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Variational principle and boundary terms in gravity a la Palatini
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A general f(R) gravitational theory is considered within the Palatini formalism. By applying the
variational principle and the usual conditions on the boundary, we show explicitly that a surface
term remains such that as in other metric compatible theories, an additional surface term has to be
added in the action, which plays a fundamental role when calculating the entropy of the black hole
as shown along the paper.

PACS numbers:

INTRODUCTION

Gravitational theories are described by the spacetime
metric that measures lengths and the corresponding
covariant derivatives that provides the way vectors are
parallely transported. Such construction departs from a
Lagrangian that is generally given by scalars from the
Riemann and Ricci tensors that depend on derivatives of
the connection and on the metric. As far as one assumes
a metric compatible connection, the so-called Levi-Civita
connection, one only cares about variations over the
spacetime metric, which leads to the gravitational field
equations but also to non-null surface contributions.
This is the origin of the so-called Gibbons-Hawking-York
boundary term that compensates the surface term in
General Relativity. Similar boundary terms have to be
added in scalar-tensor theories and metric f(R) gravities
[1–3]. Nevertheless, in the so-called Palatini formalism,
one considers the spacetime metric and the connection as
independent fields in principle, and then by applying the
variational principle, the corresponding field equations
for the metric and the connection are obtained which
show that actually the connection is metric compatible
with a conformal metric to the spacetime one [4, 5].

Nevertheless, in the Palatini formalism, surface terms
are removed by considering Dirichlet boundary condi-
tions on the variations of the connection, such that no
boundary terms remain. In this letter, we reformulate
the variational principle when applied in the Palatini
formalism by assuming that the connection is not the
fundamental field but the metric compatible tensor is.
By doing so, the corresponding boundary terms are ob-
tained, and we propose a surface term similar to the
Gibbons-Hawking-York to be added to the gravitational
action. As in GR, such new term which depends con-
formally on the geometry of the boundary, will play a
fundamental role in several frameworks as the hamilto-
nian approach of the theory. Here we obtain the entropy
of the Schwarzschild black hole in these theories through
the Euclidean semiclassical approach, and shown that the
entropy is induced by the new surface term. The ex-

pression of the entropy coincides with the one calculated
previously in the Palatini formalism by using Noether
charges [6].

PALATINI FORMALISM

The general gravitational action is given by:

S = SG + Sm =
1

2κ2

∫

d4x
√−gf(R) + Sm , (1)

where the metric of the spacetime is given by gµν and we
are assuming that the matter action Sm just depends on
the metric and the matter fields, preserving the Equiva-
lence Principle, while the constant κ2 = 8πG. The Ricci
scalar R is defined as the contraction of the Ricci tensor
with the spacetime metric:

R = gµνRµν(Γ) . (2)

In the Palatini formalism the connection is assumed to
be in principle an independent field, which might not
be metric compatible with gµν . The Ricci tensor is ex-
pressed in terms of the independent connection Γ as fol-
lows:

Rµν = ∂λΓ
λ
µν − ∂νΓ

λ
µλ + Γλ

σλΓ
σ
µν − Γλ

σνΓ
σ
µλ . (3)

Then, variations of the gravitational action (1) consist
on variations over the metric and over the connection:

δSG =
1

2κ2

∫

d4x
√−g

[

fRRµν − 1

2
gµνf(R)

]

δgµν

+
1

2κ2

∫

d4x
√−gfRgµνδRµν , (4)

where fR = df
dR . Hence, variations with respect to the

metric gµν leads to the following set of equations:

fRRµν − 1

2
gµνf = κ2Tµν , (5)

where Tµν = − 2√
−g

δSm

δgµν is the energy-momentum tensor.

The issue arises when dealing with the variations of the
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gravitational action with respect to the connection. The
variation of the Ricci tensor δRµν is given by:

δRµν = ∇σδΓ
σ
νµ −∇νδΓ

σ
σµ , (6)

such that the second term in (4) yields:

1

2κ2

∫

d4x
√−gfRgµνδRµν =

=
1

2κ2

∫

d4x
√−gfRgµν

[

∇σδΓ
σ
νµ −∇νδΓ

σ
σµ

]

, (7)

which after integrating by parts can be decomposed as
follows:

∫

d4x ∇σ

[√−gfR
(

gµνδΓσ
νµ − gµσδΓλ

λµ

)]

−δΓσ
νµ

[

∇σ

(√−ggµνfR
)

− δνσ∇λ

(√−ggµλfR
)]

. (8)

Here we have omitted the antisymmetric part of the con-
nection, as the Ricci scalar R(Γ) only depends on the
symmetric part of the connection due to the projective
invariance of the scalar curvature, such that Γ is consid-
ered symmetric under the low indexes [4]. The first term
in (8) is a boundary term and will be analysed later, while
the second term after some calculations leads to the well
known result:

∇λ

(√−gfRgµν
)

= 0 , (9)

which basically states that the connection is compatible
with the conformal metric:

qµν = Ω2gµν , Ω2 = fR . (10)

And General Relativity is recovered as far as fR = 1.
The equation (9) becomes:

∇λ

(√−qqµν
)

= 0 . (11)

Moreover, by taking the trace of the equation (5), one
obtains:

fRR− 2f = κ2T . (12)

This is an algebraic equation for the scalar curvature R,
such that can be solved as a function of the trace of the
energy-momentum tensor R = R(T ). From the metric
compatibility equation (11), one might consider to apply
the conformal transformation (10) on the Ricci tensor:

Rµν(q) = Rµν(g) +
4

Ω2
∇µΩ∇νΩ− 2

Ω
∇µ∇νΩ

−gµν
gρσ

Ω2
∇ρΩ∇σΩ− gµν

�Ω

Ω
. (13)

Finally, the field equation (5) can be expressed as:

Rµν(g) − 1

2
gµνR(g) =

κ2

fR
Tµν − gµν

RfR − f

2fR

− 3

2f2
R

[

∇µfR∇νfR − 1

2
gνµ∇λfR∇λfR

]

+
1

fR
[∇µ∇νfR − gµν�fR] . (14)

This is the usual approach when dealing with non linear
terms in the action within the Palatini formalism, as the
equations are now expressed in terms of the spacetime
metric in the right hand side while the left hand side
depends solely on the energy-momentum tensor and
its trace by the relation (12). In general this approach
allows to study different spacetimes in a simple way.

BOUNDARY TERMS IN THE PALATINI

FORMALISM

Turning back to the surface term in (8), this is usu-
ally considered to be null in the literature just by apply-
ing standard Dirichlet conditions on the boundary, i.e.
by assuming that variations of the fields are null on the
boundary, in this case the variations of the connection
δΓ. However, variations of the derivatives of the fields
are uncomfortable to be killed, what leads in General
Relativity to a non-null surface term that is compensated
by the so-called Gibbons-Hawking-York boundary term
[2]. The misunderstanding when applying the variational
principle to non linear actions in the Palatini formalism
has to do with assuming the -in principle- arbitrary con-
nection Γ as the fundamental field, while this is not, as
shown by the metricity condition (11), but it is the com-
patible metric qµν the fundamental field that plays the
game. Hence, by taking this assumption, the boundary
term in (8) leads to:

1

2κ2

∫

M
d4x ∇σV

σ =
1

2κ2

∫

M
d4x ∂σV

σ (15)

where

V σ =
√−gfR

(

gµνδΓσ
νµ − gµσδΓλ

λµ

)

. (16)

Then, by using the Gauss-Stokes theorem, it yields:
∫

M
d4x ∂σV

σ =

∫

δM
d3x

√

|γ|ǫ nσV
σ , (17)

where γ is the induced metric on the boundary δM, nσ

is the unit normal vector to δM and ǫ = ±1 depending
whether the boundary is spacelike or timelike. By lower-
ing the index in V , this can be expressed in terms of the
variations of the metric qµν as follows:

Vσ = gσλV
λ = Ω−2qσλV

λ =

= gαβ [∂β(δqσα)− ∂σ(δqαβ)] . (18)

And the boundary term (17) yields:
∫

δM
d3x

√

|γ|ǫ nσgαβ [∂β(δqσα)− ∂σ(δqαβ)] . (19)

The spacetime metric can be expressed in terms of the
induced metric on the boundary as:

gαβ = γαβ + ǫnαnβ . (20)
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And (17) leads to:

∫

δM
d3x

√

|γ|ǫ nσ(γαβ + ǫnαnβ) [∂β(δqσα)− ∂σ(δqαβ)] .(21)

The projections along the normal direction cancel each
other, while the first term is the tangential derivative on
the boundary of the variation δqσα), which becomes null
just by imposing standard Dirichlet boundary conditions:

δqσα|δM = 0 . (22)

Finally, the boundary term (15) leads to:

− 1

2κ2

∫

δM
d3x

√

|γ|ǫ γαβnσ∂σ(δqαβ) . (23)

This is the boundary term that remains in the Palatini
approach. It may be expressed in a more convenient way
by using the induced conformal metric on the boundary:

γ̃αβ = qαβ − ǫñαñβ . (24)

where the normal vector ñµ and hαβ are related to the
induced metric γ and the normal vector nµ by conformal
transformation (10):

γ̃αβ = Ω2γαβ ,

ñα = Ωnα . (25)

Then, the boundary term (23) yields:

− 1

2κ2

∫

δM
d3x

√

|γ̃|ǫ γ̃αβñσ∂σ(δqαβ) . (26)

This is nothing but the variation of the Gibbons-
Hawking-York boundary term of the conformal metric,
such that the appropriate term to be added to the grav-
itational action is given by:

SB =
1

κ2

∫

δM
d3x

√

|γ̃|ǫ K , (27)

where the conformal extrinsic curvature is given by:

K = ∇αñ
α , (28)

being the covariant derivative defined as compatible to
the metric qµν . This is related to the extrinsic curva-
ture as defined by the covariant derivative of the normal
vector to the boundary nµ by:

K = Ω−1K + 3Ω−2nµ∂µΩ, with K = ∇0
αn

α , (29)

where ∇0
α is the covariant derivative compatible with the

spacetime metric gµν . Hence, the corresponding surface
term has been obtained within the Palatini formalism. In
the next section, we consider a direct application through
the Euclidean semiclassical formalism.

EUCLIDEAN APPROACH AND

THERMODYNAMICS OF SCHWARZSCHILD

BLACK HOLES

Let us consider the Schwarzschild black hole, which
can be described by standard coordinates as

ds2 = −
(

1− 2GM

r

)

dt2+

(

1− 2GM

r

)−1

dr2+r2dΩ2 ,

(30)
where dΩ2 is the line element of a two sphere. This space-
time metric is a solution of the gravitational action (1)
as far as f(R = 0) = 0 and the algebraic equation (12)
has the root R = 0. The Euclidean approach consists of
approximating the partition function in gravity, which is
described by the path integral [7]

Z[β] =

∫

d[g] d[Γ] d[ψ] eiS . (31)

Here S is the gravitational action that includes the cor-
responding matter fields ψ. By applying the saddle point
approximation, the main contribution to the path inte-
gral is given by the classical action of a Euclidean solu-
tion:

Z[β] = eβF ≈ e−SE , (32)

where F is the free energy and β = T−1 with T the
temperature of the system, while the Euclidean action
after applying a Wick rotation t→ iτ yields:

SE = SEG + SEB =

− 1

2κ2

∫

M
d4x

√
−gf(R)− 1

κ2

∫

δM
d3x

√

|γ̃|K .(33)

In the case of the Schwarzschild spacetime metric (30),
the only non zero contribution to the Euclidean integral
(33) is the surface term, as R = R0 is a constant and
f(R0) = 0. The hypersurface of integration is given
by r = R and in order to make the Euclidean integral
convergent at infinity, one subtracts the corresponding
contribution of the asymptotic flat spacetime [8]:

SE − S0
E = SEB − S0

EB =

− 1

κ2

∫

δM
d3x

[

√

|γ̃|K −
√

|γ̃0|K0
]

. (34)

Here γ̃ and γ̃0 are the conformal transformation of the
induced metrics on the hypersurface r = R for the
Schwarzschild spacetime and the Minkowski spacetime
respectively:

γµνdx
µdxν =

(

1− 2GM

R

)

dτ2 +R2dΩ2 ,

γ0µνdx
µdxν = dτ20 +R2dΩ2 . (35)

As usual the Euclidean time τ is integrated over the pe-
riod β = T−1 = 2π/κ = 8πGM , with κ being the surface
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gravity and T the temperature. To make the lengths
equal for the Euclidean time in the Schwarzschild and
Minkowski spacetimes, one imposes β0 = β(1− 2GM

R )1/2.
In addition, the corresponding extrinsic curvatures on the
hypersurface r = R are given by:

K0 = − 2

R
,

K = − 2

R
− MG

R2
(

1− 2GM
R

) . (36)

Hence, by using (29) the Euclidean integral (34) leads to:

SE − S0
E = fR

βMG

2

(

1− 2GM

R

)1/2

, (37)

which in the limit R→ ∞ yields:

SE − S0
E = fR

βMG

2
= fR

β2

16πG
. (38)

From the free energy in (32), one has βF = SE − S0
E =

fR
β2

16πG and by using the well known thermodynamical
relation for the entropy:

S =

(

β
∂

∂β
− 1

)

βF , (39)

the entropy S of the Schwarzschild black hole in Palatini
f(R) theories is given by:

S = fR
β2

16πG
=
fR
4G

A . (40)

Here we have used the area of the horizon A = 4πr2s
with rs = 2GM . Hence, this is the expression for the
entropy in the Palatini formalism which has its origin in
the surface term obtained in the previous section. This
coincides with the expression in the metric formalism for
f(R) gravitational theories [9]. Note also that this result
was previously obtained through Noether charges in [6]
and extended in [10], such that both approaches coincide.

CONCLUSIONS

In this letter, we have shown that the surface terms
corresponding to a theory of gravity formulated in the
Palatini formalism can not be removed but provide
a contribution similar to the well known Gibbons-
Hawking-York term of General Relativity and other
higher other theories including scalar tensor theories
[2, 3]. Nevertheless, the surface term here depends

upon the conformal geometry of the boundary which
is sensible to the gravitational action itself through the
derivative of the action fR.

As in other metric compatible theories, the boundary
term is necessary for multiple analysis, as the hamilto-
nian formulation of the theory or the calculation of the
black hole entropy in Schwarzschild spacetime. The lat-
ter has been explicitly shown here, where the expression
of the entropy matches the one obtained before in the lit-
erature by using Noether charges [6]. Next efforts should
lie on the formulation of the hamiltonian approach of the
theory and the corresponding ADM energy.
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