional Euclidean space.

This paper isidevoted to the study of some superintegrable systems on 3-dimensional conformally
Euclidean spacesi(sée [38]-[46] for papers on this particular geometry). It is mainly concerned with
systems related to the harmonic oscillator and the Kepler problem.

Suppose weare given a Hamiltonian H of mechanical type (quadratic kinetic term plus a potential
function);#hen we can construct a new Hamiltonian H,, as H, = 1 H where 1 is a certain function
defined on/the configuration space. This new Hamiltonian represents a new and different dynamics;
for example if H is defined on an Euclidean space then the new dynamics will be conformally
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Fuclidean. The important point is that we are interested in multipliers 1 that preserve eertain
properties as Liouville integrability. A strong requirement is that p must modify the dynamies but
preserving not just integrability but superintegrability. For example, if H isseparable innGartesian
coordinates and p is of the form p = 1/f, f = fi(z) + fa(y) + f3(2), then Hjis separable in
Cartesian coordinates as well, and if H is separable in spherical coordinates and p isrof the form
p=1/f, f= fi(r)+ f2(0) /7% + f3(#)/(r?sin? 0), then H,, is also separable.in (x, 0, ¢) coordinates.
A more strong condition is that p must preserve not just separability but multiple separability;
this requirement will strongly restrict the form of the multiplier (see [42] for a similar problem in

the two dimensional case). o

An important property to be imposed is that the new Hamiltoniand,, must be a deformation of
the original Hamiltonian H. By deformation we mean that p, and therefore H,, will depend of a
parameter A in such a way that

(i) The new Hamiltonian H, is a continuous function of X'(in a eertain domain of the parameter).

(i) When A — 0 we have px — 1 and then the dynamics of the Euclidean Hamiltonian H is
recovered.
L
Next we summarize the contents of this paper.

We study four different Hamiltonian systems with conformally Fuclidean metrics and depending
on a continuous way of a real parameter \.

In the four cases the potential of the original Euclidean system is a linear combination of four
functions; the potential of the oscillator-or. the potential of the Kepler problem as the first and
dominant term modified by the presence of three additional functions. First, in Sec. (2) we
study two different systems relatednwith the 3-dimensional isotropic oscillators; we prove their
superintegrability and we obtain the explicit expression of six A-dependent quadratic constants
of motion (five of them functionally independent). Second, in Sec. (3) we study a Hamiltonian
obtained as a continuous déformationof an oscillator with ratio of frequencies 1:1:2 and with three
additional nonlinear terms of{the form ko/2?%, k3/y? and k4/2%2. We prove that this system is
superintegrable with, integrals of motion of fourth-order in the momenta. Third, in Sec. (4) we
analyze a Kepler systemnmodified with the three nonlinear terms ks /2, k3/y? and k4/2%. Also in
this system we obtain'quartic.constants of motions. In the four cases, the multipliers p, leading to
the conformally Euclidean systems, are directly related with the first term of the potential, that is,
harmonic oscillatoryin Sec: (2) and (3) and Kepler potential in Sec. (4).

We obtain, in all the cases, the value of the sectional and Ricci curvatures of the metrics.

Finally we present an Appendix with the properties of a A-dependent version of the Fradkin
tensor constructed with the integrals of motion of one of the oscillators studied in Sec. (2).
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2 Harmonic oscillator related Hamiltonians with a conformally
Euclidean metric

2.1 Isotropic oscillator with additional linear terms ksx, k3y,@and kgz

Let us consider the Hamiltonian H111 of the three-dimensional isotropiefoscillator. with additional
terms of the form kox, ksy, and kqz

Hin = (3) (02 + 92+ p2) + [ku(a® + 42 + 22) + koff + kbl |, (4)
and denote by u the following multiplier
p=1/1=xr"), r*=2" 4y’ +2°, (5)

where A is a real parameter that can take both positive and negative values. Then, the new
A-dependent Hamiltonian H,, defined as

1 \
H, =pHin = (W)th lim \&0H,, = Hi1,
takes the form
2 .2 2 9 2 2
Dy + Py + s T+ Yot 2 kox ksy kaz
et () I
p=nthn = (3) 1—Ar2 ™ 1= Ar2 1—)\r2+1—)\r2 1—Ar2 (6)

In the A < 0 case the dynamics of Hynis correctly defined for all the values of the variables;
nevertheless when A > 0, the,Hamiltonian (and the associated dynamics) has a singularity at
1— Ar? =0, so in this case the Hpdynamics is defined in the interior of the circle 2 = 1/, A > 0,
which is the region where the kinetic term is positive definite.

Notice that the complete potential in the Hamiltonian Hi11 can be seen as an isotropic harmonic
oscillator centered at somefpoint different from the coordinate origin, but the multiplier u depends
on the distance to the origin; and not to the potential center, so after multiplying by p this
identification is no longer true.

First, the presence of the additional terms in the potential breaks the rotational invariance, and
prevents the conservatiomof the angular momentum, but the dynamics admits as integral of motion
just a linear combination of the three components J;, i = 1,2, 3, of the angular momentum with
the constants ke =2, 3,4, as coefficients

I = kody + k3Jo 4+ kyJs3 {I,Hu}:(). (7)

The [factor pdpreserves the Hamilton-Jacobi separability in Cartesian coordinates; therefore we
obtain the following three A-dependent integrals of motion

Kaax = po + 2(k1a® + kox) + 202" H,, ., Kyyn = pi, + 2(k1y® + ksy) + 20\y°H,,

Kaoon = p2 4 2(k122 + ka2) + 2)2%H,, . (8)
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They are independent, that is dK ;5 A dKyyn N dK .\ # 0, and satisfy
KxxA+KyyA+KzzA = 2H,u7 {Kaa)\yH;L} =0, {Kaa)wab)\} =0y a,b= Z,y,%.

In addition there is another set of three quadratic integrals Ky, rather similar to the above three
functions K4y, that have the form

Ka:y)\ = PPy + (lexy + k3x + kQ:‘/) + QAxyH,u ) Kyz)\ = pyp> + (leyz + kay k3z) + 2)‘3/2H,u )

Kooy = p2pe + (2k120 + kax + koz) + 2Nex H,, O (9)

In fact, all of them can be grouped in a symmetric matrix [Kgp]

szz\ K:By)\ Kz:p)\
Mg = [Kab/\] = K:L’y)\ Kyy)\ KyzA )
Kz:t/\ Kyz/\ Kzz)\

and we can summarize all the Poisson brackets with the Hamiltonian in a single equation
{Kab)\aHu} =0} aab:%’ﬁz-

The properties of [Kyy], that represents the A-dependent version of the Fradkin tensor [47], are
summarized in the Appendix.

All these results are summarized inthe following proposition:

Proposition 1 The A-dependent Hamiltonian with a conformally Euclidean metric

p§+p§+p§)+[k 22492+ 22  kow ks y ky 2 }
L T\ 9 1

1
HuZuH111=(§)< 1-£M72 1—Ar2 L=Ar2  1-Xr2  1-Ar?

is superintegrable with five functionally independent quadratic in the momenta constants of motion
in a family of siz A-dependent functions K.y, a,b = x,y,2. Three of them, Kyzx, Kyyx, and K.y,
Poisson commute among them and two other functions in the set Kupy, a # b, can be chosen for
the total set of five functionally independent integrals of motion.

We close the study of this system by considering some geometric properties of the associated
metric of the system. First we recall that the metric determines the kinetic term of the Lagrangian
(coefficient of the Lagrangian of the geodesic motion) and that in this case is a conformally flat
metric

_ 24 1 2 _ .2 2 2
gij = (1 — Ar®)diagonal[l,1,1], r°=2a"+y°+2°. (10)

The sectional ctirvatures with respect to the planes (z,y), (z,2), and (y, z), that we denote by kg,
Kzz,-and Ky, take respectively the forms

7
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and then the scalar curvature (Ricci curvature), that is given by two times the sum of the, three
sectional curvatures (it represents a mean value of the other partial curvatures), is

2 — \r? > (12)

R:”(m

We recall that the term (1 — \r?) is always positive and therefore both nuferatotiand denominator
in R are positive. Thus, as R has A as a global factor, then the curvature of the geometry is definite

positive or negative according to the sign of A.
~

2.2 TIsotropic oscillator with nonlinear terms ky/z%ks /y*, and k,/2*

Let us now denote by Hiy1 the Hamiltonian of the three-dimensional isotropic oscillator with
additional nonlinear terms of the form ko /2%, k3/y?, andd/2>

1 k
H111=(§)(Pi+p§+p§)+ k1($2+y2+22)+ﬁ+3+7 (13)

that is the three-dimensional version of the two-dimensional S?Ilorodinsky—Winternitz system [8, 48]
(this system, that is known as the ‘caged oscillator’([28, 49, 50, 51, 52|, can be considered as the
three-dimensional version of the isotonic oseillator). It admits separability in several coordinate
systems [10], and it is superintegrable with quadratic constants of motion.

Now let us denote by p the following multiplier
p=1/1-Xe2), r*=a2>+y*+2%, (14)
where ) is a real parameter. Then the new A-dependent Hamiltonian H,, defined as

1 .
Hy, = qulign, = (m)Hm , limys0H, = Hi,

takes the form

P%‘FPZJFPE) N [k: 224+ y?+ 22 ky/a? ks/y? ky/2?
O 1

1
H“:NHlnz(i)( =72 1—Ar? 1—=Ar2  1=Xr2 1-Ar2l’ (15)

The factor u preserves the Hamilton-Jacobi separability in Cartesian coordinates. Therefore we
obtain the following three A-dependent integrals of motion

k k
I :pi + 2(k1x2 + x—;) + 2>‘932H;u Koy :pi + 2<k‘1y2 + x—i) + 2)\y2HN,

k
Koy = p2 + 2(k122 + ;;‘) +2N22H, . (16)
They are functionally independent, that is dK1y A dKy A dK3y # 0, and satisfy

KI/\+K2)\+K3)\:2H/L7 {Ki)\)H/L}:O) {Ki)\ij)\}:Oa Z?j:]-a2a3

Page 8 of 24
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There is a second set of integrals of motion related to the components of the angular momentum
that are A-independent

— (yps — 2p,)? 2)? A% )2 (5)2 (% ’
K1 = (yp- — 2py) +2k‘3(y> +2k4<z) . Ko = (2ps — xp.)” + 2k - + 2ky z> ,
2 y\2 x\2
K3 = (xpy — ypa) +2k2<;> +2k3<§) . (17)

and functionally independent
dKj NdKjo N dKj3#0.

~

That is, the factor  modifies the Hamiltonian (and the dynamical vector field X,,) but these three
integrals remain invariant. Two of these three functions can beschosendfor the total set of five
functionally independent integrals of motion.

We summarize the results in the following proposition

Proposition 2 The A-dependent Hamiltonian with asconformally Euclidean metric

p§+p§+p§)+[k 22 + P2, ko /22 ks /1y kg )22 }
1

1—MXr2 11— \ar2 i—)\r2+1—/\r2+1—)\r2

is superintegrable with two sets of three quadratic integrals of motion. A first set of three A-dependent
functions K;y, i = 1,2,3, that Poisson commute and a second set of three angular momentum-
related functions Kj;, i = 1,2,3, that are A\-independent. Two of the functions in the second set
can be chosen for the total set of fiveé functionally independent integrals of motion.

Hy, = pHin = (3) (

3 Oscillator 1:1:2 rélated Hamiltonian with nonlinear terms ky /2,
ks/y?, and ky /2>

3.1 Oscillator 1:1:2 related -Hamiltonian with Euclidean metric

Let us consider the Hamiltonian Hgss of the harmonic oscillator with ratio of frequencies 1:1:2 and
with two additional nonlinear tefms of the form ko /22 and ks /1>

k2 kf”} . (18)

1
Hiozs (Y02 +py + 1) + ki (@® + 47+ 42%) + 5 + 2

It is HamiltonsJacobi. separable in two different systems of coordinates, Cartesian (x,y,z) and
parabolic (a5 7, ¢)[10]; and it is therefore superintegrable with five functionally independent quadratic
constants of motion.

(i) Three funetions arise from the separability of the Hamilton-Jacobi equation in Cartesian
coordinates

K1 =p; +2ki2” + 2o fa? Ko =pj + 2kay® + 2k3/y®, Kz =pl+8kiz®,  (19)
K1+K2+K3:2Hk237 {Kika23}:07 {K27K]}:07 Zaj:17273



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JPhysA-115070.R1

(ii) A constant of motion related with the angular momentum

2 Y2 z\?2
Ky = Kj3=J3 + 2ko (;) + 2k3 (;) , K3, Higaz} 0. (20)

(iii) Two constants of motion of Runge-Lenz type structure

Krri = —pado+2k12%2 — 2ko(2/2?), {Kgpls Hyos} 20,
Kpra = pyJi+2k1y*z — 2ks(2/y?), {KrrosHies} =0, (21)
~

that are functionally independent, that is dKrr1 A dKgro #0. One of these two Runge-
Lenz functions, Krr1 or Krro, can be chosen for the total'set of five independents integrals
of motion.

But our purpose is the study of the following more general:Hamiltonian [49]

k k k
Hioss = (3) (0% + 9} +92) + [ (el de’) + 5+ 5+ 3] (22)
L

The new term ky/2% destroys the separability in parabolic coordinates and therefore the fifth and
the sixth constants of motion, Krr1 and Kpggo, are mot preserved (that is, {Kgrr1, Hiasa} # 0
and {Kpgr2, Hgosa} # 0). The consequence'is that this new system has only four quadratic first
integrals (we recall that a 3-dimensional system is ealled minimally superintegrable if it admits
only four functionally independent globallydefined integrals of motion).

Next we will prove that actually Hyoss is,maximally superintegrable. The important point is
that it admits new constants of motion but of higher order. That is, the new nonlinear term k4 /22
prevents the existence of the above mentioned quadratic integrals of motion, Krr1 and Kgye, but
it gives rise to the existence of several constants of motion of fourth order, all of them not arising
from separability.

N
The proof is as follows. /The4wopair of functions
1 1
(KRLl ; ;(Svp:c)) and (KRL2 ; ;(?ﬂ%)) (23)

are related between them by the time derivatives. More precisely we have

d 1 drl 1
o Kprp1 =2k, [;(iﬂpx)] ; T [;(l‘px)} = -\ Kpgp1, Az = 2
d
" A s = 2hun [3( )] i[l( )}——AK A= 4
dt RL2 = 4R4Az > Yby)| » dt L2 Yby)| = 2 INRL2, == 20

whererof course the time-derivative means Poisson bracket with the Hamiltonian Hyo34. Therefore,
iffwe denote by M; and M, the following complex function

1 1
My = Kpr1 +1iv/2ky [;(l‘pa:)} , My = Kpra +1iv/2ky [ (ypy)] ,

z

10
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then we have

d d drl
— My = — Kpr1 +1v/2ks — [;(xpx)} =—iv2ki A My,

dt dt dt
d d . d gl .
%Mg = @KRL2 +i4/2ky T [;(ypy)} = —iv/2kq4 N\, Mo,

and consequently

{Mi M7 , Hyo34 } {My, Hypza } My + Mi{ M7, Hyo34}

= (=i VR A M+ My (i /3R XM )= 0,

{MaMy , Hyoss} {My, Hyaza} M3 + Mo{ My , Hygzs }

_ (fi\/m&MﬁMQ* +M2(i\/ﬂ>\zM2*> —0.

{MiM5 ,Hyoza} = {Mi, Hyosa} My + Mi{ My Hy234}

_ (_i\/MAZMl)M; o M, (i\/ﬂAZMQ*) —0.

L
Thus the following four functions

K5 =Im(MM3), Koo =Re(MiM5), Ko, =|M |*, Ko =|M]?, (24)
are all of them integrals of motion. The function K5 is cubic in the momenta

K5 = \/iﬁ(ypy)(KRLl) Q \/iT4

(zps)(Krr2), {Ks,Hk2sa} =0, (25)

but it is not functionally independent of the others (that is, dK;1 A dKy A dK3 A dK4 A dK5 = 0).
The other three, Kg,, Kegp, and' Kg., are,of the fourth order in the momenta

2k
K¢a = (KRJ})(KRLQ)JF?;(W;U)(Z/P;;% {K6a, Hy234} = 0.
2k
Koy = (KRL1)2+7;(5%)2, {Kep, Hiaza} =0,
2k
Koo =0(Kpi2)” + 5 (upy)* s { Ko, Hizsa} = 0. (26)

Next we note twe properties. First, the two fourth-order functions Kgj, and Kg. satisfy the following
limit

B j,, 0 Key = (Kgp1)?,  limp,0Kee = (Kgr2)®,
so that we tecover the Runge-Lenz like quadratic constants of motion Kgry1 and Kpgrs of the
Hamiltenian Hpo3:" Second, these functions can be grouped in a symmetric matrix [Mgg] whose
determinant states the functional relation of the quartic functions with the cubic function K

Ko, Koq

[MKG] - |:K6a Kﬁc

:| 5 det [MKG] = (K5)2.

We can summarize these results as follows:

11
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Proposition 3 The Hamiltonian of the 1:1:2 oscillator with three nonlinear termsd

) ky | ksdy k
Hyagss = (3) (P2 + 1y +12) + [k1($2+y2+4z2) +ﬁ+?+;}

is mazimally superintegrable with a fundamental set of three quadratic constamts of motion (K1, Ko, K3)
that Poisson commute, a fourth quadratic first integral related to the amgularmomentum (K4 =

K j3) and three additional constants of motion, Keq, Key, and Kgc, of fourth orderin the momenta.
One of these three quartic functions can be chosen for the total set of five.functionally independents
integrals of motion. —

3.2 Oscillator 1:1:2 related Hamiltonian with a conformally Euclidean metric

Now let us denote by u the following multiplier
p=1/1=Xf), f=@®+y’+4°), (27)

where A is a real parameter defined is such a way thatyu must be positive, i.e. when A > 0 the
configuration space is restricted by 22 + y? + 422/< 1/\. The new Lagrangian is

ki@ y? + 422) koJx? + ks/y? + ka/ 2>
b—A(22 +9y2+422)  1—-A(22+y2+422) 17

Ly = (3) (1= A (@? 4 +42) (03 + of +03) B

(28)
and the new Hamiltonian, that is given by
1
H, = uH, :( )H Y H, = Hyss,
u = Hi1E234 D ) (22 + 20 422) k234 1M \—041y k234
takes the form
= _(l)( Py + Py £z ) { k1 (22 + y? + 422) kg/x2—|—k3/y2+k4/22] (29)
P27\ — N (22 +y2 +422) I- A2+ y2+422) 1—-X(a? +y? +42?)

(i) The factor p preserves theseparability in Cartesian coordinates; consequently the following
three A-dependent functions are integrals of motion:

Ky = p2 + 2ka” + 2k /2® + 202" H,,, Koy = p2 + 2k1y” + 2ks /y* + 202 H,,

K3y = p? + 8k 2° +2k4/z2+8)\z2HM, (30)
that are functionally independent, that is dK1y A dKs) A dK3) # 0, and satisfy

K1A+K2)\+K3)\:2H,ua {Ki/\7H,u}:07 {KiAaKj)\}:Oa 7’)]:17273
(i) The faetor  preserves the expression of the fourth integral of motion that is A-independent

o 2 ¥\? T2 _
Ky = Kj3 = (xpy — ypa) +2k‘2($> +2k3(y> , {Kj3,H,}=0. (31)

12
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Now if we denote by Krr1, and Kgyo, he following A-dependent functions obtained as‘ardefor-
mation of the previous Runge-Lenz like functions Krr1 and Kgrro

Kriap = Krra + 2 \ua?2Hyoze,  lim 0K pri, = Kria

Kriop = Krro + 2 \uy®2Hyose, im0 Krro, = Krigs

then we have the following two properties

d 1 drl 1
a Kgrriy = 2ks\, [;(ﬂﬁpx)} o [;(I‘Px)} == A KRy, = 1 Ex
d 1 drl 1
p KRrroy = 2k, [;(ypy)} o [;(ypy)] = = A KRp2pum Ay = =

They are rather similar to the previous properties in the case of the Euclidean Hamiltonian Hyos4
but with A-dependent functions; that is, H,, instead of Hysgs, Kgrii, and Krra, instead of Kgy1
and Kprpo and A\, instead of A,. The complex functions M; and M> of the Euclidean case are now
the following A-dependent complex functions M;, and My, :

. 1 y , 1
Mlu = KRLl,u +1/2ky [;(xpx)} , M2M = KRLQM + 1/ 2ky [ (ypy)} ,

z
that satisfy

{My,,H,} = =i 2kaA, My, {Ms,,H,} = —i\/2ky Ny Mo, ,

and therefore we obtain the following results
(M, M, H,} = (— i /2%, )\MMm) M;, + My, (i 2k )\MMI‘H) —0,

[ M3, = i v/ Moy ) M3, + Mo (/281 AuM3, ) =0,

(M, M3, , H, Y& (— i /2K )\ZMm) M3, + My, (i V/2ka )\ZMQ*M) ~0.
Thus the following foursA-dependent functions
Ksx = Im(My, M5, )y Keaxr = Re(M1,M;,),  Kgx = | My |*,  Keex = | My, |?, (32)

are all of themsintegrals of motion. As in the Euclidean case, one of them is cubic and the other
three are quartic4 That is, the function K5y given by

V2ky V2ky
z

K5y = . 7(33Px)(KRL2u) » 1K, Hu} =0, (33)

(ypy)(KRL14) —

is ofthird erder in the momenta but it is functionally dependent of the four quadratic first integrals.
The other three, Kguy, Koy, and Kgey, are of the fourth order in the momenta

2k
Kéan = (Krrpiu)(Kprrou) + f(xpm)(ypy), {Kear,.H,} =0,

13
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2k
Ko = (Kprip) + 724(901735)2, {Kepr . H,} =0,
2k
Koen = (Kpgpop) + 724(ypy)27 {Keer, Hu}b = 0. (34)

The deformation introduced by the parameter A preserves the relation obtained in the Euclidean
case between the quartic and the cubic functions; that is, we have a A-dependent symmetric matrix
[Mgey] and the determinant of this matrix is just the square of the cubie function

Kepy  Keax }

det | Mien] = (@x)2.
Kﬁa)\ KGC)\ [ K6)\] ( 5)\)

~

Myl = |

The following proposition summarizes the results we have obtained:

Proposition 4 The A-dependent Hamiltonian with a conformally Euclidean metric
1

1= A(2? +y?>+422)

where Hyosz4 1s the Hamiltonian of the 1:1:2 oscillator with three nonlinear terms

1 ko ks kg
Hyzza = (3) (03 + vy +12) + [k1($2+y2+4%2)+ﬁ+?+§}

Hy, = pHyo3q = ( )Hk234, lim x".0H,, = Hyo34,

is mazximally superintegrable with a fundamental set of three A-dependent quadratic constants of
motion (Kqy, Koy, K3)) that Poisson commutep.a fourth quadratic first integral related with the
angular momentum (K4 = Kj3) and a set of three,additional \-dependent constants of motion,
Keaxn, Kepy and Kgey, of fourth ordervin.the momenta. One of these three quartic functions can be
chosen for the total set of five functionally independents integrals of motion.

In this case the conformally flat metric gjj»is given by the metric in the kinetic term in the
Lagrangian L,
gij = (1 = XN(a? + y* + 42%)) diagonal[1, 1, 1] (35)
and the sectional curvatures Kgypfiz-, and k., with respect to the planes (z,y), (z, z), and (y, 2)
take respectively the forms

1 12022 5—3A\(z% + 2y — 42?)
(1—)\(x2+y2+4z2))3)’ (1—)\(:62—1-1/2—1-422))3)’
A _)\(5—3)\(29324—:1/2—4,22))
OONA - A (22 42 +422))3 )
The expressions.-of these sectional curvatures are not very simple. They have A as a global factor
but the numerators also.depend of A and can take positive or negative values depending of values
of the coordinates (the demominators are positive since the dynamics is defined in the region (1 —
A (2% 4 y?2# 42%)) >0). The scalar curvature (Ricci curvature), that is given by two times the sum
of the three sectional curvatures, is

/@my:2)\( /@mZ:A(

(36)

4 — 3\(x? + 1?) ) | (37)

(1= A(22 +y%+422))3
where the/expression in parenthesis is always positive; therefore the sign of R and the type of
geometry (negative hyperbolic or positive spherical) depends directly on the value of A.

R:G)\(

14
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4 Kepler related Hamiltonian with nonlinear terms k4/z%, k3 /1),
and k, /2

4.1 Euclidean Kepler related Hamiltonian

Let us consider the Hamiltonian H 934 of the Kepler problem with three@additional. nonlinear terms
of the form ky /2, k3/y? and ky/2>

k k k
Hyosa = (3) (02 + 92 +02) + Vicasa, Vi = 71 + w% +‘@2 + o (38)

It is separable in spherical (r, 8, ¢) coordinates and it is therefore Liouville‘integrable with quadratic
integrals of motion. In the particular case k4 = 0 it is alsofseparable i parabolic (o, T, ¢) coordi-
nates and in this case is superintegrable with five functionally independent quadratic first integrals
(including the Hamiltonian itself) [10]. Verrier et al [58] and Rodriguez et al [54, 55|, proved, by
making use of dimensional reduction and action-anglé variables; that in the general case k; # 0,
i = 2,3,4, it admits a fifth first integral quartic in"the momenta (not arising from separability
of the Hamilton-Jacobi equation) so that the system i maximally superintegrable (the quadratic
algebra of symmetries of this system was studied in [56]).

Now we prove the existence of a total of six integrals of motion (seven with the Hamiltonian but
of course only five of them are functionally independent) that can be grouped in two sets with three
integrals in each one.

First, the components (.Ji, Ja, J3) of the angular momentum are not preserved but the following
three angular momentum related functions

Ky = J? +2k3<§>2 +2k4(%)2, Ko = J2 +2k2<§>2 + 2@(%)2,
Ry 2/@(%)2 + 2k3<”;>2, (39)

are functionally independent, dK j4 A dK jo N dK j3 # 0, and satisfy the following Poisson bracket
properties
K Kol K j3} =0, {KJi,H231} =0, i1=1,2,3.

Second, let us'denote by R,, a = x,y, z, the following Runge-Lenz-related functions

k 2k 2k 2k
Rx y— (<]2pz*<]3py)*x(71+ 2+73+ 4)7

2 gt
kv 2ky  2k3  2ky
R, = (J3px—J1pz)—y(7+?+?+?)a

k 2k 2k 2k
R, = (JMUy*Jﬂ?a:)*Z(*ljL - 73 4)'

— 4
r x2 Y (40)

2
In"fact, in' the particular case (k1 # 0,k2 = ks = k4 = 0), these three functions reduce to three
components of the Runge-Lenz vector.

15



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JPhysA-115070.R1

We have the following property. The functions R,, a = x,y, z, and the functions

(xpe +ypy + 2p2)/x,  (xps +ypy + 202)/y,  (xpe + ypy H2p2)/ 2,

are related among them by the time derivatives. More precisely, we have

1 1
{Ry, Hia3a} = 2ka), . (wpcc +ypy + sz) ; { (xpx + ypy + 2p2) ,HK234} = -\ Ry,

T

1 1
{Ry 7HK234} = 2]473)\3/ ; (xp:v + YDy + sz) ’ {; (xp:v + YDy =+ sz) 7HK234} = - /\y Ry y

~

1 1
{R.,Hiaza} = 2ks\. p (JJPx +ypy + sz> ; {; (ffp:p + ypy +2p2) ,HK234} =—-XR.,
where the coefficients A\, a = x,y, z, take the forms
1 1 1

= M= 3

Ap = =
T Y z

Then the following proposition states the properties of these functions.
Proposition 5 Let M,, a = x,y, z, denote the following con?ple:c functions

1
My = Ro+i /2, (ops Ryt 2p- )07 a =2y, j=2,3,4.

Then the time derivatives of everyone of these functions satisfy the following relations

d d d

Mo = =iV A My, = M= —1V/2ks 2 My, = M= —1/2ki A M.

Therefore the moduli | M, | of the functions M,, a = z, vy, z, satisfy

%IMJ;P = (thx)M;\+ Mx(iM;;) = (=12 Ao +1/2h 20) (M) =0,

dt
@My P = (L) + b, (S 007) = (—v/2Rs 0y + 12 A (M0 ) = 0,
GIML P = (M) M+ M. (S0 = (/2R A /2R ) (MME) = 0.

Hence the three functions Ky,, a = x,v, 2, given by

2k 2 2k
Ky, = |]\430|2 = Ri + ?22<$px+ypy+2pz> ) K4y = |My|2 = R§+ y—;(wpx—kypy—kzpz)

2k 2
Ky, = ‘ M, |2 = RE + 724(1:]91 + ypy + sz) s (41)

are quartic constants of motion of motion

{Kia, Hra3a} =0, a=2Y,z
We have proved the following proposition:

16
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Proposition 6 The Kepler Hamiltonian with three additional nonlinear terms

k k k k
Hica3a4 = (%)(p§+p§+p§)+VK234, Viasa = 71+x% +y—3+;§,

is mazimally superintegrable with a fundamental set of three angular-momentum-related quadratic
constants of motion (K1, Ky, K j3) and a second set (Kuy, Ky, Ka.) of three eonstants of motion
of fourth order in the momenta.

4.2 Kepler related Hamiltonian with a conformally Euclidean metric

Now let us denote by p the following multiplier

w=1/01—k/r). (42)
where k is a real parameter. Then the new Hamiltonian given by

,
Hyy = pHgo34 = (r —

H)HK234; limny, o Hrp = Hio3a,
. 4
takes the form

el @

2 2

k
2 2 2 1
)(px+py+pz)+r +( 2Ty

Higu = (3)( —

r—K
(In this section we denote the parameéter.by s instead of A to simplify the notation and avoid
confusion with Ag, and Agy, a = z, v, 2)-

In the x < 0 case the dynamics of Hg, isicorrectly defined (the kinetic term is well defined);
nevertheless when k£ > 0, the Hamiltenian (and the associated dynamics) has a singularity at r = k;
so in this case the dynamics is{defined in the exterior of the sphere r = k. We also note that the
factor (1 — k/r) shows a certain similarity with the coefficient in the Schwarzschild metric.

N,
It is clear that p preserves thespherical separability so the first set of the three angular momentum
related functions Kj,, a'= &,y, z, still remain as k-independent integrals of motion for the x-
dependent Hamiltoniafn H g ,; that is,

{KJlaKJ2+KJ3}:07 {KJiaHK,LL}:Oa 2217273

Let us introduce the x-dependent functions W,, a = x,y, z, defined as follows

z
— ke, (44)

W, = Ry— k( JHgo34, Wy, =R, — k(

JHro3s, W.=R, — H(T
so that/they satisfy

lim, oWy = Ry,  limgo0W, =Ry, lim,,0W,=R..
Then these three functions W, a = z,y, z, and the above defined k-independent functions

(xpz + ypy + 2p2)/x,  (xps +ypy + 202)/y,  (xpz + ypy + 2p2)/ %,

17



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JPhysA-115070.R1 Page 18 of 24

are related between them pair-wise by their Poisson brackets with the Hamiltonian' Hg,
1 1
{Wx ) HK,LL} = 2k2)\x,u E (-sz + Ypy + sz) , {;(l'pa: + ypy + sz) ,HK;L} = - )\mu W,
1 1
{Wy,Hgpu} = 2ks)y, § (:pr + ypy + sz> , {; (:pr + ypy + 2p2) HKH} Xy Wy,

1 1
{Wz >HKu} = 21{54)\2/1 ; (xpx + Ypy + sz> ) {; (-rpw + Yoy + sz) 7HK/J,} = )\z,u w,,

where the coefficients Ay, a = x,y, z, that are x-dependent, take thefollowing/forms
~
).

1 r 1 T 1 T
Aap = () Ay = ?(m)a Ao =5 2
We note that if one of the three constants k; is not present in thesHamiltonian Hg, then the
corresponding function W; becomes invariant; for example,nif ko = 0 then W, is a quadratic
constant of motion for Hg,.

Proposition 7 Let M,,, a = x,y, 2, denote the following complex functions

. 1 .
Mau:Wa+1\/ijg(xpx+ypy+2pz>7 a":$7y727 j:27374

Then the Poisson bracket of everyone of these complexfunctions with the Hamiltonian Hy, is
directly related to itself and given by the following,expressions

{ w#’HK;t}:_i\/2k2)‘quww { ywHKu}:_i\/%i%)‘yuMyuv
{ ZM,HKM}:—i\/2k4AZuMZM.

These three properties are ratherisimilar to the previous properties in the case of the Euclidean

Hamiltonian (Proposition 5) but"withiu-dependent functions; that is, Hg,, instead of Hga34, My,
instead of M, and A, instead of \,, a =2, 3,4.

Therefore the moduli | Mg, | ofthe three functions M,,, a = z,y, 2, satisfy

[May My Higuh= (21 3/2F; MagaMay ) Mo + Moy (i /285 Ao M3, ) = 0,

with a = z,y, z, and§ =2, 3, 4.

Hence the threefunctions Kya, = | Ma, |2, a = x,y, 2, given by

2k 2 ks 2
K4xp. = Wf + EQ— (-sz + ypy + sz) > K4yu = W; + ? (xpx + ypy + sz) s

2ky 2
Kz = W2+ —= (:vpx + ypy + zpz) : (45)
are first integrals of motion of fourth order in the momenta.

Wemote, that the coefficients \,,, @ = x,¥, z, are not constants but functions Ay, # Ay, @ # b;
this fact prevents the coupling of M, with M,,, or M.,. That is, we obtain the three functions
Kaay = I/Va2 + ... but not any function of the form W, W, + ...

We close this section by summarizing the results in the following proposition:

18
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1
2
3
4
5 Proposition 8 The k-dependent Kepler-related Hamiltonian
6
7 _ (Y (T2 g2 42 4 ”(@@@)
8 HKM - MHK234 - (2) (7“ — /{)(p:c +py +pz) + r— + (7“ — li) e + yg + 22 )0
9
10 1s mazimally superintegrable with a fundamental set of three angular-momentum-related quadratic
1 constants of motion (Kji, Ky, Kj3) and a second set (Kupu, Kayp, Kazy) 0f three k-dependent
12 constants of motion of fourth order in the momenta.
13
14 In this case we present the geometric properties by making use of Spheri\cal c¢oordinates (r,6.¢).
15 The conformally flat metric g;; in Euclidean coordinates is given by
16 !
17 gi; = (1 — k/r)diagonall[l, 1, 1], (46)
18
19 and then in the above mentioned spherical coordinates by
20
21 gi; = (1 — x/r)diagonal[1{r?, r*gin” 0], (47)
22
23 and the sectional curvatures x,g, kr4, and kgy, with.respect to the three two-dimensional planes
24 (1,0), (r,¢), and (0, ¢), that are orthogonal to ong another, take the forms
25
3k — 4r)

27 T o — k)3 i 2(r — k)37 90T hr(r — k)3 (48)
28 .. . .
29 and then the scalar curvature (Ricci curvature), that is given by two times the sum of the three
30 sectional curvatures, is

2
31 R— _ % 49
32 2r(r — k)3 (49)
g i The sectional curvatures k,p can take positive or negative values but the Ricci curvature R (that
35 is a scalar function representing an average of the partial curvatures) is proportional to x? and it
36 is therefore always positive (we recall that the dynamics is defined in the region (r — ) > 0).
37 N
38 .
39 5 Final comments
40
2; As observed in thedntroduction the harmonic oscillator and the Kepler problem are important by
43 themselves but also as a'starting point for the study of other related but more general systems. In
44 fact this has been the matter we have studied: the analysis of four 3-dimensional superintegrable
45 systems definéd on conformally flat spaces and related with these two fundamental systems.
j? More precisely, we have proved the quadratic superintegrability (and we have obtained all the in-
48 tegrals of motion) of the following two oscillator-related Hamiltonians with a conformally Euclidean
49 metric
50 . . . . . .
51 e Isotropic¢ harmonic oscillator with additional terms of the form kox, ksy, and k42
52
53 Hi = uH —(1)(W>+[l¢ 2?4y 4 2 ko x k3y kyz
54 = A=A 1—Ar2 T2 1—Ar2  1—-Xr2 1-Ar2l°
55
57
58
59
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e Isotropic harmonic oscillator with additional terms of the form ks /2%, k3/y?, fand ky /2>

p§+p§+p§) N [k 2 +y?+ 22 ke/a? ks [y ka/?°
T N 9 1

1
H”:MH111:(§)< 1—Ar2 1—Ar2 1—=Ar2  1-—Xe2  1—-Xe2l’

as well as the higher-order superintegrability (with integrals of fourth-order in the momenta) of the
following 1:1:2 oscillator-related and Kepler-related Hamiltonians:

e Oscillator 1:1:2 with additional terms of the form ko/22, k3/y?, and K e

pi—l—pi—i—pg ) [ ky(a? + g2 ¥4dz2?)  Fho/2? + k3/y? 4 k)22
1

H Zqu234=(l)(
H 27N — A (x2 +y? + 422) —AN(2? +y2+422) 1 — A\ (22 +y? + 422)

e Kepler with additional terms of the form ko /22, k3/y?, and ky /2>

k roo(ky ks k
YW+ v+ B (5 + 5+ 5)

1
Hicp = iHrcass = (5)( -k r—r’\x2 g2 22

r—K
L

Although the initial and principal objective of this/paper was the study of Hamiltonians defined
on spaces with a conformally Euclidean geometry, weshave arrived to an important and different
question; existence of of Hamiltonian systems with higher-order integrals of motion. This is a very
remarkable result since these integrals are not related with Hamilton-Jacobi (Schrédinger in the
quantum case) separability and, be¢ause,of this, they are very difficult to be obtained. In fact,
most of studies devoted to this question are restricted to the two-dimensional Euclidean plane
and the results for these higher order in thexmomenta constants are usually obtained after a long
calculation. Here, working with»3-dimensional systems, we have obtained several quartic first
integrals by making use of a method related with the existence of complex functions which satisfy
certain interesting Poisson bracket relations in such a way that the new constants do not arise from
separability but from the properties of these complex functions.

A natural question is if this complex-related method is limited to the two systems studied in
sections 3 and 4 orsitscan be applied to other different Hamiltonian systems. This is an open
question that must be censidered as a matter to be studied. We also recall that we have made use
of some particular yalues of thé multiplier i (appropriate in every case to the particular expression
of the potential). The existence of more general values of p (more general conformally Euclidean
metrics) is also ‘@ matter to be studied.

6 Appendix.. Properties of the matrix [K;]

The symmetric matrix of the A-depending integrals of motion [Kj;], {K;;, H,} =0, H, = pHi1z,
obtained in'theé section (2.1) represents a generalization of the Fradkin tensor [47] for the dynamics
of the Hamiltonian H,, = pH111. Now we present its more important properties (in this appendix
we simplify the notation and we just write K;; instead of Kjjy).

20
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The trace of the matrix [Kj;;] is just the Hamiltonian

tr[Kij] = Kuo + Kyy + K.. = 2H,, .

The matrix [K;;] satisfies the following property

Ka::c K:z:y Kzgc Jyz X
ny Kyy Kyz S | =1 |y |l
sz Kyz Kzz ny z

where we recall that I is the following linear first integral
I:kQJyz+k3JZCC+k4ny, {I,HH} =0

In the particular case k; = 0, ¢ = 2, 3, 4, the right hand sidevanishes and we obtain the result
of Fradkin.

The following relations between the components,of the matrix are true:

. 4
yszz —2yzKy, + zzKyy =J?

Ky — 20y Koy + Y Ko = J; yz

Ty

ZQKm —2zz K., + a:2KZZ = J?

zZx)

KooKy — K2, 25, (AH,, k1) — 2(kspe — kapy) Joy — (ksz — kay)?,
KyK..— K, = 2J0(AH, ¥ki) — 2(kapy — kspz)Jy. — (kay — ksz)*.

(iv) The following three algebraie properties are true
Kijriz; = 2(@*+y* #2H)H, < (ng + JyQZ + J2),
Kijxipj = 2('75]9% + ypy ksz)H,u + |:(k73x - ka)me + (k4y - k3z)Jyz + (kQZ - k4x)<]zm s
Kipip; = (02 + 0 +02)° % 2(xpe + ypy + 202) (AHy + k) + 2(kaps + kspy + kapz) (2ps + ypy + 2p2).
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