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General slow-roll inflation in f(R) gravity under the Palatini approach
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Slow-roll inflation is analyzed in the context of modified gravity within the Palatini formalism.
As shown in the literature, inflation in this framework requires the presence of non-traceless mat-
ter, otherwise it does not occur just as a consequence of the non-linear gravitational terms of the
action. Nevertheless, by including a single scalar field that plays the role of the inflaton, slow-roll
inflation can be performed in these theories, where the equations lead to an effective potential that
modifies the dynamics. We obtain the general slow-roll parameters and analyze a simple model to
illustrate the differences introduced by the gravitational terms under the Palatini approach, and the
modifications on the spectral index and the tensor to scalar ratio predicted by the model.

I. INTRODUCTION

General Relativity and other theories constructed from scalar invariants of the Riemann and Ricci tensors assume a
metric compatible connection, the so-called Levi-Civita connection, which states that ∇λgµν = 0 and the gravitational
action is constructed in terms of such connection and its derivatives. Nevertheless, one may consider both objects in
principle as independent fields at the level of the action and then, applying the variational principle to obtain the
field equations for both, this is the so-called Palatini approach. In particular, when a non-linear function of the Ricci
scalar is considered, where the Ricci tensor is constructed in terms of an arbitrary connection, the theory does not
lead to General Relativity or the usual metric f(R) equations, but to different ones with diverse phenomenology (for
a review see [1]).

The so-called Palatini f(R) gravity, where R = gµνRµν(Γ) with Γ a independent field, has been widely analyzed
in the literature. Specifically, Palatini gravity have been studied in the context of dark energy models and late-time
constraints [2], where some models show a very promising behavior. Moreover, the modifications on the energy
conditions have been also studied in [3], and the possible violations of the local gravity tests have been analyzed with
the post-Newtonian approach applied to this type of theories [4], as well as the stellar structure [5] and the junction
conditions [6], where significant and interesting differences are found. In a more analytic context, the variational
principle [7], the Cauchy problem [8] and the Birkhoff’s theorem have been explored [9], also a possible mapping
among solutions in GR and these theories is given in [10]. In addition, non-singular black hole solutions seem to
be very common in the context of the Palatini formalism [11] as well as regular wormholes solutions [12]. Also the
Palatini formalism is usual in the context of Born-Infeld actions [13].

On the other hand, the inflationary paradigm, that solves some of the most important theoretical problems of the
Big Bang model, is still being deeply analyzed, with many models that reproduces such initial super-accelerating
phase [14]. In addition, inflation also produces the required fluctuations for the perturbations that form the seeds on
the variation of the matter distribution that formed the galaxies and clusters of galaxies as well as the anisotropies
in the Cosmic Microwave Background (CMB) [15]. Most of the inflationary models are constructed in terms of scalar
fields with the appropriate potential, which generally provides a slow-roll behavior of the scalar field that leads to
an exponential expansion at the beginning of inflation and then the field rolls down, leading finally to the reheating
regime at the end of inflation [16]. These models are constructed in such a way that can satisfy the constraints
coming from the analysis of the data collected by Planck over the last years [17]. Nevertheless, inflation have been
also well studied within other underlying models, as in the so-called f(R) gravities [18], where the R2 model or
Starobinsky model [19] shows one of the best behaviors when comparing to the observational data.

The present paper is aimed to analyze the slow-roll scenario in the framework of f(R) gravity under the Palatini
approach [20]. Inflation has been already studied in the context of Palatini approach, where a special emphasis has
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been done in extending the Starobinsky model of metric f(R) gravity to the Palatini formalism, where besides the
proper gravitational terms in the action, an inflaton scalar field is considered and its modified properties are analysed
in the Einstein frame [21]. In addition, reheating in within this R2 models has also been studied [22]. Moreover,
some particular models as Higgs inflation [23] and Coleman-Weinberg inflation [24]. Here, we aim to obtain the
general slow-roll condition with an arbitrary f(R) action in the Palatini formalism with the presence of an scalar
field that plays the role of the inflaton that slow rolls, i.e. its kinetic term is very small in comparison to its potential
at the beginning of inflation. This analysis is performed completely in the Jordan frame, where we find that the
auxiliary scalar field associated to the gravitational part of the action, and which does not propagate, introduces
modifications on the potential of the inflaton, leading to an effective potential that modifies the slow-roll parameters
and consequently the spectral index and the tensor to scalar ratio.

The paper is organized as follows: in section II, we introduce the Palatini formalism in f(R) gravity theories.
Section III reviews the main features of inflation in metric theories and the impossibility of extending such features
to the Palatini formalism in vacuum. Then, in section IV we obtain the general slow-roll parameters in these theories
with the presence of a scalar field that plays the role of the inflaton. Finally, in V we present the conclusions of the
paper.

II. f(R) PALATINI GRAVITY

Let us start by reviewing the main equations and features of f(R) gravity a la Palatini. The general gravitational
action is given by:

S =
1

2κ2

∫

d4x
√−gf(R) + Sm , (1)

where the matter action Sm just depends on the metric and the matter fields, preserving the Equivalence Principle,
whereas the Ricci scalar R is defined as follows:

R = gµνRµν(Γ) = gµν
(

∂λΓ
λ
µν − ∂νΓ

λ
µλ + Γλ

σλΓ
σ
µν − Γλ

σνΓ
σ
µλ

)

. (2)

Here Γ is the connection and in principle is an independent field from the metric, such that in order to find the field
equations, the action (1) should be varied with respect to the metric and to the connection, leading to the following
field equations respectively:

fRRµν − 1

2
gµνf = κ2Tµν ,

∇λ

(√−gfRgµν
)

= 0 , (3)

where Tµν = − 2√
−g

δSm

δgµν is the energy-momentum tensor that only depends on the matter fields and the metric, while

fR = df
dR . Note also that we have not assumed any symmetry on the indexes of the connection, so this might own an

antisymmetric part. However, by the proyective invariance of the scalar curvature, the Ricci scalar itself only depends
on the symmetric part of the connection R(Γ) and consequently Γ is symmetric under the low indexes. By taking the
trace of the first equation in (3), it yields:

fRR− 2f = κ2T , (4)

Hence, this equation provides an algebraic equation for the scalar curvature R that can be solved as a function of the
trace of the energy-momentum tensor R = R(T ). In addition, the second equation in (3) is the metricity condition
for the conformal metric:

hµν = Ω2gµν , Ω2 = fR , (5)

such that the second equation in (3) turns out:

∇λ

(√
−hhµν

)

= 0 . (6)

As pointed above, the solution of this equation leads to a connection that is given by the Christoffel symbols in terms
of the metric hµν . Then, by applying the conformal transformation (5), the Ricci tensor Rµν becomes:

Rµν (h) = Rµν(g) +
4

Ω2
∇µΩ∇νΩ− 2

Ω
∇µ∇νΩ− gµν

gρσ

Ω2
∇ρΩ∇σΩ− gµν

�Ω

Ω
. (7)
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Here the covariant derivatives are defined in terms of the Levi-Civita connection of the metric g. Hence, the first field
equation in (3) can be written as follows:

Rµν(g)−
1

2
gµνR(g) =

κ2

fR
Tµν − gµν

RfR − f

2fR
− 3

2f2
R

[

∇µfR∇νfR − 1

2
gνµ∇λfR∇λfR

]

+
1

fR
[∇µ∇νfR − gµν�fR] .

(8)
This equation together with the trace equation (30) form the set of field equations for f(R) in the Palatini formalism
that can be applied to study any spacetime in a simple way. Note that the right hand side of (8) depends solely on
the energy-momentum tensor and its trace, since R = R(T ) by the equation (30). Moreover, the field equations (8)
are equivalent to a scalar-tensor theory described by the action:

S =
1

2κ2

∫

d4x
√−g

[

φR(g) +
3

2φ
∂µφ∂

µφ− V (φ)

]

+ Sm , (9)

where the correspondence is given by:

φ = fR , V (φ) = Rφ − f(R) . (10)

The Lagrangian (9) is the action for Brans-Dicke theory with a potential and with the usual parameter given by
w = −3/2.

III. INFLATION IN f(R) GRAVITIES

Let us first review the main achievements in metric f(R) gravity when describes the inflationary paradigm. In
this sense, the so-called Starobinsky inflation [19] represents the main success of implementing inflation within the
modified gravity framework. The model is based on the presence of a quadratic term of the Ricci scalar in the action,
which is usually given by:

S =
1

2κ2

∫

d4x
√−g

[

R+
R2

6m2

]

. (11)

Recall that the Ricci scalar in (11) depends on the Levi-Civita connection and consequently the only fundamental
field here is the metric tensor. As under the Palatini approach, this action can be expressed in terms of a scalar field:

S =
1

2κ2

∫

d4x
√−g [φR − V (φ)] . (12)

Here as above, φ = fR and V (φ) = Rφ− f(R). However, the action (12) has no kinetic term for the the scalar field,
in comparison to (9). Nevertheless, this does not avoid the scalar field in (12) to propagate, as shown by the trace of
the field equations for this action, which reads:

3�φ−Rφ+ 2V (φ) = κ2T . (13)

In general, the inflationary model described in metric f(R) gravities is analysed in the Einstein frame instead of
studying the action (12) directly. By performing the conformal transformation:

gµν −→ Ω2gµν , (14)

the action (12) becomes:

S̃ =

∫

d4x
√−gE

[

RE

2κ2
− 1

2
∂µφE∂

µφE − VE(φE)

]

, (15)

where the subindex E refers to the quantities transformed to the Einstein frame. The potential VE(φE) for the
Starobinsky action (11) turns out:

VE(φE) =
3

4κ2
m2
(

1− e−
√

2/3κφE

)2

. (16)

We assume a flat FLRW metric in the Einstein frame:

ds2 = −dt2 + a(t)2
∑

i

dx2
i . (17)
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The corresponding FLRW equations lead to:

H2 =
κ2

3

(

1

2
φ̇2
E + VE(φE)

)

, Ḣ = −κ2

2
φ̇2
E , (18)

while the equation for the scalar field φ is obtained by varying the action (15) with respect to the scalar field:

φ̈E + 3Hφ̇E + V ′(φE) = 0 . (19)

Hence, the FLRW equations (20) together with the scalar field equation (19) may correspond to inflationary models

with a single scalar field minimally coupled. The slow-roll scenario occurs in the regime 1
2 φ̇

2
E << VE(φE) and

φ̈E << Hφ̇E , which approximates the first FLRW equation and the scalar field equation to:

H2 ≈ κ2

3
VE(φE) , 3Hφ̇E + V ′(φE) ≈ 0 . (20)

This is the slow-roll approximation, which is equivalent to the following conditions on the so-called slow-roll parame-
ters:

ǫ = − Ḣ

H2
≈ 1

2κ2

(

V ′
E

V

)2

<< 1 , |η| ≈ 1

κ2

(

V ′′
E

VE

)

<< 1 . (21)

Hence, for the appropriate scalar potential, the slow-roll inflationary scenario can be implemented. Actually this is
the case for the potential (16), whose slow-roll parameters become:

ǫ ≃ 4

3

(

e
√

2

3
κφE − 1

)−2

≃ 4

3
e−2

√
2

3
κφE , (22)

η ≃ 4

3

2− e
√

2

3
κφE

(

−1 + e
√

2

3
κφE

)2 ≃ −4

3
e−

√
2

3
κφE . (23)

Here we have assumed that the scalar field is large enough at the beginning of inflation κφE >> 1, which makes
ǫ << 1 and η << 1, and the Hubble parameter is approximately a constant, which leads to an exponential expansion.
Inflation ends when the scalar field rolls down and its kinetic term becomes larger, what makes ǫ ≈ 1. The important
point of inflation is to last enough in order to solve the initial conditions problems, such that it should last a sufficient
number of e-foldings:

N =

∫ tend

tstart

Hdt ≈ 55− 65 . (24)

By using the FLRW equation, this can be computed in terms of the scalar field:

N = −κ2

∫ φEend

φEi

VE(φE

V ′
E(φE)

dφE ≈ 3

4
e
√

2/3κ φEi . (25)

Note that the number of e-foldings is related to the slow-roll parameters as follows:

ǫ ≃ 3

4

1

N2
, η ≃ − 1

N
. (26)

While the spectral index for curvature perturbations and the tensor to scalar ratio are given by:

ns − 1 = −6ǫ+ 2η , r = 16ǫ (27)

The last constraints on both parameters from Planck [17] are:

ns = 0.9659± 0.0041 , r < 0.11 . (28)

Hence, for the Starobinsky inflation by assuming N = 65, we obtain:

ns = 0.968 , r = 0.00284 , (29)
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which fit very well the above constraints and this is one of the great success of Starobinsky inflation and metric f(R)
inflation in general.

Nevertheless, this is not the case for Palatini f(R) gravity. From the trace equation (30), we can obtain the equation
for the scalar field φ described by the action (9):

2V (φ) − φ
dV

dφ
= κ2T . (30)

Here, one directly notes that in comparison to the metric case (13), the scalar field does not propagate, and in absence
of matter, the scalar field becomes a constant, such that it only provides and effective cosmological constant, which
produces an accelerating expansion with no end and obviously with no perturbations. Hence, the only way to produce
inflation in Palatini f(R) gravity is in the presence of non-traceless matter, as the presence of a scalar field that plays
the role of the inflaton, inducing modifications on the slow-roll scenario, as is shown in the next section.

IV. SLOW-ROLL INFLATION IN PALATINI f(R) GRAVITY

As pointed above, since the scalar field associated to the f(R) action in the Palatini approach, does not propagate
and its source is the presence of non traceless matter, the only way to reproduce inflation is to include an inflaton
field. Nevertheless, as will be shown below, the slow-roll conditions are modified in comparison to General Relativity
when a Palatini f(R) Lagrangian is assumed. Then, here we will analyze the Palatini f(R) Lagrangian in its version
expressed in terms of an auxiliary scalar field as given in (9), with the presence of an additional scalar field χ that
plays the role of the inflaton:

S =
1

2κ2

∫

d4x
√−g

[

φR(g) +
3

2φ
∂µφ∂

µφ− V (φ)

]

+

∫

d4x
√−g

[

−1

2
∂µχ∂

µχ− U(χ)

]

. (31)

The corresponding field equations are given by (8), where recall that φ = fR and V (φ) = Rφ − f(R) and the
energy-momentum tensor χ:

T χ
µν = ∂µχ∂νχ− gµν

(

1

2
∂αχ∂

αχ+ U(χ)

)

. (32)

By assuming a flat FLRW metric as given in (17), the FLRW equations yield:

3H2 =
κ2

φ

(

1

2
χ̇2 + U(χ)

)

− 3H
φ̇

φ
− 3

4

(

φ̇

φ

)2

+
1

2
V (φ) ,

−2Ḣ =
κ2

φ
χ̇2 −H

φ̇

φ
− 3

2

(

φ̇

φ

)2

+
φ̈

φ
. (33)

While the equations for the scalar fields are given by:

−2V (φ) + φV ′(φ) = κ2
(

χ̇2 − 4U(χ)
)

,

χ̈+ 3Hχ̇+ U ′(χ) = 0 . (34)

We can now consider the scalar field χ to be in the slow roll regime during the inflationary phase, as in usual single
field inflation in GR. Then, the following slow-roll conditions are assumed on χ:

U(χ) >>
1

2
χ̇2 , Hχ̇ >> χ̈ . (35)

Hence, the scalar field equations (34) reduce to:

−2V (φ) + φV ′(φ) ≈ −4κ2U(χ) ,

3Hχ̇+ U ′(χ) ≈ 0 . (36)

From here we end to the conclusion that the problem is reduced to a single scalar field inflationary model, since from
the first equation in (36), one gets φ ≈ φ(χ), as far as the equation has real solutions in terms of φ. This is not
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surprising, as equation (34) for φ does not contain first or second derivatives of the scalar field, an aspect already
discussed in the section above, inherent to the Palatini approach, that avoids the auxiliary scalar field φ to propagate.
Moreover, as a consequence of φ ≈ φ(χ) during inflation, we can directly assume that φ̇ << φ. Hence, the FLRW
equations (33) can be expressed just in terms of the inflaton field χ and are approximated as follows:

3H2 ≈ 1

φ

[

κ2U(χ) +
dφ

dχ
U ′(χ) +

1

2
V (φ(χ))

]

= κ2Ueff (χ) ,

−2Ḣ ≈ 1

φ

(

κ2χ̇2 +
1

3

dφ

dχ
U ′(χ)

)

≈ 1

3φ

(

U ′(χ)

Ueff (χ)
+

dφ

dχ
U ′(χ)

)

. (37)

Recall that φ = φ(χ), such that these equations only depend on the dynamics of the inflaton field χ. In addition, here
we have used the slow-roll conditions on χ (35) and the scalar field equations (36), while we have defined the effective
potential as:

Ueff =
1

κ2φ

[

κ2U +
dφ

dχ
U ′(χ) +

1

2
V (φ(χ))

]

. (38)

Hence, the slow-roll parameters (21) will read now differently:

ǫ ≈ 1

2κ2φ

[

(

U ′

Ueff

)2

+
dφ

dχ

U ′

Ueff

]

,

|η| ≈ 1

κ2

U ′′

Ueff
. (39)

Note that for f(R) = R = R(g), i.e. when General Relativity is recovered, the scalar field φ = 1 and the usual
slow-roll parameters (21) are recovered in terms of the inflaton potential U . Hence, slow-roll inflation will occur when
ǫ << 1 and η << 1, while inflation ends for χ̇2 ≈ 2U(χ), when the approximation (36) is no longer valid.

Let us consider a model to illustrate the differences introduced by the modified gravitational action f(R). To do
so, we choose the following -commonly used- potential for the inflaton:

U(χ) =
1

2
m2

χχ̇
2 . (40)

This potential has been widely analysed in the literature and describes the so-called chaotic inflation, which under
the slow-roll conditions (35) in General Relativity gives:

H2 ≈ κ2

6
m2

χχ
2 . (41)

While the number of e-foldings (25) can be expressed in terms of the scalar field as follows:

N = −κ2

∫ χend

χi

U(χ

U ′(χ)
dχ ≈ κ2χ2

i

4
. (42)

Hence, the slow-roll parameters (21) are:

ǫ = η =
1

N
, (43)

which for a number of e-foldings N = 65 provides the following values for the spectral index and the tensor to scalar
ratio:

ns = 0.97 , r = 0.12 . (44)

By comparing with the last data from Planck (28), it is clear that the r does not satisfy the constraint.

Let us now analyze the same potential for the inflaton (40) in the context of Palatini gravity when assuming the
following gravitational action:

f(R) = αRn , (45)
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where α is a constant with the appropriate dimensions and n too. The corresponding auxiliary scalar field φ and its
potential are then provided by (10) and lead to:

φ = nαRn−1 , V (φ) = k φn/n−1 , (46)

here k = 1
n1/n−1

− α. By assuming the slow-roll conditions for the scalar field χ given in (35), the relation φ = φ(χ)
is obtained from the first equation in (36):

φ(χ) ≈
(

k(n− 2)

2m2
χ(n− 1)

1

κ2χ2

)
1−n
n

. (47)

From here we can deduce that n 6= 1, 2, since for n = 1 we recover General Relativity and n = 2 is a degenerate case
as shown by the trace equation (30). The Hubble parameter in (37) leads to:

3H2 =
κ2m2

χ

2k n(n− 2)

21/nk n(3n− 4) + 8m2
χ(n− 1)2

(

k(n−2)
(n−1)m2

χκ
2χ2

)1/n

(

k(n−2)
(n−1)m2

χκ
2χ2

)
1−n
n

χ2 , (48)

which for the case n > 2 and assuming a large field at the beginning of inflation κχ >> 1, it yields:

3H2 ≈
2

1−n
n (3n− 4)κ2m2

χ

(n− 2)

(

k(n− 2)

(n− 1)m2
χκ

2χ2

)

|1−n|
n

χ2 . (49)

In order to simplify the expressions, we can assume for illustrative purposes, the case n = 3. Hence, the slow-roll
parameters (39) turn out:

ǫ =
5 · 24/3m2

χ

75k

(

k

m2
χκ

2χ2

)1/3

, η =
27/3m2

χ

5k

(

k

m2
χκ

2χ2

)1/3

, (50)

while the number of e-foldings is given by:

N =

∫ tend

ti

Hdt = −κ2

∫ χend

χi

Ueff

U ′ dχ =
15

8 · 21/3
(

k

m2
χ

)2/3

(κ2χ2
i )

1/3 . (51)

Then, the slow-roll parameters (50) can be expressed in terms of the number of e-foldings as follows:

ǫ =
13

10

1

N
, η =

3

2

1

N
, (52)

While the spectral index and the tensor to scalar ratio lead to:

ns = 0.92 , r = 0.34 , (53)

which neither satisfy the constraints from Planck (28). Actually, any integer for n > 2 does not provide good fits to
Planck data. Nevertheless, for half integers, the predictions are different. We may consider n = 4/5, in whose case
the Hubble parameter yields:

ǫ =
35/4m2

χ

4k

(

k

m2
χκ

2χ2

)5/4

, η =
35/4m2

χ

2k

(

k

m2
χκ

2χ2

)5/4

, (54)

whereas the number of e-foldings is given by:

N =
4

5 · 35/4

(

m2
χ

k

)1/4

(κ2χ2
i )

5/4 . (55)

Hence, the slow-roll parameters in terms of N gives:

ǫ =
1

5

1

N
, η =

2

5

1

N
, (56)

which for N = 65, we obtain the following spectral index and tensor to scalar ratio:

ns = 0.98 , r = 0.05 , (57)

which fit much better the Planck constraints, particularly the tensor to scalar ratio. Hence, as illustrated by this
simple model of chaotic inflation and a power gravitational action, the corrections introduced in the Palatini formalism
play an important role in the viability of a particular inflaton model.



8

V. CONCLUSIONS

In the present paper we have analysed the inflationary paradigm in the framework of f(R) Palatini gravity. As
shown in other previous papers, and as a consequence of the non-propagating scalar field in the Palatini formalism,
in vacuum or with the presence of traceless matter, the action f(R) just adds an effective cosmological constant
that is not enough to construct a viable model for inflation, since inflation should end after a particular number
of e-foldings. Hence, the only way is to consider the construction of inflationary models in this framework is to
consider the presence of matter, in general a single scalar field with an appropriate potential, similarly as in General
Relativity.

Nevertheless, the presence of non-linear functions of the Ricci scalar R in the gravitational action induces
modifications on the dynamics of the Hubble parameter and consequently on the inflaton, leading to an effective
potential. Here, by working in the Jordan frame, we have obtained such effective potential and have calculated
the modified slow-roll parameters when one assumes a slow-roll motion for the inflaton. As a consequence of these
modifications, the corresponding spectral index and tensor to scalar ratio are modified too, such that the same
potential for the inflaton does not provide the same predictions in GR and in f(R) Palatini gravity. We have illus-
trated this feature by a simple case, the so-called chaotic inflation which is described by a quadratic potential for the
inflaton. As shown, this model that does not fit well the Planck constraints, is slightly modified by a non-linear term
of the Ricci scalar in the action, leading to much better predictions for the spectral index and the tensor to scalar ratio.

Hence, slow-roll inflation in modified gravities within the Palatini approach reflects important differences that may
help to satisfy the observational constraints for some models that in the context of GR were ruled out.
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