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Abstract: Spontaneous symmetry breaking is studied in the ultralocal limit of a scalar
quantum field theory, that is when E ≈ m (or infrared limit). In this limit we show
that a ϕ4 theory in the euclidean space in four-dimensions describes naturally instantons.
Furthermore, in the infrared limit we show that there is an exact map between ϕ4 with
self-dual Yang-Mills theories. The spontaneous symmetry breaking in the infrared limit for
a Higgs portal is also considered and we demonstrate how states of higher energy becomes
unstable and spread converting a false vacuum in a true one.
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1 Introduction

In recent years an extensive discussion of how to implement the interaction between visible
and dark matter [1–8] has taken place and in this discussion the role played by the Higgs
portal has been fundamental [9–16]. The Higgs Portal is one of the possible prescriptions
to implement the interactions between visible and dark matter in the extensions of the
standard model. Among its important properties is the renormalizability and, of course,
the simplicity to generate masses following the same ideas as in the conventional Higgs
mechanism.
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In the non-perturbative sector there are many important works since the discovery of the
instanton solution [18], quantum corrections [19, 20, 22], sphaleron solution [21], θ-vacuum
[23–25] and so on [26].

However, there are still other non-perturbative sectors of the standard model associated with
infrared problems which are not solved and an effort in this direction is clearly necessary.
From the physical point of view there are at least two reasons for us to investigate in this
direction; the first, is because the interaction between visible and dark matter is very weak
and non-perturbative considerations on the Higgs portal can be relevant. The second one,
is because an analysis including local and global aspects of the Higgs portal is not only
useful, but is also important for the analysis of spontaneous symmetry breaking and the
role of vacuum beyond perturbation theory.

In this context we would like to explain the problem we will solve in this paper; the vacuum is
understood in quantum field theory as the state of lowest energy from which all other many
particles states are constructed. From this perspective and depending on the phenomenon,
the vacuum can be unique and be the starting point for a perturbative treatment of a
particular quantum field theory.

However, if there is spontaneous symmetry breaking, it could happen that perturbation
theory is not applicable and the question is, how do we proceed?.

In order to explain the situation, let us start considering the Lagrangian

L =
1

2
(∂ϕ)2 + V (ϕ), (1.1)

where
V (ϕ) = −1

2
µ2 +

λ

4
ϕ4. (1.2)

This potential has two minima

ϕ0 = v = ±
√
µ2

λ
, (1.3)

and an unstable extreme in ϕ0 = 0.

However in the presence of spontaneous symmetry breaking the approach (perturbative) is
as follows; since v = 〈0|ϕ|0〉 6= 0, we shift ϕ to

ϕ = v + ϕ̄, (1.4)

where ϕ̄ is a fluctuation around the vacuum v.
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If the fluctuations are small, we can make perturbation theory as in the standard model, but
if the minima are very deep, the low energy excitations will be “trapped” at the bottom of
the wells. For the latter case the choice +v or −v might produce physically non-equivalent
results unless a tunneling between vacua takes place [27–32].

At first glance the instantons tunneling problem would be difficult to study unless we
consider field theory in 2d dimensions. However there is a heuristic way of looking at this
problem which is by considering the infrared limit of a field theory [33].

Basically this limit implies that in the dispersion relation E2 = p2 + m2 we can assume
that E2 ≈ m2, and instead of the Lagrangian

L =
1

2
(∂ϕ)2 − 1

2
m2ϕ2 + · · · ,

we can write,

L =
1

2
ϕ̇2 − 1

2
m2ϕ2 + · · ·

in other words we neglect the spatial derivatives (more details are in the next section).

We will point out below that the infrared limit of a scalar field theory maps exactly to a
Yang-Mills theory with self-dual solutions. Showing details and physical assumptions is one
of the goals of this paper.

In the second part of our work, we do a global analysis for a Higgs portal and discuss
the implications that this analysis has in the context explained above. So we show in
the following sections how in the non-perturbative sector of the Higgs portal there is also
tunneling of instantons.

The paper is organized as follows: in the next section we will explain how instantons emerge
in the infrared regime, in section III and IV we will generalize our results for a Higgs Portal
and analyze the structure of vacuum, in section V we will discuss the role played by the
instantons in the Higgs portal description and the section VI contains the conclusions.

2 Instantons and spontaneous symmetry breaking

2.1 Infrared approximation

In order to implement the non-perturbative spontaneous symmetry mechanism, let us ob-
serve that the region that interests us is the one for which the momentum (p) are very
small and the (ϕ = ϕ(t,x)) field can be expanded in a Fourier series as
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ϕ(t,x) =
ϕ̄(t)√
V

+
∑
p6=0

ϕp√
V
eip.x. (2.1)

where ϕ̄(t) only depend of t and the Lagrangean becomes

L =

∫
d3x

1

V
(
1

2
˙̄ϕ
2

+ U(ϕ̄))

≈ 1

2
˙̄ϕ
2

+ U(ϕ̄) + · · · , (2.2)

where · · · denotes terms that are not important for our analysis below.

Using the above arguments we see that (2.2) describes the infrared sector and to throwing
away the spatial derivatives of the Lagrangian is equivalent to the ultralocal limit (infrared)
[33]. This infrared limit has been used also in different contexts in quantum gravity [34–41].

Since as the spatial derivatives disappeared, the only derivatives remaining in the equations
of motion are in (euclidean) time, namely

¨̄ϕ = µ2ϕ̄− λϕ̄3. (2.3)

which has the conventional instanton solution

ϕ̄(t) = ± µ√
λ

tanh

[
µ√
2

(t− t0)
]
. (2.4)

Thus, the infrared limit produces the “dimensional reduction” making the excitations at
very low energy instantons.

2.2 Scalar and Yang-Mills theories

In this subsection we will give direct and simple arguments to show the mapping between
scalar and SU(2) self-dual Yang-Mills theory.

First let us write the Lagrangian density

L =
1

2
ϕ̇2 +

λ

4

(
ϕ2 − µ2

λ

)2

,

in terms of dimensionless variables, defining ϕ = µ√
λ
ϕ̄ where ϕ̄ is dimensionless and we

rescale t̄→
√

2µ t and the action becomes

SS =
1

λ

∫
dt̄

[
1

2
˙̄ϕ
2

+
1

4

(
ϕ̄2 − 1

)2]
. (2.5)
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Now we could compare this action with the Yang-Mills one taking into account the following:

• Since the Yang-Mills description we are looking must contain instanton solutions and
the self-duality condition

Fµν = F̃µν (2.6)

must be satisfied.

• If we are able to find a potential that satisfies (2.6), then we not only solve the
condition (2.6) but we automatically have a solution of the Yang-Mills equations.
Since in the Euclidean space SO(4) ' SU(2)× SU(2), the Yang-Mills potentials are
a possible representation of (12 ,

1
2) of SU(2)× SU(2).

The tensor Fµν belong to a reducible representation (1, 0)⊕(0, 1) so that the conditions
of self and anti-self dualities can be represented by the quantities

F aL = ηaµν

(
Fµν + F̃µν

)
, (2.7)

F aR = η̄aµν

(
Fµν − F̃µν

)
, (2.8)

where η and η̄ are the ‘t Hooft symbols for SU(2) which have the following properties:

ηaµν =
1

2
εµνρσηaρσ,

η̄aµν = −1

2
εµνρση̄aρσ

εabcηbµνηcρσ = δµρ + δνσηνσηaνρ − δνρηaµσ,

among other [17].

Condition (2.6) is a well-known result [18] but finding a potential that satisfies (2.6) is a
highly non-trivial problem that it was solved by Diakonov in [42].

The potential is

Aaµ = η̄aµνxν
[1 + φ(x2)]

x2
. (2.9)

where φ a scalar field.

Replacing (2.9) in the Yang-Mills action

SYM = − 1

4g2

∫
d4x Tr(F 2

µν),

we find

SYM =
12π2

g2

∫
dτ

[
1

2

(
dφ

dτ

)2

+
1

4
(φ2 − 1)2

]
. (2.10)
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The detail of this calculation is cumbersome and makes use of spherical coordinates and
the fact that the measure (at D = 4), dr r−1 can be written as d

(
ln x2

ρ2

)
where ρ is a scale

that is introduced for dimensional reasons.

Comparing (2.5) and (2.10) we see that both actions are equivalent if

λ =
g2

12π2
, (2.11)

with the definition τ = ln x2

ρ2
.

This is a very interesting result because, on the one hand, it reveals the equivalence between
scalar and self-dual Yang-Mills theories, which is an unexpected result. However, this also
shows us the role played by instantons in the spontaneous symmetry breaking phenomenon
at a non-perturbative level.

3 Higgs Portal and Vacuum

In this section and the next we analyze the vacuum structure of the Higgs Portal in order
to apply and generalize the results in previous sections.

Let us consider two complex scalar field, we say φ1 and φ2 and the Lagrangian

L =
1

2
|∂φ1|2 +

1

2
|∂φ2|2 −

1

2
µ21|φ1|2 −

1

2
µ22|φ2|2 +

λ1
4
|φ1|4 +

λ2
4
|φ2|4 +

γ

2
|φ1|2|φ2|2 , (3.1)

where we have introduced an interaction between the two scalar fields by the coupling γ.

For γ = 0 we have two copies of a Higgs model with symmetry breaking given by a Mexican
hat potential. The classical vacuum is given for the configurations where the potential
reach a minimum. However the structure of these minimal configurations will depend on
the values of the parameters of the potential. Thus here we will study how structure of
these minima change in the parameter space, i.e., the coupling γ, the self-couplings λi as
the couplings µ2i .

The study of the regions of the parameter space which characterize certain vacuum struc-
ture is similar to the analysis of the phase diagram of a thermodynamical system with
second order transitions. So, in many situations we will use the terminology of the thermo-
dynamical phenomena in the Ginzburg-Landau theory. Thus, our analysis is similar to that
of a system thermodynamical potential depending on an order parameter is characterized
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by the couplings µ2 of a quadratic term and λ > 0 of a quartic contribution. The point
where the coefficient µ2 changes of sign represents the critical point of a second order phase
transition so that the ground state characterized by a vanishing (and symmetric) order
parameter, changes to the situation, where the minimal configuration consists of a non-
vanishing (symmetrically broken) order parameter.

We will study the possible diagram of phases in the space of the three parameters λi and
γ fixed µ2i to be positive, but we will briefly discuss how this diagram changes when other
signs for µ2 are considered.

To perform that analysis it is enough to consider only the minima of the density potential,

V = −1

2
µ21|φ1|2 −

1

2
µ22|φ2|2 +

λ1
4
|φ1|4 +

λ2
4
|φ2|4 +

γ

2
|φ1|2|φ2|2 , (3.2)

where we have neglected the derivative terms in (3.1). In this section we will study the
global stability of the model together with the phase structure depending on the parameter
γ characterizing the vacuum states and their symmetries.

3.1 Global stability

To study the global stability we will search for the regions of the parameter space where
the density potential (3.2) is bounded from below. Because this potential is a polynomial
function on the fields, , we must look at large values of |φ1| and |φ2|. In that region the
quadratic terms are very small in comparison with the quartic terms. So we must take into
account the last three terms of (3.2). A sufficient condition for the potential to be bounded
is then that for any direction in the plane |φ1|−|φ2| the profile of the potential is increasing
with the field norm. So, if we take,

|φ2| = m|φ1|

with m ∈ [0,∞) being the slope which parametrizes the chosen direction, and substituting
this on the quartic terms, we obtain,(

λ1
4

+
γ

2
m2 +

λ2
4
m4

)
|φ1|4 .

Thus, the density potential will be globally stable if the coefficient in the expression between
parenthesis is positive for the whole range of m. For the cases of m = 0 or m → ∞ we
see that λ1 and λ2 must be positive. Furthermore, the positivity of that coefficient will be
ensured if, also, there are no real and positive zeros for m2. The zeros are,

m2 =
−γ ±

√
γ2 − λ1λ2
λ1

.
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Figure 1: Region of stability in the parameter space, γ > −
√
λ1λ2, λ1 > 0 and λ2 > 0.

The boundary of the stability region are pink colored, the planes λ1 = 0, λ2 = 0 and the
lower half-cone γ = −

√
λ1λ2.

This happens when γ is positive or γ2 < λ1λ2.

Summarizing, sufficient conditions for global stability are,

γ > −
√
λ1λ2 , λ1 > 0, λ2 > 0 . (3.3)

Notice that the region γ2 = λ1λ2 corresponds to a cone surface in the three dimensional
space λ1 − λ2 − γ with the symmetrical axis being the straight line λ1 = λ2, and γ = 0 (
fig. 1).

Note also that these are sufficient but no necessary conditions. The failure of these condi-
tions can still give rise to a stable model depending on the coefficients µ21 and µ22. However,
in the most of our analysis we take positive values of the µ2 factors, and the above conditions
are actually necessary and sufficient.

3.2 Ground States Structure

In this section we will look for the homogeneous configurations which minimize the energy
density (3.1), or equivalently, the potential density (3.2).
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To do this, let us write the complex scalar fields as,

φ1 = ρ1 e
iϕ1 , (3.4)

φ2 = ρ2 e
iϕ2 , (3.5)

where ρ1, ρ2 ≥ 0 and ϕ1, ϕ2 are phases. It is evident that the density potential is indepen-
dent of the phases and they will not have any role in our discussion (up to the degeneracy
of the possible ground states). Then, in order to find local extrema we proceed as usual
by derivating with respect coordinates ρ1 and ρ2, equaling them to zero and check that the
hessian matrix at those points is positive definite. However, and because the domain of the
variables ρ1 and ρ2 are not open regions we must to take into account also possible minima
at the boundary (ρ1 = 0, or ρ2 = 0).

Hence, derivating with respect to ρ1 and ρ2 and equaling them to zero gives,

∂V

∂ρ1
= ρ1

(
−µ21 + λ1ρ

2
1 + γρ22

)
= 0 , (3.6)

∂V

∂ρ2
= ρ2

(
−µ22 + λ2ρ

2
2 + γρ21

)
= 0 , (3.7)

And the hessian matrix is,

H(ρ1, ρ2) ≡
[
∂2V

∂ρi∂ρj

]
=

(
−µ21 + 3λ1ρ

2
1 + γρ22 2γρ1ρ2

2γρ1ρ2 −µ22 + 3λ2ρ
2
2 + γρ21

)
. (3.8)

From these last expressions it is clear the following facts:

1. With positive µ2’s factors there will never be symmetric solutions ρ1 = ρ2 = 0 due to
the negativity of the hessian (3.8).

2. we will have solutions of the form,

ρ′21 = 2
µ21
λ1

, and, ρ′22 = 0 , (3.9)

with positive definite hessian if,

γ > λ1
µ22
µ21

. (3.10)

And the solution,

ρ′′21 = 0 , and, ρ′′22 = 2
µ22
λ2

, (3.11)

with positive definite hessian if,

γ > λ2
µ21
µ22

. (3.12)
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3. If ρ1 and ρ2 are different from zero. Then eqns (3.6) and (3.7) can be written in a
matrix form, (

λ1 γ

γ λ2

)(
ρ21
ρ22

)
=

(
2µ21
2µ22

)
. (3.13)

And hence if the 2× 2 matrix is regular, then, we solve to find,

ρ21 =
λ2µ

2
1 − γµ22

λ1λ2 − γ2
, (3.14)

ρ22 =
λ1µ

2
2 − γµ21

λ1λ2 − γ2
. (3.15)

where we have to emphasize that the right hand sides must be positive to be acceptable
solutions. Furthermore, on solutions of this kind the hessian matrix is reduced to,

H =

(
2λ1ρ

2
1 2γρ1ρ2

2γρ1ρ2 2λ2ρ
2
2

)
, (3.16)

whose trace is always positive definite but its determinant,

detH = 4
(
λ1λ2 − γ2

)
ρ21ρ

2
2 ,

is positive only when λ1λ2 > γ2

Hence, positivity of ρ21, ρ22 and the hessian H occurs only if,

γ ≤ λ1
µ22
µ21

, and, γ ≤ λ2
µ21
µ21

. (3.17)

4. Yet another different kind of solution happens when,

γ =
√
λ1λ2 , and,

λ1
λ2

=
µ41
µ42

, (3.18)

and the values of the field modulus are not completely determined, but they lie on
the elliptic curve,

ρ1
λ1µ21

+
ρ2
λ2µ22

=
2

λ1λ2
, (3.19)

Thus, we have different possibilities which define different minima depending on the region
of the parameters space. This will be analyzed in next subsections.
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3.3 Phase I

If we restrict to the region,

γ >
√
λ1λ2 ,

λ1
λ2

=
µ41
µ42

, (3.20)

which corresponds to a vertical half-plane over the cone γ2 = λ1λ2, as can be seen in Fig. 7,
we obtain two equivalent minima at,

ρ1 =

√
µ21
λ1

, ρ2 = 0 ,

and,

ρ1 = 0 , ρ2 =

√
µ22
λ2

,

with potential depth,

VI = −µ
4
1

λ1
= −µ

4
2

λ2
, (3.21)

and with a minimal potential barrier given by,

∆V =
γ −
√
λ1λ2

γ +
√
λ1λ2

µ21µ
2
2√

λ1λ2
. (3.22)

This value corresponds to a saddle point placed at,

ρ21 =
2µ1µ2√
λ1λ2 + γ

(
λ2
λ1

) 1
4

, (3.23)

ρ22 =
2µ1µ2√
λ1λ2 + γ

(
λ1
λ2

) 1
4

, (3.24)

The profile of the potential can be viewed in Fig. 2.

3.4 Phase II

The next situation corresponds to the existence of two minima, when,

γ ≥ λ1
µ22
µ21

, γ ≥ λ2
µ21
µ22

, (3.25)
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Figure 2: Profile of the potential in phase I

excluding the half-plane of the phase I. This is the region over the planes γ = λ1
µ22
µ21

and

γ = λ2
µ21
µ22
, over the cone γ2 = λ1λ2. The phase I splits the region into two pieces where

there exist two vacua, a false and the true vacuum (deepest).

The left side region in Fig. 7 denoted as II, has the dominant vacuum,

ρ1 =

√
2µ1
λ1

, ρ2 = 0 , (3.26)

with potential density,

VII = −µ
4
1

λ
.

Also, this phase presents a false vacuum placed at,

ρ1 = 0 , ρ2 =

√
2µ22
λ2

, (3.27)

with potential energy density,

V ′II =
µ42
λ2

.

In the middle there is a saddle point placed at points in (3.14) and (3.15), with potential
energy density,

V = −λ1µ
4
2 − 2γµ21µ

2
2 + λ2µ

4
1

λ1λ2 − γ2
. (3.28)
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Figure 3: Profile of the potential in phase II

See Fig. 3 to check the characterization of the minima structure in this phase.

The right piece, denoted by II’ in Fig. 7 is similar to the situation just above but swapping
indices 1 and 2, i.e., it is characterized by a dominant vacuum given by (3.27), and a false
vacuum given by (3.26).

3.5 Phases III and IV

Now we analyze the situation where there occurs a unique vacuum. This happens in two
situations.

The first situation, phases III and III’ in Fig.7, correspond to the vacuum located at (phase
III),

ρ1 = 0 , ρ2 =

√
2µ22
λ2

,

when

λ2
µ21
µ21

< γ < λ1
µ22
µ21

or (phase III’),

ρ1 =

√
2µ12
λ1

, ρ2 = 0 ,

– 13 –



Figure 4: Profile of the potential in phase III

when,

λ1
µ22
µ21

< γ < λ2
µ21
µ21

respectively, with minimal potential energies given in previous subsection. See Fig.4 for the
potential profile of this phase.

The second situation, phase IV in Fig. 7 happens when,

γ ≤ λ1
µ22
µ21

, γ ≤ λ2
µ21
µ22

,

with the unique minimum placed at position given in (3.14) and (3.15) and with potential
depth given in (3.28), see Fig. 5.

3.6 Phase V

Finally we obtain an degenerate vacuum when,

γ =
√
λ1λ2 ,

λ1
λ2

=
µ41
µ42

,

which is a straight line corresponding to a generatrix of the cone γ2 = λ1λ2. The vacuum
is degenerate along the elliptic curve (3.19) and its depth potential is,

V = − µ21µ
2
2√

λ1λ2
,
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Figure 5: Profile of the potential in phase I V

Figure 6: Profile of the potential in phase V

see Fig. 6.

4 Sign changes in µ2 parameters

In this section we complete the previous analysis for the cases where parameters µ21 and/or
µ22 change sign.
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Figure 7: Diagram of phases in 3D (λ1 − λ2 − γ).

Figure 8: Transversal section of the phase diagram with respect to a plane perpendicular
to the symmetric axis of the cone (λ1 = λ2).

4.1 Case µ21 < 0 and µ22 > 0

Firstly, in this case the symmetric solution ρ1 = ρ2 = 0 is a saddle point as it can be seen
directly from (3.8).
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The solutions of the kind ρ1 = 0 and ρ2 6= 0, namely,

ρ22 =
2µ22
λ2

,

can be realized as minima if,

γ > λ2
µ21
µ22

, (4.1)

as it can be seen from the expression of the hessian (3.8). Obviously solutions of the form
ρ2 = 0 and ρ1 6= 0 can not be realized.

Now let us analyze the case ρ1 6= 0 and ρ2 6= 0. In order to have non vanishing solutions we
impose that expressions (3.14) and (3.15) to be positive, so that we arrive to the inequalities
inside the cone,

γ < λ2
µ21
µ22

, γ > λ1
µ22
µ21

, −
√
λ1λ2 < γ <

√
λ1λ2 , (4.2)

and this is a non empty region of parameters, and furthermore, for the solutions belonging
to this set of inequalities we have a positive definite Hessian as it can be seen from (3.16).
So in this region, the vacuum expectation values are given by (3.14) and (3.15), Also we
must look outside the cone γ >

√
λ1λ2, and we find the inequalities,

γ > λ2
µ21
µ22

, γ < λ1
µ22
µ21

, γ >
√
λ1λ2 , (4.3)

Clearly this set of inequalities are incompatible, and there is no solution of this kind outside
the cone.

Hence the phase space is simple in this case: we have a phase of type IV inside the cone and
below the plane γ = λ2

µ21
µ22
, see Fig. 9, and phase of type III’ on the rest of space parameters

with stability.

4.2 Case µ21 > 0 and µ22 < 0

This case is enterely similar to the case above but swapping indices 1 and 2. the phase
space is drawn in Fig. 10. Note that the phase IV has changed its location and phase III
appears instead of phase III’.
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Figure 9: Phase diagram for µ21 < 0.

Figure 10: Phase diagram for µ22 < 0.

4.3 Case µ21, µ
2
2 < 0

It is easy to see that in this case, if we assume that γ2 < λ1λ2, the region for ρ21 and ρ22
being positive in (3.14) and (3.15) is that above both planes γ = λ2

µ21
µ22

and γ = λ1
µ22
µ21
, and

hence there is no way to have the phase I outside the cone. Furthermore, by setting any
of the ρ’s to zero, the other can not reach a minimum. Hence the only posibility for the
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minimum is,
ρ1 = 0 , ρ2 = 0 , (4.4)

which corresponds to the maximal symmetric vacuum. Similar situation occurs outside the
cone, and only symmetric solution is possible.

5 Instantons and Higgs Portal

In this section we generalize the results given in III and IV for the Higgs portal (3.1). More
specifically in phase I we have two minima separated by a potential barrier while in phases
II and II’ there are two asymmetric minima, one of them is a false vacuum.

These two cases are of interest by the following reasons:

• Potential I is the classical Mexican hat potential for which spontaneous symmetry
breaking is restored by instantons effects.

• The potential II and II’ is metastable and decays to a true vacuum. However, when
it decays to true vacuum, it transfers information about the physical parameters to
true vacuum.

Interestingly the two cases mentioned above can be analyzed in the infrared limit assuming
the boundary condition

lim
|x|→∞

ϕ1,2(x)→ ±v1,2. (5.1)

The equation of motion are

ϕ̈1 = −µ21ϕ1 + λ1|ϕ1|2ϕ1 + γ|ϕ2|2ϕ1, (5.2)

ϕ̈2 = −µ22ϕ2 + λ2|ϕ2|2ϕ2 + γ|ϕ1|2ϕ2. (5.3)

Although we cannot solve these equations analytically, we can try to find asymptotic solu-
tions using the fact that both ϕ1 and ϕ2 tend to v1 and v2. Using the condition (5.1) and
the fact that

v21 =
−λ2µ21 + γµ22
γ2 − λ1λ2

, (5.4)

v22 =
−λ1µ22 + γµ21
γ2 − λ1λ2

, (5.5)
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The first and second equations become

ϕ̈1 = −
(
µ21 − γv22

)
ϕ1 + λ1|ϕ1|2ϕ1,

ϕ̈2 = −
(
µ22 − γv21

)
ϕ2 + λ2|ϕ2|2ϕ2. (5.6)

or in terms of the effective parameters

µ̃21 =
(
µ21 − γv22

)
=
λ1(γµ

2
2 − λ2µ21)

γ2 − λ1λ2

µ̃22 =
(
µ21 − γv22

)
=
λ2(γµ

2
1 − λ1µ22)

γ2 − λ1λ2
. (5.7)

Then the asymptotic solutions are

ϕ̄1(t) = ±

√
µ̃21
λ1

tanh

[√
µ̃21
2

(t− t0)

]
, (5.8)

ϕ̄2(t) = ±

√
µ̃22
λ2

tanh

[√
µ̃21
2

(t− t0)

]
, (5.9)

which are two uncoupled (dilute) instantons with effective parameters (µ̃1, λ1) and (µ̃2, λ2)

respectively.

The stability of the vacua in the Higgs portal must satisfy

µ̃21 > 0, µ̃22 > 0. (5.10)

If µ̃21 = µ̃22 > 0, then the spontaneous symmetry breaking is restored by tunneling of
instantons and if µ̃21 6= µ̃22 > 0, the state of higher energy becomes unstable through barrier
penetration and this is an example of a false vacuum [28].

These conclusions are reached from the analysis of sections III and IV.

6 Conclusions

We summarize the main results obtained:
a) We have studied the spontaneous symmetry breaking phenomenon at the infrared limit,
motivated especially by the need to understand low energy physics and tunneling phe-
nomena between vacuums. The ϕ4-theory has been considered and we have shown that
instantons play a relevant role. The appearance of instantons in the infrared limit is natu-
ral because by eliminating the spatial derivatives the system becomes an infinite degrees of
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freedom quantum mechanics problem.
b) For Higgs Portal type potentials the analysis is somewhat more complicated although
much richer, the vacua has properties that mix physical content from the different coupling
constants and effective masses.

A field theory at the infrared limit has, in our opinion, a good chance of being physically
interesting due to the physical content that could be extracted from it. The appearance of
instantons, false vacua and tunneling are not a priori obvious results.

Although we have not explored in detail beyond what we have discussed in this paper, it
seems to us that the idea of looking at very low energy sectors in the context discussed in
this paper can yield insights into dark matter physics.
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