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Abstract

We characterize the symmetry algebra of the generic superintegrable system on a
pseudo-sphere corresponding to the homogeneous space SO(p, q + 1)/SO(p, q) where
p+ q = N , N ∈ N. We show that this algebra is independent of the signature (p, q+1)
of the metric and that it is the same as the Racah algebra R(N + 1). The spectrum
obtained from R(N +1) via the Daskaloyannis method depends on undetermined signs
that can be associated to the signatures. Two examples are worked out explicitly for
the cases SO(2, 1)/SO(2) and SO(3)/SO(2) where it is shown that their spectrum ob-
tained by means of separation of variables coincide with particular choices of the signs
corresponding to the specific signatures of the spectrum for the symmetry algebraR(3).

1 Introduction

The Racah algebra R(3) has been applied to describe the recoupling of three copies of
su(1, 1), but it has been used in many other contexts, for instance it was shown that it
is the symmetry algebra of the so called “generic superintegrable system” on the sphere
S2 [1, 2, 3, 4]. Another related property is that this algebra can be identified as the
commutant of o(2)⊕ o(2)⊕ o(2) in o(6). All these properties can be extended to N copies
of su(1, 1) and then it is called the generalized R(N ) Racah algebra [2]. The connection
with the Howe duality and embedding into Bannai-Ito algebra was also discussed. The
Racah algebra R(3) which is included in Askey-Wilson QAW(3) algebra [5] has been also
applied in position dependent mass systems [6].
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Along this work we will consider the symmetry algebra of generic systems defined on
a pseudo–sphere in an ambient space R

p+q+1 endowed with a pseudo Riemannian metric
gµν with signature (p, q + 1). Other notations can be used, but in order to fix a kind of
systems to be considered later let us define a pseudo-sphere Sp,q through the equation

s1
2 + · · ·+ sp

2 − sp+1
2 − · · · − sp+q+1

2 = −1, s ∈ R
p+q+1 . (1.1)

This is an orbit of the pseudo orthogonal group SO(p, q+1) in the ambient space Rp+q+1,
and it can also be seen as the homogeneous space Sp,q = SO(p, q + 1)/SO(p, q). We shall
see that all the symmetry algebras of the “generic systems” associated to any such metric
gµν with p + q = N fixed, will coincide. This means that their symmetry algebras can
be identified to the same Racah algebra R(N + 1). This algebra is the commutant of
⊕N+1o(2) in the Lie algebra o(2p, 2q + 2) [7, 8], which should be the isomorphic to the
commutant in so(2N + 2), i.e., independent of the signature.

We will analyse the possible discrete spectra for the particular case R(3), by following
the method of Daskaloyannis [9]. Then, we will show that the formulas so obtained include
the two cases which have discrete spectrum corresponding to the systems defined on the
sphere S2 ≡ S0,2 ≈ SO(3)/SO(2) and on the (two-sheeted) hyperbolic space H2 ≡ S2,0 ≈
SO(2, 1)/SO(2). The signature of the initial Hamiltonian can be identified in the final
formula of the spectrum.

The organization of the paper is as follows. In Section 2, we define this kind of generic
superintegrable systems on a general pseudo–sphere. We supply the form of the quadratic
symmetries and the symmetry algebra which is independent of the metric coefficients gµν .
It is also included the quantum coefficient ~ in all the terms so that the classical limit
of the system is obtained by taking ~ → 0. Next, in Section 3, the symmetry algebra
for N = 3 is written in the form of a Daskaloyannis algebra [10]. In this way we have
computed the possible discrete spectrum of the symmetry algebra. In Section 4, we supply
the spectrum of the quantum systems defined on the sphere S2 [11] and on the hyperboloid
H2 [7], which can be obtained by means of separation of variables. We will check that,
indeed, these formulas are included in the ones obtained in Section 3. The paper will end
with some remarks and conclusions in Section 4.

2 Generalized Racah Algebra

Let the pseudo–sphere Sp,q be defined as the surface

gijs
isj = −1, (s1, . . . , sN+1) ∈ R

N+1 (2.1)

where the gik’s are metric coefficients g = (gik) with signature (p, q + 1) as mentioned
above. Then, the Hamiltonian of a N = p+ q dimensional superintegrable system on Sp,q

is defined by

H =
1

2
gikgjlJijJkl + gii

ai
s2i

, ai ∈ R (2.2)
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where
Jij = ~gjksi∂k − ~giksj∂k (2.3)

are the anti-Hermitian generators of the Lie algebra SO(p, q+1) which leaves invariant the
pseudo–sphere. We have also included the quantum constant ~ in order to consider later
the classical limit. We use the convention of sum in the repeated indexes with some care:
if one of the repeated indexes is in both sides of the equation and it is taking part of the
definition of a component of a tensor, it will not be summed.

The symmetries for the generic Euclidean case have been known from some time ago
[12]. In the case of generic metric gµν (see Ref. [8] were the signature was considered) the
second order symmetries of the above Hamiltonian (2.2) have the form

Qij = −gikgjlJijJkl + giigjjai
s2j
s2i

+ gjjgiiaj
s2i
s2j

. (2.4)

The commutations of these symmetries are as follows. Firstly, the commutators

[Qij , Qik] = ~Cijk , (2.5)

will lead to the third order symmetry operators Cijk. All these operators {Qij , Cklm} will
close a quadratic symmetry algebra:

[Qjk,, Cijk] = ~

(

8QikQjk − 8QjkQij + 8(−~
2 + 2aj)Qik

−8(−~
2 + 2ak)Qij + 8(aj − ak)~

2

)

,

[Qkl, Cijk] = ~

(

8QikQjl − 8QilQjk + 4~2Qik + 4~2Qjl − 4~2Qil − 4~2Qjk

)

,

[Cijk, Cjkl] = ~

(

− 8CjklQij − 8CiklQjk − 8CijkQjl

+4~2Cjkl − 4~2Cijk − 8(−~
2 + 2aj)Cikl

)

,

[Cijk, Cklm] = ~

(

− 8CilmQjk − 8QikCjlm + 4~2Cilm − 4~2Cjlm

)

,

(2.6)

[Cijk, Clmn] = 0 .

These symmetry operators are invariant under cyclic permutation of their subindexes,

Qij = Qji, Cijk = Ckij = Cjki(= −Cjik) .

Remark that the Hamiltonian can be expresed in terms of the quadratic symmetries Qij:

∑

i<j

αijQij − α0H − α00 = 0 (2.7)
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where

αij =
n(n+ 1)

2
α0, α00 = −

n
∑

i

aiα0 .

Therefore, we see that the signature in the initial Hamiltonian determine the constants
of motion (2.4), but the symmetry algebra (2.6) does not include any track of the metric
coefficients gij , hence it is the same for any generic system (2.2) on a pseudo Riemannian
surface.

2.1 Classical case

In the previous section the quantum symmetry algebra has terms with the quantum con-
stant ~. In order to get the symmetry algebra of the corresponding classical system (re-
placing the quantum by classical magnitudes in the initial Hamiltonian) it is enough to
take the limit ~ → 0 and replace quantum commutators [A,B] = i~C by Poisson brackets
(PB): {A,B}PB = C. In this way, we get the following algebra:

{Qij , Qik}PB = Cijk , (2.8)

{Qjk,, Cijk}PB = −8QikQjk + 8QjkQij − 16ajQik + 16akQij ,

{Qkl, Cijk}PB = −8QikQjl + 8QilQjk ,

{Cijk, Cjkl}PB = 8CjklQij + 8CiklQjk + 8CijkQjl + 16ajCikl ,

{Cijk, Cklm}PB = 8CilmQjk + 8QikCjlm ,

{Cijk, Clmn}PB = 0 .

(2.9)

The symmetries satisfy the same cyclic relations as in the quantum case:

Qij = Qji, Cijk = Ckij = Cjki .

If we compare the classical and the quantum symmetry algebras, we can appreciate
that, as usual, the classical one is simpler because some of the terms in the quantum
commutators vanish in the classical limit.

3 An Example: The Three–Dimensional Case

The set of of second order symmetries in the three-dimensional case are Q12, Q13, Q23.
As the system is superintegrable there must be three independent symmetries including
the Hamiltonian. Thus, we can choose two of them Q12, Q13 together with H as the
independent set. The other one Q23, with the help of (2.7), can be expressed as

Q23 = −Q12 −Q13 +
1

3
H −

1

3

∑

ai .
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The only third order symmetry of the type Cijk is C213. In this section we will take
~ = 1 since we will not consider the classical counterpart. Then, the set of the three
symmetries {Q12, Q13, C213} close, together with (2.5), the following algebra,

[Q12, C213] = +8{Q12, Q13}+ 16(−1 + a1 + a2)Q13

+4(−2 + 6a1 + 2a2 + 2a3)Q12 − 8(−1 + 2a1)H

−8HQ12 + 8Q2
12 + 4(−4a1 + 4a21 + 4a1a2 − 2a3 + 4a1a3) ,

[Q13, C213] = −8{Q12, Q13} − 8Q2
13 + 8HQ13

−4(−2 + 6a1 + 2a2 + 2a3)Q13 − 16(−1 + a1 + a3)Q12

+8(−1 + 2a1)H − 4(−4a1 + 4a21 − 2a2 + 4a1a2 + 4a1a3) .

(3.1)

This algebra can be rewritten in the form of a Daskaloyannis type algebra [9, 10] spanned
by the generators {A,B,C} and having the commutations in the form

[A,B] = C ,

[A,C] = αA2 + γ{A,B}+ δA+ ǫB + ζ ,

[B,C] = aA2 − γB2 − α{A,B} + dA− δB + z ,

(3.2)

where the structure constants in our case take the values:

α = 8, γ = 8, ǫ = 16, a = 0, δ = 4(−2 + 6a1 + 2a2 + 2a3)− 8H,

d = −16(−1 + a1 + a3), ζ = 4(−4a1 + 4a21 + 4a1a2 − 2a3 + 4a1a3)− 8(−1 + 2a1)H,

z = 8(−1 + 2a1)H − 4(−4a1 + 4a21 − 2a2 + 4a1a2 + 4a1a3) .

The Casimir of this algebra is given by

K = C2 − α{A2, B} − γ{A,B2}+ (α, γ − δ){A,B} (3.3)

+(γ2 − ǫ)B2 + (γδ − 2ζ)B +
2a

3
A3 + (d+

aγ

3
+ α2)A2 + (

aǫ

3
+ αδ + 2z)A ,

which can be written in the present realization in terms of the Hamiltonian:

K = 4(−3 + 4a1)H
2 − 8(6 − 21a1 + 4a21 − 3a2 + 4a1a2 − 3a3 + 4a1a3)H

+4
(

20a1 − 39a21 + 4a31 + 4a2 − 30a1a2

+8a21a2 − 3a22 + 4a1a
2
2 + 4a3 − 30a1a3 + 8a21a3

+6a2a3 − 8a1a2a3 − 3a23 + 4a1a
2
3

)

.

(3.4)
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This formula, providing a link between the Casimir and the Hamiltonian, will allow to
establish the realization of the quadratic algebra as a deformed oscillator algebra [9] of the
form

[N, b] = −b, [N, b†] = b†, bb† = Φ(N + 1), b†b = Φ(N)

where Φ(N) is the structure function which is a polynomial in terms of the number operator
N and the representation dependent parameter u. Remark that this algebraic approach
has been extended to polynomial algebras [13] with three generators and applied to higher
rank quadratic algebras [14]. The expression of Φ is

Φ(N) = 768
(

αǫ2 + 4γ2ζ − 2γδǫ
)2

+ 32γ4(2(N + u)− 1)2

(

12(N + u)2 − 12(N + u)− 1
) (

3α2ǫ2 + 4αγ2ζ − 6αγδǫ + 2aγǫ2

+2γ2δ2 − 4γ2dǫ+ 8γ3z − 48γ6
)

(2(N + u)− 3)(2(N + u)− 1)4(2(N + u) + 1)
(

α2ǫ− αγδ

+aγǫ− γ2d
)

− 256γ2(2(N + u)− 1)2
(

3α2ǫ3 + 4αγ4ζ

+12αγ2ζǫ− 9αγδǫ2 + aγǫ3 + 2γ4δ2

−12γ3δζ + 6γ2δ2ǫ+ 2γ4dǫ− 3γ2dǫ2 − 4γ5z+

12γ3zǫ
)

+γ8(2(N+u)−3)2(2(N+u)−1)4(2(N+u)+1)2
(

3α2 + 4aγ
)

−3072γ6K(2(N+u)−1)2 .

Using the structure constants and the Casimir operator as expressed in terms of the central
element of the algebra (the Hamiltonian H) one get

Φ(N,u,E) = 3221225472(a21 + a22 − 2a1(a2 + (1− 2(N + u))2) (3.5)

−2a2(1− 2(N + u))2 + 4(1− 2(N + u))2(−1 + (N + u))(N + u)

(a23 +E2 − 2a3(E + (1− 2(N + u))2)

−2E(1− 2N)2 + 4(1 − 2(N + u))2(−1 + (N + u))(N + u)) .

The structure function in this form allow us to characterize the finite dimensional
unitary representations and in this way it will lead to the discrete spectrum for the energy
E. This formula is a polynomial of degree 8 in the number operator N , but it is not yet in
a convenient form. Using the parameter

m2
i = 1 + 4ai, i = 1, 2, 3

and introducing
−Ẽ2 = −1 + 4E ,

we can reexpress the structure function as

Φ(N,u,E) = 824633720832(N + u−N1)(N + u−N2) (3.6)
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(N + u−N3)(N + u−N4)(N + u−N5)

(N + u−N6)(N + u−N7)(N + u−N8)

with
N1 =

1

4
(2− (m1 −m2)), N5 =

1

4
(2− (Ẽ −m3)),

N2 =
1

4
(2 + (m1 −m2)), N6 =

1

4
(2 + (Ẽ −m3)),

N3 =
1

4
(2− (m1 +m2)), N7 =

1

4
(2− (Ẽ +m3)),

N4 =
1

4
(2 + (m1 +m2)), N8 =

1

4
(2 + (Ẽ +m3)) .

This is a factorized form that will facilitate greatly the study of the finite dimensional
unitary representations. The constraints that need to be satisfied in order to get finite
dimensional unitary representations are the following:

Φ(0, u,E) = 0, Φ(p+ 1, u,E) = 0, Φ(ν, u,E) > 0 ∀ ν = 1, ..., p .

The first condition Φ(0, u,E) = 0 provide

u =
1

4
(2 +m1ǫ1 +m2ǫ2)

where the parameters ǫ1 = ±1, ǫ2 = ±1 allow to describe the different solutions in a unified
way. They supply us with the structure function under the form

Φ(N,E) = 12582912(−4N +m1(−1− ǫ1) +m2(−1− ǫ2)(−4N +m1(1− ǫ1) +m2(−1− ǫ2)

(−4N +m1(−1− ǫ1) +m2(1− ǫ2)(−4N +m1(1− ǫ1) +m2(1− ǫ2)

(−Ẽ − 4N −m3 +m1ǫ1 −m2ǫ2)(Ẽ − 4N −m3 +m1ǫ1 −m2ǫ2)

(−Ẽ − 4Nm3 +m1ǫ1 −m2ǫ2)(Ẽ − 4Nm3 −m1ǫ1 −m2ǫ2) .

The second condition Φ(p+ 1, u,E) = 0 provides

Ẽ = 4(p + 1)− ǫ3m3 −m2ǫ2 −m1ǫ1

and

E =
1

4
−

1

4
(ǫ3m3 + ǫ2m2 + ǫ1m1 − 4(p+ 1))2 .

We will introduce the new parameters li whose meaning will be explained below:

mi = 2 li, i = 1, 2, 3 .

Then, the spectrum will take the form

E =
1

4
− (ǫ3l3 + ǫ2l2 + ǫ1l1 − 2(p + 1))2 (3.7)

where ai = l2i − 1/4. The degeneracy of each energy level, determined by p, is p+ 1.
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3.1 The spectrum of the three dimensional system

We will consider an example corresponding to metric coefficients of different signs: (g11 =
+1, g22 = +1, g33 = −1). The surface is the hyperbolic space H2, the upper component of
the two dimensional two-sheeted hyperboloid given by s21 + s22 − s23 = −1, inside the real
space R

3.
The superintegrable generic Hamiltonian in this case has the form [7]:

H = −J2
1 − J2

2 + J2
3 +

ℓ21 −
1

4

s2
1

+
ℓ22 −

1

4

s2
2

−
ℓ23 −

1

4

s2
3

, (3.8)

where ℓ = (ℓ1, ℓ2, ℓ3) ∈ R
3, and the anti-Hermitian generators of SO(2, 1) are

J1 = s2 ∂s3 + s3 ∂s2 ,

J2 = s3 ∂s1 + s1 ∂s3 ,

J3 = −s1 ∂s2 + s2 ∂s1 .

(3.9)

Here, J3 generates true rotations around s3, while J1, J2 are generators of the pseudo-
rotations around s1 and s2, respectively. In terms of these generators the kinetic part of
the Hamiltonian (3.8) is (proportional to) the so(2, 1) Casimir operator

C = J2
1 + J2

2 − J2
3 . (3.10)

We can parametrize the hyperbolic surface in the following way [7]:

s1 = sinh ξ cos θ , s2 = sinh ξ sin θ , s3 = cosh ξ , (3.11)

where 0 ≤ θ < 2π, 0 ≤ ξ < ∞. Using this parametrization, the Hamiltonian (3.8), takes
the form

H = −∂2
ξ − coth ξ ∂ξ −

ℓ23 −
1

4

cosh ξ2
+

1

sinh ξ2

(

−∂2
θ +

ℓ22 −
1

4

cos θ2
+

ℓ21 −
1

4

sin θ2

)

. (3.12)

The corresponding eigenvalue equation is H Ψ(ξ, θ) = EΨ(ξ, θ).
It can be shown by separating variables [7] that the discrete spectrum is given by

E =
1

4
− (ℓ3 − ℓ1 − ℓ2 − 2(n+m+ 1))2 , (3.13)

where m,n ∈ Z
+ and ℓ3− ℓ1− ℓ2−2(n+m+1) > 0. The degeneracy is given by the P +1

values of m,n such that m+ n = P , with 0 ≤ P < (ℓ3 − ℓ1 − ℓ2)/2 − 1.
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We can compare this formula with that obtained following the Daskaloyannis method
given by (3.7). We see that they will coincide if we make the identifications gii = ǫi and
p = n+m ≡ P . The values of p = 0, 1 . . . are subject to the condition

ℓ3 − ℓ1 − ℓ2
2

− 1 > p ≥ 0 . (3.14)

The allowed values of p determine the finite spectrum and the degeneracy of each level is
p+ 1. Only the ground level p = 0 will be a singlet.

Let us briefly mention the case with metric coefficients of equal signs: gii = 1, i = 1, 2, 3.
The surface is S2, the two dimensional sphere, s21 + s22 + s23 = 1 in R

3 (equivalently we
could take gii = −1 and the equation of the sphere with an overall −1 sign). The generic
Hamiltonian in this case has the usual form [11]:

H = −(J2
1 + J2

2 + J2
3 ) +

ℓ21 −
1

4

s2
1

+
ℓ22 −

1

4

s2
2

+
ℓ23 −

1

4

s2
3

, (3.15)

where ℓ = (ℓ1, ℓ2, ℓ3) ∈ R
3, and the anti-Hermitian generators of SO(3). The spectrum is

given by

− E =
1

4
− (ℓ1 + ℓ2 + ℓ3 + 2(n +m+ 1))2 , (3.16)

where m,n ∈ Z
+. There is an infinite number of discrete energy levels whose degeneracy

also is given by the P + 1 values of m,n such that m+ n = P . The formula (3.7) applies
also here provided we take ǫi = −1, i = 1, 2, 3, as well as an overall change of sign coming
from the initial Hamiltonian (3.15).

4 Conclusions

We derived the symmetry algebra of a generic Hamiltonian on the pseudo–sphere Sp,q

corresponding to an ambient space R
p+q+1 with metric gµν of signature (p, q + 1). We

showed that this algebra is the same, independently of the metric, as the general Racah
algebra R(N + 1), where N = p+ q.

We considered in detail the particular case of the case gµν = diag(1, 1,−1) and the ho-
mogeneous space SO(2, 1)/SO(2) of the two sheeted hyperbolic space and the correspond-
ing generic Hamiltonian. We constructed the symmetry algebra, its Casimir operator,
the realization as a deformed oscillator algebra and calculated the energy spectrum alge-
braically which depend on some signs ǫi. We compared this algebraic spectrum with the
“physical spectrum” obtained via separation of variables of the corresponding Schrödinger
equation and showed how they both coincide for a choice of the signs which is given by the
signature of the metric. In Ref. [7] it was shown that the symmetry algebra of each of the
generic Hamiltonians in SO(2, 1)/SO(2) can be identified as the commutant of ⊕3so(2) in
the enveloping algebra of so(4, 2). Meanwhile, in the standard case of the generic system
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on SO(3)/SO(2) it is known, based on the Howe duality, that the symmetry algebra is
identified as the commutant of ⊕3o(2) in the enveloping algebra of o(6). It seems as if
the symmetry operators, being quadratic, loose the track of the signature and they have
the same algebraic structure for any metric signature. There are even some homogeneous
spaces, for instance SO(2, 1)/SO(1, 1), where the inner product, in the space of wave func-
tions on the manifold, is not positive definite and therefore there is not the notion of bound
states. In this case the algebra in principle would be the same as in the above cases because
the homogeneous space is not used in the derivation of the algebra. The discrete spectrum
obtained by Daskaloyannis method, however, would give the same formula although no
discrete spectrum is available in this case.
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Ş. Kuru acknowledges Ankara University and the warm hospitality at Department of
Theoretical Physics, University of Valladolid, where part of this work has been done.
I. Marquette was supported by Australian Research Council with a Future Fellowship
FT180100099.

References

[1] V.X. Genest, S. Vinet and E. Zhedanov, Superintegrability in two dimensions and the
RacahWilson algebra, Lett. Math. Phys., 104, 931952 (2014).

[2] J. Gaboriaud, L. Vinet, S. Vinet and E. Zhedanov, The generalized Racah algebra as
a commutant, J. Phys.: Conf. Series, 1194, 012034 (7pp) (2019).

[3] E.G. Kalnins, W. Miller Jr. and S. Post, Wilson polynomials and the generic superin-
tegrable system on the 2-sphere, J. Phys. A: Math. Theor., 40, 11525-11538 (2007).

[4] E.G. Kalnins, W. Miller Jr. and S. Post, Two-variable Wilson polynomials and the
generic superintegrablesSystem on the 3-sphere, SIGMA, 7, 051 (26pp) (2011).

[5] Ya.I.Granovskii, I.M. Lutzenko, A.S. Zhedanov, Mutual integrability, quadratic alge-
bras, and dynamical symmetry, Ann. Phys. 217, 120 (1992).

[6] C.Quesne, Quadratic algebra approach to an exactly solvable position-dependent mass
Schrodinger equation in two dimensions, SIGMA 3, 067 (14pp) (2007).
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