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The observation of stable low-derivative degrees of freedom, relevant for low energy observers, amid
the likely unstable effects of higher-time derivative terms can be treated as a built-in constraint in the
dynamics. This constraint effectively turns degenerate a class of higher-derivative sectors and does
not trivialize their effects. We show this new class of self-interacting and ghost-free higher-derivative
extensions for every low derivative scalar. They lead to suppressed fluctuations atop low derivative
backgrounds instead of a ghost. In contrast to some models with first-order derivative interactions
with applications for dark energy and inflation, these theories with necessarily constrained second-
order derivative self-interactions do not modify the speed of propagation, neither the cone of influence
for the field equations, which are prescribed by the low-derivative background (source) that is also
essential to condense the ghost; hence, avoiding the superluminality issues of the former.

I. INTRODUCTION

In spite of the phenomenological success of the stan-
dard model of particle physics (SM) and Einstein gravity
in a wide range of energies, it is understood that they do
not give the full picture. New effects are explored beyond
the currently tested energy scales, for instance, by adding
effective terms to the SM which must cause negligible
corrections in at least some energy regimes. In striking
contrast, non-degenerate higher-derivative terms do not
induce small corrections but radically modify the physics
through non-perturbative effects, as they bear a funda-
mental instability [1]. They enlarge the dimensionality of
phase space including a ghost that catasthropically desta-
bilizes the low-derivative degrees of freedom (dof’s) upon
interaction [1–6]. Hence, higher-derivative extensions are
either neglected, or applied only in the regime of the effec-
tive theory, for instance, by the method of “perturbative
constraints” which can at best hide the ghost at some
order, although not eliminate it [1–4, 7–12].
Galileons [13], and degenerate theories [6, 14–17] are

among some exceptions [18–21]. Concretely, the theorem
of Ostrogradsky states that every non-degenerate higher-
derivative theory entails an unbounded energy from be-
low, which is ultimately seen in the propagation of an
additional ghosty dof [1, 2, 5, 22]. Constrained degen-
erate theories circumvent the issue at the expense of in-
troducing an additional ad-hoc low-derivative dof that
must non-trivially realize the degeneracy, and eliminate
the ghost. All in all, the higher-derivative dof may lack
physical interpretation of its own. A less restrictive class
of degenerate, quadratic Lagrangians was detailed in [6].
In contrast, we propose a class of degenerate and ghost-

free higher-derivative extensions for every low-derivative
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scalar that are necessarily self-interacting, where the sta-
bility follows in a similar mechanism as in ghost conden-
sation [23]. As a distinctive feature, their stability criti-
cally hinges on the propagation of the corresponding low-
derivative dof’s, which are taken as a source for any effect
requiring higher derivative terms for its description. In
short, this class is stable by promoting the “incidental ob-
servation of low-derivative dof’s” to be a genuine built-in
constraint amid the would-be unstable higher-derivative
dynamics. This constraint, first, takes care for the ob-
servation of the low-derivative dof’s in the background.
Second, it generates secondary constraints that turn de-
generate and ghost-free only this compatible class. This
setup keeps the dimensionality of phase space at most
the same as for the corresponding low-derivative theory,
without a ghost, second-order equations, and the new ef-
fects are suppressed corrections atop the low-derivative
mode.
The layout of this work is the following: In section II

we motivate the setup by considering fluctuations about
solutions to the low-derivative theory. In section III we
summarize the proposal in a two-step setup. In section
IV we verify the stability and the low dimensionality of
phase space. In section V we show with an example the
new dynamics, and the general properties for the scalar
ghost condensate. We stress on the speed of propagation,
the (acoustic) cone of influence for the wave equation,
and subluminality despite the built-in higher-derivative
self-interactions. We give the conclusions in section VI.

II. FLUCTUATIONS ABOUT LOW

DERIVATIVE DYNAMICS

As a motivation for the main results in the sections
below, we first consider an expansion about solutions to
the low-derivative theory. This expansion is meaningless
for an (unconstrained) unstable higher-derivative theory.
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Thus, concistency requirements and smallness of the fluc-
tuations will reveal, first, a special class of higher deriva-
tive sectors, and second, a minimal compatible choice of
necessary constraints, both prescribed by the background
low-derivative dynamics.
Let us first consider a theory with Lagrangian depend-

ing on up to first time derivatives of the dynamical vari-
able φ, and possibly, spatial derivatives L(1)(∂φ, φ). We

will assume it is non-degenerate. That is, with φ̇ time
derivative of φ,

∂2L(1)

∂φ̇2
6= 0 , (1)

such that the Euler-Lagrange equation for L(1) depends
linearly on φ̈. For definiteness, we assume that L(1) prop-
agates only one dof and the dimensionality of phase space
is 2, since two initial conditions must be imposed in order
to solve the second order equation of motion.
Now, higher derivative extensions to the low derivative

theory L(1),

L = L(1) + L(2) , (2)

where L(2)(∂2φ, ∂φ, φ) depends on second time deriva-
tives of φ, increase the number of dof’s (introduces a
ghost) in the case that L(2) is non degenerate: namely,
the term

∂2L(2)

∂φ̈2
, (3)

does not vanish. With this non degenerate condition,
the theory (2) is unstable and non unitary upon quanti-
zation [1–6, 14, 15, 17]. For definiteness, we will assume:
(3) is not identically zero (instead, we will construct a
constrained version of (2) where (3) vanishes only on-
shell). Furthermore, for the moment, we consider L(2)

strictly high on derivatives. That is, L(2) can be writ-
ten proportional to φ̈ and these higher derivatives can-
not be eliminated by integration by parts. Finally, we
will canonically normalize φ based on L(1), in such a way
that with L(2), we introduce a new energy scale (Λ). Un-
less stated otherwise in the next sections, to avoid dis-
tractions with non-essential field formalism, we will first
analyze mechanics of the sole dynamical variable φ(t) de-
pending only on time.
Note that, if the higher derivative terms are not

degenerate, they cannot induce small corrections to the
low derivative dynamics of L(1). First, the equation
of motion is of 4th order and 4 initial conditions are
required; hence, the dimension of phase space for
dynamics of the theory (2) is larger than in the theory
L(1). Second, upon interaction, the low derivative dof
propagated with L(1) dynamics is catastrophically desta-
bilized. In other words, (2) leads to unstable dynamics
regardless if there is any small parameter suppressing
the higher derivative sector [1]. As noted long ago, the
Ostrogradsky’s instability is a non-perturbative effect
[1–5]. Perturbative expansions for (2) can at best hide

the ghost [1–4, 7–12].

Below, we construct a class of constrained modifica-
tions of the unstable theory (2), which we denote as L′(φ).
They have the property that fluctuations about the back-
ground set by the low derivative dynamics are degener-
ate, stable (in the sense of Ostrogradsky) and can be
arbitrarily small. In other words, the higher derivative
terms in the constrained theory L′(φ),

1. induce only corrections to the low-derivative modes
described by L(1) (no new modes are integrated-in).
These corrections are suppressed by Λ, and,

2. they are naturally stabilized by the low-derivative
modes described by L(1) (the fluctuations are de-
generate on the L(1)-background).

Note that we are selecting L(1) as special for the
dynamics. A primary motivation is the phenomeno-
logical success of low derivative theories at least at
low energies. Hence, we refer to the low derivative
dynamics derived from L(1) as the the low energy sector
and the corresponding solutions as the low energy modes.

By the properties of the corrected theory L′, we con-
sider a perturbative expansion with the distinctive fea-
ture that the leading, 0-th order approximation is the
standard, low derivative dynamics. Namely, denoting
the Euler-Lagrange equation derived from an action with
Lagrangian F (ψ1, ψ2, . . .), for the dynamical variable ψ1,
as,

Θ(F ;ψ1) = 0 , (4)

we denote the solution for the low energy sector as φ0
such that,

Θ(L(1);φ0) = 0 . (5)

That is, φ0 represents the low energy modes. Now, let
us decompose φ in terms of a fluctuation (π) about this
0-th order solution as,

φ = φ0 + ǫπ , (6)

where ǫ is an arbitrarily small dimensionless parameter,
whose physical meaning will be argued below. Note that
this expansion is meaningless for the unstable theory (2).
However, for the corrected theory L′, the expansion must
be meaningful and small fluctuations about the low en-
ergy solution ǫ‖π‖ ≪ ‖φ0‖ must not become large arbi-
trarily fast, as one would expect from an Ostrogradsky
unstable theory (2).
Let us first expand about φ0 in (2) up to order O(ǫ2)

and read out from the signatures of the instability the
structure that L′ must have. L becomes,

L = L0 + Lπ , (7)

where L0 can be written as a total time derivative, as it
only depends on the fixed background φ0, and Lπ is,

Lπ = ǫ2
1

2

∂2L(2)

∂φ̈2

∣

∣

∣

∣

0

π̈2 + L̃π +O(ǫ3) , (8)
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where the term L̃π is, up to a total time derivative, a
second order polynomial of ǫπ and ǫπ̇, and the subindex
|0 means evaluation at the background φ0. Notice again
that the O(ǫ2) approximation in (8) cannot be justified
for the naive, unstable theory (2), however, it should be
meaningful for the corrected theory. Let us take a first
step to construct L′: at order O(ǫ2) the only term that
signals the Ostrogradsky’s instability is the first on the
right hand side of equation (8) (∝ π̈2). It leads to a
linearized equation of 4-th order for π. Clearly, the con-
strained dynamics L′ should not have such terms in the
perturbative expansion about the low energy mode φ0.
Let us see the options: on the one hand, if (2) contains
no self-interactions in the higher derivative sector, then
(3) should be zero in order to eliminate the signature of
the instability in (8). This is the trivial degeneracy re-
quirement such that (3) identically vanishes, which we
excluded in first place. On the other hand, if there are
nonlinear terms in the higher derivative sector, then (3)
is a function of φ and derivatives. Since this function
must be such that, if it is evaluated on the 0-th order
solution φ0, it vanishes, a clear choice is,

∂2L(2)

∂φ̈2
∝ Θ(L(1);φ) , (9)

such that the perturbative expansion for L′ reduces to,

Lπ = L̃π +O(ǫ3) , (10)

and the fluctuations π atO(ǫ2) solve a second order equa-
tion with (space-)time dependent coefficents fixed by φ0.
Let us note that (9) is not identically zero, and yet, it van-
ishes for fluctuations about low energy modes at O(ǫ2).
Below, we must implement this non-trivial degeneracy at
order O(ǫ3).
Furthermore note that (9) is not a necessary condi-

tion; however, it encloses the interesting property that
the stability of the higher derivative theory hinges on the
propagation of the well-known low energy modes. Thus,
one could expect that corrections due to L(2) could be
masked in low energy scatterings in the (L(2)-stabilizing)
observation of the low-derivative degrees of freedom.
Now, Ostrogradsky’s instability is a non-perturbative

effect which cannot be hidden at O(ǫ3). Therefore, as is
well known, L′ must have constraints and be degenerate
[2, 3, 6, 14–17]. Let us show the constraint in L′ that not
only stabilizes at non-perturbative level, but also makes
meaningful the above-defined expansion about the low
energy mode: in the unstable theory (2) the origin of
the issue is that the low energy mode φ0 is not meaning-
ful as a 0-th order solution in a perturbative expansion.
In other words, fluctuations, “small” with respect to φ0,
would become rapidly “large” due to the O(ǫ3) terms.
Therefore, for the corrected theory L′ it must be guar-
anteed in first place that the low energy mode φ0 is a
background on top of which fluctuations can be built de-
spite the higher derivative terms.
Altogether, in L′ this can be treated as a genuine con-

straint on the dynamical variable φ, J(φ), imposed by an

auxiliar variable a (Lagrange multiplier),

L′(φ, a) = L(φ, ∂φ, ∂2φ) + aJ(φ) , (11)

where L is given by (2) satisfying (9), and the obvi-
ous choice for J(φ) that guarantees the low derivative
background φ0, which however does not trivialize the
dynamics because a must become dynamical, solving a
2nd-order differential equation, and bearing the higher-
derivative effects, is,

J(φ) := Θ(L(1);φ) . (12)

Equivalently, J(φ) sources the auxiliar a, and the physi-
cal interpretation is clear: the dynamics of the low energy
mode (φ0) sources any effect requiring higher derivative
terms for its description. Following Dirac’s programme
we will see the non trivial character of this setup, as it
generates more constraints than (12) itself. Hence, (12)
is not identically zero and L′ dynamics can be richer than
the corresponding low derivative sector (5). It will reduce
the dimensionality of phase space, leaving no ghost, and
relating a and φ such that altogether there is at most one
truly dynamical degree of freedom.
As a first taste of this analysis notice that the con-

straint (12) implies the required degeneracy only on-shell:
namely, (9) does not vanish identically, but it does van-
ish when it is valued on solutions to the Euler-Lagrange
equation for a,

Θ(L′; a) = J(φ) = 0 , (13)

which sets φ = φ0 (only on-shell) and however, it does
not trivialize L′ because there is an additional dynamical
variable (a) that is taking care for the observation of these
low energy modes amid the higher-derivative effects of
L(2). Indeed, a solves a differential equation on its own:

A taste of the new dynamics

The differential equation for the ghost condensate (a),
with the notation (4), is deduced from,

Θ(L′;φ) = Θ(L;φ) + Θ (a J(φ);φ) = 0 ,

where we can use the other Euler-Lagrange equation (13),

Θ
(

aΘ(L(1);φ);φ
)
∣

∣

∣

0
= − Θ(L(2);φ)

∣

∣

∣

0
. (14)

More explicit, by assumption (1) the term Θ(L(1);φ) de-

pends linearly on φ̈ such that, for instance, in the me-
chanics of a point particle the left hand side of (14),

(

d2

dt2
∂

∂φ̈
−
d

dt

∂

∂φ̇
+

∂

∂φ

)

(

aΘ(L(1);φ)
)

∣

∣

∣

∣

0

,

is a second-order differential operator acting on a, which
may contain damping terms and non vanishing time de-
pendent coefficients valued on the sourcing, low energy
mode φ0. Finally, the right hand side of (14) is a forcing
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term driving the non homogeneous equation for a, which
is defined by the dynamics of the higher derivative sector
L(2). Notice that it is non-zero because it is valued on
φ0, and also, it is necessarily suppressed by the scale Λ.
Prominently, in the case of relativistic field theory, this
setup matches the speed of propagation and (acoustic)
cone of influence for a-wave equation (14) with the wave-
equation for the low energy mode (13), even though there
are derivative interactions of φ0 forcing a on the right
hand side of (14). That there are second order equations
does not mean that the system is stable in the sense of
Ostrogradsky [6]. This requires a critical verification of
the energy and dimensionality of phase space [2, 5, 6].
(For more details of the ghost condensate dynamics, see
section V).

A taste of the stability, and the criticality

Let us review the key aspects that lead to “stable” dy-
namics for (11), while the initial theory (2) is unstable
(Here we only refer to “stability” only in the sense of Os-
trogradsky): It is easy to see that the conserved quantity
derived from the time homogeneity of a second-order time
derivative action with Lagrangian L (which we associate
with the energy for a standard low derivative theory), is
given by,

Eφ =
∂L

∂φ̈
φ̈+

∂L

∂φ̇
φ̇− L− φ̇

d

dt

∂L

∂φ̈
. (15)

The configuration space is determined by the coordinates

φ, φ̇, φ̈ and φ
···
. All terms on the right hand side of (15)

with the exception of the last one, depend on φ, φ̇ and
φ̈ in a non trivial way. However, expanding the total
derivative in the last term, it is easy to see that it depends

linearly on φ
···

as,

−
∂2L

∂φ̈2
φ̇φ
···
. (16)

If (3) does not vanish and there are no constraints, this
linear dependance implies that the energy is not bounded
from below [1–6, 14, 15, 17, 24]. On the other hand, for a
higher derivative sector with the structure (9), first note
that in the energy for the small fluctuations about the
low energy mode (Eπ), for the Lagrangian Lπ (8) up to
order O(ǫ2) this term vanishes,

−
∂2L

∂φ̈2

∣

∣

∣

∣

0

π̇π··· ∝ −Θ(L(1)(∂φ0, φ0))π̇π
··· ,

Second, without restricting to small fluctuations, let us
use the full structure of the corrected theory L′: because
the energy is expressed in terms of solutions to the equa-
tions of motion, we can use again the Euler-Lagrange
equation for a (13), which imposes the low energy mode
that by definition vanishes (9) only on-shell, as well as the

critical would-be linear term ∼ φ
···
. As we will see below,

the linear terms in a in the energy are only temporary,
because a is a Lagrange multiplier that must be solved.
Similar considerations can be done for a field theory, as
we detail in the next sections.
The vanishing of the linear dependance on φ

···
of the

energy amounts to a would-be linear momentum in
the Hamiltonian that is constrained to other canonical
coordinates; thus, eliminating the linear dependance on
the hypersurface of constraints. This constraint follows
from (9) and the constraint (12) (associated with the
use of (13) in the previous analysis). They imply the
reduction of dimensionality of phase space from 4, in the
unstable higher derivative theory (2), to at most 2 in a
(consistent) constrained theory (11) (For more details
see the Hamiltonian analysis in section IV). Therefore,
up to further cancellations, the amount of initial data
for the L′ dynamics is the same as for the low energy
theory L(1) that is specially chosen at the preparation
of the scattering (which sets apart L(1) dynamics as
a circumstantial source for any new dynamics to be
probed in the high energy scattering, L(2)).

Finally, let us note: from the energy Eφ with the
term (16), the condition (9) amounts to have designed
the higher-derivative theory L′ such that the 0-th order
solution for the perturbative expansion (low-derivative
dynamics) is a critical point of the energy,

∂Eφ

∂φ
··· = −

∂2L′

∂φ̈2
φ̇ ∝ Θ(L(1);φ) = 0 .

III. SUMMARY OF THE SETUP

The setup proposed in this letter can be summarized
in two observations: first, the stability of a class of
higher-derivative theories L′

(

L(1)
)

could be granted by
the propagation of the low derivative mode that is de-
scribed with its own low-derivative sector, L(1). Second,
this does not trivialize the higher derivative effects.
More concretely, there exists a class of constrained

and non-trivially degenerate higher-derivative theories
L′(∂2φ, ∂φ, φ, a) that

1. can be written as,

L′(φ, a) = L(φ, ∂φ, ∂2φ) + aΘ(L(1);φ) , (17)

2. and satisfies,

∂2L′

∂φ̈2
= c(φ)Θ(L(1);φ) , (18)

where L(1)(φ, ∂φ) is a non degenerate low-
derivative sector in L(φ, ∂φ, ∂2φ); Θ(L(1);φ) was

defined in (4) (by (1) it depends linearly on φ̈),
and c(φ) is a non-zero, non-singular function which
may depend on up to second derivatives of φ,
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such that L′(φ, a) propagates at most one degree of free-
dom associated with the single dynamical variable φ,
which is not a ghost. In particular, there must be at
least one such L(1)-sector that remains after all terms
proportional to ∝ φ̈ and ∝ a are removed from L′. This
was the particular choice in the previous section.
This setup can be generalized to the case of field theory.

For instance if φ(x) is a real scalar field, the generaliza-
tion for a relativistic theory is straightforward:

∂2L′

∂φ,µν∂φ,ρσ
= cµνρσ(φ)Θ(L(1);φ) , (19)

where φ,µν ≡ ∂µ∂νφ and the assumptions on c (≡ c0000)
are extended to cµνρσ(φ, ∂φ, ∂2φ).
Let us stress that (18), or (19) is non-zero and only

vanishes on-shell. Further details of L(1) and the remain-
ing part of L′ were given in the discussion following (1)
and (3). Note that the explicit term L(1) in the total La-
grangian L′ (17) contributes to the energy, even though
it is redundant to derive the classical dynamics. Finally
note that this construction does not avoid the possibil-
ity of instabilities due to unbounded potential or other
origins different than Ostrogradsky’s.

IV. OSTROGRADSKY’S STABILITY

FOR THIS SETUP

Let us check explicitly that this mechanism completely
avoids the Ostrogradsky’s instability. We will work in a
mechanical context in order to make the analysis clearer,
but generalization to fields is straightforward.
The six canonical coordinates corresponding to a(t)

and φ(t) in (17) are [2, 22]:

x1 = φ p1 = ∂L′

∂φ̇
− d

dt
∂L′

∂φ̈

x2 = φ̇ p2 = ∂L′

∂φ̈

a = a pa = ∂L′

∂ȧ

(20)

where the elementary non-zero Poisson brackets are
{a, pa} = 1, {xi, pj} = δij , i, j = 1, 2. The assumption
of non-degeneracy (18) leads to a conjugate momentum

that depends on the acceleration φ̈,

p2 = p2(φ̈, x2, x1, a) (21)

Thus, φ̈ can be inverted in terms of the canonical coordi-
nates p2, x1, x2, a. On the other hand, the p1 conjugate

momentum depends linearly on φ
···
,

p1 = G(x1, x2, a, ȧ, φ̈(p2, x1, x2, a))− φ
··· ∂2L′

∂φ̈2
(22)

p1 = G(x1, x2, a, ȧ, φ̈(p2, x1, x2, a))− φ
···
c(φ)Θ(L(1);φ)

where we have used the definition of L′ (18) and the ex-
plicit form of G is irrelevant for our discussion. Since
neither the Lagrangian nor the other canonical coordi-

nates depend on φ
···
, the linear dependance of p1 on φ

···
will

remain linear upon the Legendre transform that gives the
Hamiltonian,

H = p1x2 + p2φ̈(p2, x1, x2, a) + λξ1

− L′(p2, x1, x2, a, φ̈(p2, x1, x2, a)) (23)

where λ is a Lagrange multiplier for the primary con-
straint ξ1 = pa,

ξ1 = pa ≈ 0 (24)

due to the no dependence on ȧ. It is easy to verify that
(23) generates correct (lagrangean) time evolution [2],
thus, it is the right functional form for the energy.
However, as has been widely discussed in the literature

[1–6, 14, 15, 17, 24], unless a constraint expresses x2 in
terms of p1, the term p1x2 in the Hamiltonian is the
most basic signal of the Ostrogradsky’s instability. It is
linear in the conjugate momentum p1 and it renders the
Hamiltonian unbounded from below. Let us see in two
steps how the stability arises in this construction:

1- Consistency and secondary constraints (Dirac’s pro-
gramme): The conservation in time of ξ1 implies the low
energy dynamics as a secondary constraint ξ2,

ξ̇1 = {ξ1,H} = −
∂H

∂a
≈ 0 (25)

ξ̇1 = −p2
∂φ̈

∂a
+
∂φ̈

∂a

∂L′

∂φ̈
+Θ(L(1);φ) = Θ(L(1);φ) ≈ 0 ,

where the equality holds on the hypersurface of con-
straints. The low energy dynamics ξ2 = Θ(L(1);φ) de-
pends on the canonical coordinates x1, x2 and the accel-
eration φ̈(p2, x1, x2, a) by assumption (1), thus, in prin-
ciple, on the hypersurface of constraints ξ2 only relates a
to the canonical coordinates x1, x2, p2,

ξ2 = ξ2(φ̈(p2, x1, x2, a), x1, x2) ≈ 0 . (26)

The consistency of the Hamiltonian requires again
the time conservation of (26), ξ̇2 ≈ 0 , which does
not imply any more constraints by the consistency
procedure followed above (It expresses λ = ȧ in terms
of canonical coordinates, because ξ2 depends on a, such
that {ξ2, ξ1} 6= 0).

2- Built-in constraints from the structure of L′: The
distinctive feature of the higher derivative sector (18) at
work together with the constrained structure of the the-
ory (17) is that the secondary constraint (25) that serves
to express the auxiliar variable a, and ȧ in terms of other
canonical coordinates, necessarily implies a new, inde-
pendent secondary constraint ξ3, which is seen in the
definition of conjugate momentum (22),

ξ3 = p1 −G = −φ
···
c(φ)Θ(L(1);φ) ≈ 0 , (27)

where G depends on x2 and other canonical coordi-
nates. This is an additional constraint because the
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only term containing φ
···

which lead to the definition of
the independent momentum p1 (required to express
all time derivatives of φ in terms of canonical coordi-
nates) vanishes on the hypersurface of constraints as
a by-product of Θ(L(1);φ) ≈ 0. In other words, p1
is no longer independent but related to x2 and other
canonical coordinates on the hypersurface of constraints,
which gets rid of the linear dependance of H on p1 (23).
In fact, (27) is a new constraint that must be added
to the set {ξ1, ξ2} to solve suitably all together, and
new constraints may appear. For the moment, let us
stress that the desired expression of x2 in terms of p1 is
inherent in L′ and the Ostrogradsky’s instability is not
present (H = p1 x2(p1, . . .) + . . .).

Let us stress that the independent constraint ξ3 that
relates the would-be linear momentum p1 and other
canonical coordinates is entirely due to the intimate rela-
tion between the structure of the higher derivative sector
(18) and the constraint that takes care of the propaga-
tion of the low energy modes (12). In other words, had
the condition (18) or the constraint imposed by a (low
energy mode) (12) been different, the independent con-
straint (27) would not arise and the Ostrogradsky’s sta-
bility would still be present. A particular case of such a
failure was proven in [6]: namely, consider the case that a
imposes a secondary constraint (12) that is also a second-
order equation for φ, but different than Θ(L(1);φ) which
is used to define L′ (18). Then, similarly, there would be
a system of two second-order equations of motion, but
critically, no additional ξ3 constraint would be present
and Ostrogradsky’s instability would remain. The di-
mensionality of phase space would remain high, signaling
the ghost. In short, the constraint (12) must be com-
patible with the condition for L′ (18) such that ξ3 ≈ 0
emerges.

Let us see the reduction of dimensionality in this setup:
the special prescription (18) together with the propaga-
tion of the low energy mode in (17) implies in principle a
6-dimensional phase space (20), which is reduced by the
3 independent constraints ξ1, ξ2, ξ3 to at most 3 dimen-
sions. As we saw, it guarantees the elimination of Os-
trogradsky’s instability, and in accordance with [6], the
dimensionality of phase space has been reduced from 4 in
the unstable theory (2) to at most 3 for L′ (17). Finally,
depending on the particular theory (17), new constraints
may arise. In fact, a consistent non singular theory must
lead to an even-dimensional phase space. Thus, a consis-
tent theory L′ (17) must imply an at most 2-dimensional
phase space, or equivalently, propagates at most 1 de-
gree of freedom. This agrees with the low energy dynam-
ics L(1) which leads to the same dimensionality of phase
space and same amount of degrees of freedom, in contrast
to the unstable, unconstrained theory (2) that implies a
4-dimensional phase space, or 2 degrees of freedom, one
of them being a ghost.

That the dimensionality of phase space for L′ dynamics
reduces to at most the same of the corresponding low

derivative theory L(1) clearly does not imply that the
only propagated degree of freedom is the same as the
low energy mode. Indeed, for L′ dynamics the trajectory
in phase space lies on a 2-dimensional hypersurface in a
6-dimensional phase space.

V. DYNAMICS OF THE GHOST CONDENSATE

Below we discuss the generalities of the ghost conden-
sate dynamics that arise in this setup. We stress on the
speed of propagation, the (acoustic) cone of influence for
the wave equation, as well as the stability and sublumi-
nality properties that can be inherited from a healthy
low-derivative sector, despite the built-in derivative self-
interactions in the higher-derivative sector. We start
with the simplest case in mechanics of a single particle to
show how the low-dimensionality of phase space, which
is intimately related to the elimination of the ghosty de-
gree of freedom, is indeed tied to the boundedness from
below of the energy. We only show a solution of the ghost
condensate for this simple case.

A. A first example, the energy, and the

dimensionality of phase space

The Hamiltonian for the Lagrangian L′ (17), with the
constraint structure in section IV properly solved, first,
would give the correct time evolution for at most one
truly dynamical variable (at most a 2-dimensional phase
space for a consistent model), and second, it would be
bounded from below for the one dynamical variable (no
Ostrogradsky’s instability). We showed these two aspects
in the last section and how they are intimately linked, in
accordance with [6]. However, it is difficult to write the
Hamiltonian in its explicit form for a particular model
because of the built-in self-interactions that are necessary
for ghost condensation: integrating L′ from the condition
(18), assuming that c is a polynomial function of φ̈, and

because Θ(L(1);φ) is linear in φ̈, there is a highest order

for φ̈ in L′ that scales at least as,

L(2) ∝ φ̈p ,

with p ≥ 3. Hence, although we will not solve all the con-
straints neither compute the explicit Hamiltonian, we will
compute, both the lagrangean dynamics and the energy
function, knowing from the Hamiltonian analysis that the
low-dimensionality of phase space will be intimately tied
to the boundedness from below of the energy function.
Let us consider a first example: take the harmonic

oscillator as the low-derivative sector,

L(1) =
1

2
φ̇2 −m2φ2 , (28)

and consider a simple higher-derivative sector keeping the
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symmetry φ→ −φ,

L(2) =
1

2Λ5
φ̈2

(

−
1

6
φ̈2 +m4φ2

)

, (29)

where φ2, Λ−1, m−1 have units of time, such that in this
setup the complete theory takes the form (17),

L′(φ, a) = L(2) + L(1) + aΘ(L(1);φ) ,

where, we have used the notation (4), and the condition
(18) holds,

∂2L′

∂φ̈2
=
∂2L(2)

∂φ̈2
=

(

φ̈−m2φ
)

Λ5
Θ(L(1);φ) .

The Euler-Lagrange equation for a and φ are respec-
tively: the low derivative sector for φ(t), whose solutions
we have denoted as φ0,

Θ(L′; a) = Θ(L(1);φ) =

(

d2

dt2
+m2

)

φ0 = 0 ,

and the differential equation for a(t),

Θ(L′;φ) = Θ(L(1);φ) + Θ(L(2);φ) + Θ (a J(φ);φ) = 0 ,

where the last term with J(φ) = Θ(L(1);φ) reads,

Θ (a J(φ);φ) =

(

d2

dt2
∂

∂φ̈
−
d

dt

∂

∂φ̇
+

∂

∂φ

)

a(−φ̈−m2φ) ,

which is a linear differential operator acting on a(t), left
hand side of,

(

d2

dt2
+m2

)

a =
m5

Λ5

(

3m3φ30 − 4mφ0φ̇
2
0

)

, (30)

where we have used φ = φ0 and the right hand side
is the contribution from the higher-derivative dynamics
Θ(L(2);φ)|0 also written in terms of the low derivative
solutions, hence the subindex |0. As anticipated, the ex-
plicit term L(1) in the total Lagrangian L′ is redundant
to derive the classical equations, however, it does con-
tribute with the standard form of energy, as we verify
below.
Note that both equations are of second order. Even

though it seems that 4 initial conditions are required to
find particular solutions, a is an auxiliar variable that
is linked to the only 2 initial conditions that fix the
particular solution φ0. Indeed, we know from the con-
strained evolution, which is implied by the Hamiltonian,
that phase space is at most 2-dimensional. Let us see:
the energy function (15) has a contribution from the har-
monic oscillator L(1), which is the low energy sector,

E(1) =
1

2
φ̇20 +

m2

2
φ20 ,

and a new contribution from the constrained higher
derivative sector,

E(2) =
m5

Λ5

(

2mφ20φ̇
2
0 +

1

4
m3φ40

)

+ φ̇0ȧ+m2φ0a ,

where all terms but the last two of the last line (depen-
dent on a and ȧ) are positive contributions to the energy
E = E(1) + E(2). Let us recall that a(t) is an auxiliar
Lagrange multiplier, and it must be solved: to do so, we
showed in section IV that the constraint that eliminates
the Ostrogradsky’s instability (27) is also necessarily as-
sociated to the constraint (25) and derived conditions
that allow to express a and ȧ in terms of other canonical
coordinates. In other words, the particular solution for
a(t) (30) is linked to the solution to the other canonical
coordinate φ = φ0 by the boundedness from below of the
energy (elimination of Ostrogradsky’s instability (27)),
such that the dimensionality of phase space is at most 2.
Indeed, if the particular solution for φ0 is,

φ0(t) = c1 y1(t) + c2 y2(t)

where c1, c2 are fixed by initial conditions and y1 =
cos(mt), y2 = sin(mt), then, a(t) is written as the solu-
tion to the homogeneous equation of (30), namely, with
the same basis of independent functions {y1, y2}, plus a
solution to the non homogeneous equation (30), N(t),

a(t) = c3 y1(t) + c4 y2(t) +
1

Λ5
N(t) ,

where,

1

Λ5
N(t) = −

1

m
y1

∫

dt y2 Θ(L(2);φ)
∣

∣

∣

0
+ (y1 ↔ y2) ,

depends only on c1 and c2, and Θ(L(2);φ)
∣

∣

0
is given by

the right hand side of (30). The key aspect is: we can find
c3 and c4 in terms of c1 and c2 just by writing the energy,
which must be free of linear instabilities (bounded from
below), as the Hamiltonian analysis revealed in section
IV. Let us see: the last two terms in E(2) are expressed
with these solutions as,

φ̇0ȧ+m
2φ0a = m2 (c1 c3 + c2 c4) (y

2
1+y

2
2)+

φ̇0Ṅ +m2φ0N

Λ5
,

where the quadratic first term is clearly not positive def-
inite for every particular solution of φ0(t) and a(t) unless
c3 = c1 and c4 = c2. That there is such a non trivial
choice in the energy that links a low-dimensionality
of phase space with the boundedness from below is a
signature of the elimination of Ostrogradsky’s instability,
which would be evident in the full Hamiltonian. The
last two terms dependent on N(t), and Ṅ(t) are non
linear functions of y1, y2 and integrals, and thus, are
not critical in this analysis (however, they could show
other types of instabilities depending on the particular
model).

All in all, the ghost condensate takes the form of a Λ-
suppressed correction (N(t)) superposed to the low en-
ergy mode φ0,

a = φ0 +
1

Λ5
N , (31)
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such that a(t) is fixed once the two initial conditions for
the preparation of the low energy mode (φ0) are given.
This is reminiscent of the Ansatz (φ = φ0 + ǫπ) for the
perturbative expansion about φ0 in L′ dynamics, which
motivated this setup in section II, where we identify the
solution to all orders ǫπ = Λ−5N . Let us stress that
this form of the solution for the ghost condensate is not
restricted to the particular higher-derivative sector (29).
In fact, the form of the ghost condensate a(t) as a super-
position of a Λ-suppressed correction atop φ0 (31), holds
for any higher derivative sector L(2) compatible to the
harmonic oscillator (28). Namely, satisfying (18). This
follows in such a simple way because the equations for
a(t) and φ(t) share the same linear differential operator,

(

d2

dt2
+m2

)

.

More intricate relations arise with nonlinearities in the
low derivative sector L(1).

B. Scalar ghost condensate, the wavefront velocity

and the causal structure

Ghost condensates in this setup inherit many of the
features of propagation of the low energy modes. This
holds because the differential operator for the ghost con-
densate is derived from the dynamics of the low energy
mode (Θ(L(1);φ)), and most prominently, because the
effective metric coincides for both field equations. We
can easily see this: consider the complete theory with
the form (17),

L′(φ, a) = L(2) + L(1) + aΘ(L(1);φ) ,

where the low derivative sector is the most general self-
interacting real scalar field φ(t, ~x) with Lorentz invariant
Lagrangian L(1) that depends only on powers of ∂µφ∂

µφ
and φ. The equation of motion for φ is derived from,

Θ(L′; a) = Θ(L(1);φ) = 0 ,

and defining 2X = ∂µφ∂
µφ, with gµν as flat space-time

metric, it can be written as,

−Gµν∂µ∂νφ− 2X
∂2L(1)

∂φ∂X
+
∂L(1)

∂φ
= 0 , (32)

where Gµν depends on φ and its first derivatives,

Gµν =
∂L(1)

∂X
gµν +

∂2L(1)

∂X 2
∂µφ∂νφ . (33)

Gµν defines the characteristic curves of the field equa-
tion and the propagating character of solutions to (32).
Namely, whether the equation is hyperbolic, parabolic
or elliptic. In the case it is hyperbolic, there are indeed
propagating solutions. In other words, the characteristic
curves are real and they serve to identify the wavefront
and its velocity [25, 26]. In short, Gµν fixes the speed of

sound for the wave equation (32) and the acoustic cone
of influence [26–28]. Hence, it usually receives the name
of effective, or emergent metric.
On the other hand, the equation for the scalar ghost

condensate (a(x)) is derived from Θ(L′;φ) = 0. Denoting
with φ0 the solutions to (32), the equation for a(x) takes
the form,

Θ
(

aΘ(L(1);φ);φ
)∣

∣

∣

0
= − Θ(L(2);φ)

∣

∣

∣

0
. (34)

The left hand side is a second order differential operator
acting on a(t, ~x),

(

∂µ∂ν
∂

∂ (∂µ∂νφ)
− ∂µ

∂

∂ (∂µφ)
+

∂

∂φ

)

aΘ(L(1);φ)

∣

∣

∣

∣

0

;

as Θ(L(1);φ) (left hand side of (32)) depends linearly on
∂µ∂νφ, it takes the form,

(

Gµν∂µ∂ν + vµ∂µ +M2
)

a , (35)

where we encounter the same effective metric Gµν(φ0).
Thus we can identify the same characteristic curves for
the field equation of the ghost condensate as for the re-
spective low derivative theory (32). In other words, the
higher derivative effects in this setup do not modify the
speed of propagation, neither the (acoustic) cone of in-
fluence of the low derivative theory, because necessarily,
the principal part of the differential operator (Gµν∂µ∂ν)
is kept invariant by the built-in constraint (12). Al-
though this built-in property is what keeps the second-
order equations of motion in this setup, thus helping to
eliminate the ghost, these features do not arise from the
critical definition of the higher derivative sector (18) that
is necessary to keep the low dimensionality of phase space
and fully eliminate the ghost, as we verified in the pre-
vious example. Therefore, although the coincidence of
the causal structures follow from the necessary constraint
(12), this property can be interpreted only in part as a
by-product of the setup. All in all, if the effective metric
Gµν implied by the low-derivative sector L(1) of the corre-
sponding higher-derivative theory L′ satisfies the hyper-
bolicity, stability and subluminality conditions that were
recognized long ago by Aharonov, Komar and Susskind
[29] (Appendix A),

∂L(1)

∂X
> 0 , ∂2L(1)

∂X 2 ≥ 0 , ∂L(1)

∂X
+ 2X ∂2L(1)

∂X 2 > 0 ,

then, the scalar ghost condensate inherits these proper-
ties. The higher-derivative sector L(2) with the structure
(19), constrained by (12) is limited to force the conden-
sate a(x) as in the right hand side of (34), but not to
define the propagating character of solutions neither the
dimensionality of phase space.
On the other hand, the mass term for the ghost con-

densate is,

M2(φ0) = − Θ
(

Θ(L(1);φ);φ
)∣

∣

∣

0
,



9

and the damping term is,

vµ(φ0) =

(

2∂νG
µν +

∂Θ(L(1);φ)

∂ (∂µφ)

)∣

∣

∣

∣

0

,

such that vµ vanishes if the low derivative sector L(1) con-
tains no derivative self-interactions. Consider an analo-
gous example to (28) and (29), where the low derivative
sector L(1) is the massive real scalar field (φ) and,

L(2) =
1

2Λ8
(�φ)2

(

−
(�φ)2

6
+m4φ2

)

,

satisfies (19). φ, Λ and m have dimension of mass. With
L′ in the standard form (17), the equation for the scalar
ghost condensate a(x) is,

�a+m2a =
m5

Λ8
(3m3φ30 − 4mφ0 ∂µφ0∂

µφ0) ,

where φ0 are solutions to the Klein-Gordon equation. Let
us stress that the metric is flat for the a(x) field equation,
and the speed of light is not endangered by the deriva-
tive self-interactions of the low energy mode (φ0) on the
right hand side. This contrasts to the typical, uncon-
strained low-derivative self-interactions that can be ob-
tained with L(1), whose non-perturbative effects can have
disastrous consequences such as superluminality [26–32].
This holds in general: namely, in the case that L(1) con-
tains no derivative self-interactions, the right hand side
of (34) still contains derivative interactions of the low-
energy mode forcing the ghost condensate, which are in-
duced by the high-derivative sector L(2), and however, do

not enclose contributions to the metric that could poten-
tially spoil causality, or generate other undesirable effects
(See related discussions in [26–32]).

VI. CONCLUSIONS

We showed a new class of healthy degenerate higher-
derivative extensions for every low-derivative scalar. As a
distinctive feature, their stability critically hinges on the
propagation of the corresponding low-derivative modes
that are relevant at low energies, which were interpreted
as a source for any effect requiring higher derivative
terms. The analysis was summarized in a two-step setup,
which, for a low-derivative theory, first, defines the com-
patible class of higher-derivative terms, and second, the
minimal choice of necessary constraints that turns degen-
erate the latter class, and altogether eliminates the ghost.
This setup leads to second-order equations, and keeps the
dimensionality of phase space up to the same as for the
corresponding low-derivative theory. These necessarily
constrained high-order derivative self-interactions do not
modify the principal part of the differential equation (ef-
fective metric), neither the cone of influence and speed of
propagation; hence, avoiding the superluminality issues
that may arise for unconstrained first-order derivative in-
teractions [32]. Instead of integrating-in a ghost, they
generate suppressed fluctuations atop the low-derivative
mode.
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