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Abstract

We show that our previous work on Galilei and Carroll gravity, apt for particles, can

be generalized to Galilei and Carroll gravity theories adapted to p-branes (p = 0, 1, 2, · · ·).

Within this wider brane perspective, we make use of a formal map, given in the literature,

between the corresponding p-brane Carroll and Galilei algebras where the index describing

the directions longitudinal (transverse) to the Galilei brane is interchanged with the index

covering the directions transverse (longitudinal) to the Carroll brane with the understanding

that the time coordinate is always among the longitudinal directions. This leads among other

things in 3D to a map between Galilei particles and Carroll strings and in 4D to a similar

map between Galilei strings and Carroll strings. We show that this formal map extends to

the corresponding Lie algebra expansion of the Poincaré algebra and, therefore, to several

extensions of the Carroll and Galilei algebras including central extensions. We use this formal

map to construct several new examples of Carroll gravity actions. Furthermore, we discuss

the symmetry between Carroll and Galilei at the level of the p-brane sigma model action and

apply this formal symmetry to give several examples of 3D and 4D particles and strings in a

curved Carroll background.
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1 Introduction

It is well known that the anti-de Sitter algebra allows several contractions to non-relativistic
kinematical symmetry algebras [1]. For zero cosmological constant, among these algebras are the
Galilei and Carroll algebras. Both algebras can be obtained as a contraction of the Poincaré algebra
which by itself is a contraction of the anti-de Sitter algebra. Whereas the Galilei algebra is obtained
as a non-relativistic, i.e. c → ∞, limit of the Poincaré algebra, the Carroll algebra is obtained as
the opposite ultra-relativistic, i.e. c → 0, limit of the same Poincaré algebra.

For obvious reasons the Galilei algebra has received much more attention than the Carroll
algebra. However, the Carroll algebra has regained interest over the past few years. Carroll
symmetries occur in a variety of special situations such as in the strong coupling limit of General
Relativity [2] and near spacetime singularities [3]. They have also emerged in a recent study of
the isometry group of plane gravitational waves [4] and in a study of warped AdS holography [5].
The same Carroll symmetries play a prominent role in flat space holography [6]. According to
[7] a conformal extension of the Carroll symmetries is related to the BMS symmetries [8]. These
BMS symmetries occur as a subgroup of the symmetries of a massless particle moving in a Carroll
geometry [9]. Taking a special limit of general relativity, an ultra-relativistic version of gravity,
called Carroll gravity, has been constructed [10]. The corresponding action is related, and perhaps
equal, to the one considered in [2]. An alternative version of Carroll gravity has been constructed
in [11]. For other recent papers on Carroll symmetries, see, e.g., [12, 13, 14, 15].

The Galilei and Carroll algebra look rather different from a particle point of view where time
plays a special role. On the one hand, the D-dimensional Galilei algebra is given by

The DDD-dimensional Galilei algebra

[Jab, Jcd] = 4η[a[cJd]b] , (1.1a)

[Jab, Gd] = 2ηd[b|G|a] , (1.1b)

[Ga, Gb] = 0 , (1.1c)

[Jab, Pd] = 2ηd[bPa] , (1.1d)

[Ga, H ] = Pa , (1.1e)

[Ga, Pb] = 0 , (1.1f)

where {H ,Pa , Jab , Ga} are the generators corresponding to time translations, spatial translations,
spatial rotations and Galilean boosts, respectively. On the other hand, the non-zero commutation
relations of the D-dimensional Carroll algebra are given by
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The DDD-dimensional Carroll algebra

[Jab, Jcd] = 4η[a[cJd]b] , (1.2a)

[Jab, Gd] = 2ηd[b|G|a] , (1.2b)

[Ga, Gb] = 0 , (1.2c)

[Jab, Pd] = 2ηd[bPa] , (1.2d)

[Ga, Pb] = −δabH , (1.2e)

[Ga, H ] = −Pa . (1.2f)

We see that the difference between the Galilei and Carroll algebra stems from the Ga, Pa, H com-
mutators involving the boost generators Ga, the time translation generator H and the spatial
translation generators Pa. Nevertheless, within this particle perspective, an interesting duality
relation between Carroll and Galilei has been discovered using two dual non-Einsteinian concepts
of time [16].

It has been pointed out that, although the Galilei and Carroll algebras look different, the two
algebras are very similar when we give up the particle perspective and consider the two algebras
from a wider brane perspective where we do not distinguish between a time direction and the other
transverse directions [17]. Instead, we decompose a general flat spacetime index into the directions
longitudinal to the brane, including the time direction, and into the directions transverse to the
brane. We should stress that the resulting similarity between Carroll and Galilei that we will
discuss in this work is a formal one and should be distinguished from the more physical duality
advocated in [16]. In this work we will use this formal map between Galilei and Carroll to construct
several new examples of Carroll gravity theories for branes. Note that we use here the word ‘branes’
in a kinematical way without actually writing down a sigma model action for such a brane. In
the second part of this work, we will extend the discussion to the p-brane sigma model action
and construct new examples of sigma models describing particles and strings in a curved Carroll
background. For earlier work on Carroll particles, strings and branes, see [9, 18, 19, 17].

The organization of this work is as follows. In section 2, we will consider the general p-brane
contraction of the Poincaré algebra where the longitudinal components of the generators scale dif-
ferently with the contraction parameter than the transverse components. This automatically leads
to contracted algebras with a manifest Lorentz (spatial rotational) symmetry in the longitudinal
(transverse) directions. Next, we review the formal map between the Carroll and Galilei algebras
from this wider brane perspective [17]. We will point out that this map extends to the Lie algebra
expansion [20, 21] of the Poincaré algebra and therefore extends to the corresponding extended

Galilei and Carroll algebras including central extensions. 1 2 In section 3, we will use this formal
map to construct several actions for (extended) Carroll gravity by using our earlier results for
(extended) Galilei gravity obtained in [10, 23]. Next, in section 4, we will discuss in which sense
this symmetry between Carroll and Galilei extends at the level of the p-brane sigma model actions.
We will give several examples of 3D and 4D particles and strings in a curved Carroll background.
Finally, in section 5 we will give our conclusions.

2 Carroll versus Galilei and the Lie Algebra Expansion

In this section we show the details of the formal map between the Carroll and Galilei algebras
mentioned in the introduction and point out how this formal map extends to the corresponding
Lie algebra expansion of the Poincaré algebra.

Our starting point is the D-dimensional Poincaré algebra with the following commutation re-
lations:

[PÃ, PB̃] = 0 , (2.1a)

[JÃB̃, PC̃ ] = ηC̃B̃PÃ − ηC̃ÃPB̃ , (2.1b)

[JÃB̃, JC̃D̃] = 4η[Ã[C̃JD̃]B̃], (2.1c)

1In the case of AdS this relation between Galilean and Carroll expansions was studied in [22].
2Our nomenclature of the different algebras and gravity theories occurring in this work is explained in Appendix

A.
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where PÃ and JÃB̃ are the generators of spacetime translations and Lorentz transformations,

respectively. The flat tilde indices run over Ã = 0, 1, . . . , D − 1. In the case of a p-brane we
decompose the index Ã into indices A, a describing the directions longitudinal and transverse to
the p-brane as follows:

Ã = {A, a} with A = 0, 1, . . . , p and a = p+ 1, . . . , D − 1 . (2.2)

This induces the following decomposition of the generators:

JÃB̃ → {JAB, GAa, Jab} , PÃ → {HA, Pa} . (2.3)

In terms of the decomposed generators, the non-zero commutators of the Poincaré algebra are
given by

[JAB, JCD] = 4η[A[CJD]B] , (2.4a)

[Jab, Jcd] = 4η[a[cJd]b] , (2.4b)

[JAB, GCd] = 2ηC[BGA]d , (2.4c)

[Jab, GCd] = 2ηd[b|GC|a] , (2.4d)

[GAa, GBb] = −ηABJab − ηabJAB . (2.4e)

[JAB, HC ] = 2ηC[BHA] , (2.4f)

[Jab, Pd] = 2ηd[bPa] , (2.4g)

[GAa, HB] = −ηABPa , (2.4h)

[GAa, Pb] = ηabHA , (2.4i)

Both the Galilei p-brane algebra and Carroll (D − p− 2)-brane algebras are obtained through
a contraction of the Poincaré algebra induced by the decomposition

g = V0 ⊕ V1 , (2.5)

where the subspaces V0 and V1 are spanned by the following generators:

ppp-brane Galilei

V0 = {JAB, Jab, HA} , (2.6a)

V1 = {GAb, Pa} , (2.6b)

(D − p− 2D − p− 2D − p− 2)-brane Carroll

V0 = {JAB, Jab, Pa} , (2.7a)

V1 = {GAb, HA} . (2.7b)

In both cases V0 is a subalgebra and the commutation relations define the following symmetric
space structure:

[V0, V0] ⊆ V0 , [V1, V0] ⊆ V1 , [V1, V1] ⊆ V0 . (2.8)

The contraction is now defined by first re-scaling all generators corresponding to V1 such that they
are linear in a contraction parameter ω and next taking the limit ω → ∞. For p = 0 and p = D−2,
this contraction reproduces the particle or 0-brane Galilei and Carroll algebras given in eqs. (1.1)
and (1.2), respectively.

From the above formulae it is clear that there is a formal map between the p-brane Galilei
contraction and the (D−p−2)-brane Carroll contraction given by the exchange of the longitudinal
and transverse indices:

A ↔ a , (2.9)

where it is understood that HA ↔ Pa. This defines the following map between the p-brane Galilei
and (D − p− 2)-brane Carroll algebras [17]:

ppp-brane Galilei
A ↔ a⇐==========⇒ (D − p− 2D − p− 2D − p− 2)-brane Carroll

As a simple example of how this formal map explicitly works, we consider the 3D Carroll and
Galilei algebras for particles and strings. The non-zero commutation relations are given in Table
1.
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D = 3D = 3D = 3 Non-Zero Commutation Relations

Galilei Carroll

p = 0p = 0p = 0 p = 1p = 1p = 1 p = 0p = 0p = 0 p = 1p = 1p = 1

[J,Ga] = −ǫ b
a Gb [M,GA] = ǫ B

A GB [J,Ga] = −ǫ b
a Gb [M,GA] = ǫ B

A GB

[J, Pa] = −ǫ b
a Pb [M,HA] = ǫ B

A HB [J, Pa] = −ǫ b
a Pb [M,HA] = ǫ B

A HB

[Ga, H ] = Pa [GA, HB] = −ηABP [Ga, Pb] = ηabH [GA, P ] = HA

Table 1: This table compares the 3D Carroll and Galilei algebras for particles and strings.

From the table we conclude that there is a formal map between the 3D p-brane Galilei and
(1− p)-brane Carroll algebra given by

J ↔ −M , P ↔ H , HA ↔ Pa , GA ↔ Ga . (2.10a)

which simply corresponds to an interchange between the longitudinal index A with the transverse
index a.

Most importantly, since the Lie algebra expansion procedure is fully determined by the initial
decomposition defined by eqs. (2.5)-(2.7), we conclude that this formal map between the Carroll
and Galilei algebras will continue to hold for the expanded Poincaré algebra, order by order, as
well. We will make use of this observation to construct several new examples of (extended) Carroll
gravity actions in the next section by making use of our earlier results on (extended) Galilei gravity
[10, 23].

3 Examples of Carroll Gravity

Starting from the Einstein-Hilbert action and making use of the Lie algebra expansion of the
Poincaré algebra, in our previous work we have constructed several examples of non-relativistic
gravity actions in 3D and 4D based upon the extended particle (p = 0) and string (p = 1) Galilei
algebra [23]. Below we will show how, by making use of the formal map between Carroll and
Galilei, this automatically leads to similar results for ultra-relativistic Carroll gravity actions.

In the Lie algebra expansions that we perform below we associate the following gauge fields to
the decomposed generators:

JAB → ΩAB
µ , (3.1a)

Jab → Ωab
µ , (3.1b)

GAb → ΩAb
µ . (3.1c)

Pa → Ea
µ , (3.1d)

HA → τAµ , (3.1e)

3.1 3D3D3D Carroll Gravity

Using form notation, the 3D Einstein-Hilbert Lagrangian is given by

LEH = ǫÃB̃C̃ RÃB̃(J) ∧EC̃ , (3.2)

where RÃB̃(J) is the 2-form Lorentz curvature of the Poincaré algebra (2.1) and EÃ is the 1-form
Vielbein gauge field associated with the spacetime translation generators PÃ. After a particle
(p = 0) and string (p = 1) decomposition we obtain, before expanding, the following Lagrangians:

Lp=0 = ǫab
[

Rab(J) ∧ τ − 2Ra(G) ∧Eb
]

, (3.3)

Lp=1 = ǫAB

[

RAB(J) ∧ E − 2RA(G) ∧ τB
]

, (3.4)

where a = 1, 2 are the two directions transverse to the particle and A = 0, 1 are the two directions
longitudinal to the string.
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Using the notation of [23], we now expand both Lagrangians in eq. (3.3) to lowest order corre-
sponding to the Carroll or Galilei algebra g(0, 1). 3 This leads to the Lagrangians given in Table
2.

Lppp Galilei Carroll

p = 0p = 0p = 0 ǫab
(0)

Rab(J) ∧(0)

τ ǫab

[

(0)

Rab(J) ∧(1)

τ − 2
(1)

Ra(G) ∧
(0)

Eb

]

p = 1p = 1p = 1 ǫAB

[

(0)

RAB(J) ∧
(1)

E − 2
(1)

RA(G) ∧(0)

τB
]

ǫAB

(0)

RAB(J) ∧
(0)

E

Table 2: This table gives the Lagrangians resulting from the lowest order Lie algebra expansion of the 3D Einstein-
Hilbert Lagrangian (3.2) corresponding to the 3D Carroll and Galilei algebra for both particles (p = 0) and strings
(p = 1).

From Table 2 we deduce that, would we have restricted ourselves to particles only, the results for the
Galilei and Carroll gravity Lagrangians are a-symmetric [23]. From the first line in the above table,
we read that the Galilei gravity Lagrangian contains only one term whereas the Carroll gravity
Lagrangian contains two terms. However, incorporating also strings, we see that the symmetry is
restored provided we connect the particle Galilei Lagrangian in the first line of the table to the
string Carroll Lagrangian in the second line. Both for Carroll and Galilei we have one Lagrangian
with one term and a second Lagrangian with two terms.

3.2 3D3D3D Extended Carroll Gravity

It is straightforward to go beyond the lowest order in the Lie algebra expansion of the 3D
Einstein-Hilbert Lagrangian (3.2).4 In particular, in order for these actions to be invariant under
the corresponding extended algebras we should consider the truncation to g(2, 1) for the extended
p = 0 Galilei and p = 1 Carroll Lagrangians and to g(2, 3) for the extended p = 1 Galilei and
extended p = 0 Carroll Lagrangians. The explicit expressions for these Lagrangians are given in
Table 3.

The particle (p = 0) Lagrangian for extended Galilei gravity given in the first line of Table 3 is,
using our old nomenclature, the extended Bargmann Lagrangian constructed in [24, 25, 26]. Using
our formal map, it immediately leads to the corresponding result for the extended string (p = 1)
Carroll gravity Lagrangian given in the second line of the table.

3.3 4D4D4D Carroll Gravity

Our starting point is the 4D Einstein-Hilbert Lagrangian

LEH = ǫÃB̃C̃D̃ RÃB̃(J) ∧EC̃ ∧ EC̃ . (3.5)

After decomposing the fields, before expanding, we obtain the following Lagrangians for particles
(p = 0), strings (p = 1) and membranes (p = 2):

Lp=0 = ǫabc
[

−Rab(J) ∧Ec ∧ τ +Ra(G) ∧ Eb ∧Ec
]

, (3.6a)

Lp=1 = ǫABab

[

Rab(J) ∧ τA ∧ τB +RAB(J) ∧ Ea ∧ Eb − 4RAa(G) ∧ τB ∧ Eb
]

, (3.6b)

Lp=2 = − ǫABC

[

RAB(J) ∧ τC ∧ E +RA(G) ∧ τB ∧ τC
]

. (3.6c)

After expanding we find, in lowest order, for the Carroll and Galilei algebras the results given in
Table 4.

3We use here the notation of [23] where g(p, q) (p even and q odd) is the Lie algebra that corresponds to a
Lie algebra expansion where the generators of the V0 (V1) subspace are expanded up to powers ωp (ωq). The case
p = 0, q = 1 corresponds to the usual Wigner-Inönü contraction.

4This subsection has some overlap with the recent paper [22].
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Lppp Galilei Carroll

p = 0p = 0p = 0 ǫab

[

(2)

Rab(J) ∧(0)

τ +
(0)

Rab(J) ∧(2)

τ+ ǫab

[

(0)

Rab(J) ∧(3)

τ +
(2)

Rab(J) ∧(1)

τ+

−2
(1)

Ra(G) ∧
(1)

Eb

]

−2
(1)

Ra(G) ∧
(2)

Eb − 2
(3)

Ra(G) ∧
(0)

Eb

]

p = 1p = 1p = 1 ǫAB

[

(0)

RAB(J) ∧
(3)

E +
(2)

RAB(J) ∧
(1)

E+ ǫAB

[

(2)

RAB(J) ∧
(0)

E +
(0)

RAB(J) ∧
(2)

E+

−2
(1)

RA(G) ∧(2)

τB − 2
(3)

RA(G) ∧(0)

τB
]

−2
(1)

RA(G) ∧(1)

τB
]

Table 3: This table gives the Lagrangians resulting from the next to lowest order Lie algebra expansion of the 3D
Einstein-Hilbert Lagrangian (3.2) corresponding to the 3D extended Carroll and Galilei algebra for both particles
(p = 0) and strings (p = 1).

Lppp Galilei Carroll

p = 0p = 0p = 0 −ǫabc
(0)

Rab(J) ∧
(1)

Ec ∧(0)

τ ǫabc

[

−
(0)

Rab(J) ∧
(0)

Ec ∧(1)

τ +
(1)

Ra(G) ∧
(0)

Eb ∧
(0)

Ec

]

p = 1p = 1p = 1 ǫABab

(0)

Rab(J) ∧(0)

τA ∧(0)

τB ǫABab

(0)

RAB(J) ∧
(0)

Ea ∧
(0)

Eb

p = 2p = 2p = 2 −ǫABC

[

(0)

RAB(J) ∧(0)

τC ∧
(1)

E +
(1)

RA(G) ∧(0)

τB ∧(0)

τC
]

−ǫABC

(0)

RAB(J) ∧(1)

τC ∧
(0)

E

Table 4: This table gives the Lagrangians resulting from the lowest order Lie algebra expansion of the 4D Einstein-
Hilbert Lagrangian (3.5) corresponding to the 4D Carroll and Galilei algebra for both particles (p = 0), strings
(p = 1) and membranes (p = 2).

Like in 3D, we find that, after including all branes and not only particles, the results for
the Carroll and Galilei gravity Lagrangians are symmetric. Using our formal map, the particle
(membrane) Galilei gravity Lagrangian given in the left column of Table 4 is mapped to the
membrane (particle) Carroll Lagrangian given in the right column of the table whereas the string
Galilei and Carroll Lagrangians are mapped onto each other.

3.4 4D4D4D Extended Carroll Gravity

In order for the next to lowest order action to be invariant we should consider the g(2, 3) algebra
for particles (p = 0) and membranes (p = 2) and the g(2, 1) algebra for strings (p = 1) both for
Carroll and Galilei. The result for the different Lagrangians that follow from the Lie algebra
expansion are given in Table 5.

The particle (p = 0) extended Galilei gravity Lagrangian given in Table 5 is the one constructed
in [27]. We use here the first-order formulation given in [25]. The string (p = 1) extended Galilei
gravity Lagrangian is, using the old nomenclature, the extended string NC gravity Lagrangian
constructed in [28]. Table 5 shows how each extended Galilei gravity Lagrangian leads to a corre-
sponding invariant extended Carroll gravity Lagrangian.
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Lppp Galilei Carroll

p = 0p = 0p = 0 ǫabc

[

−
(0)

Rab(J) ∧
(3)

Ec ∧(0)

τ −
(2)

Rab(J) ∧
(1)

Ec ∧(0)

τ+ ǫabc

[

−
(0)

Rab(J) ∧
(0)

Ec ∧(3)

τ −
(2)

Rab(J) ∧
(0)

Ec ∧(1)

τ+

−
(0)

Rab(J) ∧
(1)

Ec ∧(2)

τ +
(1)

Ra(G) ∧
(1)

Eb ∧
(1)

Ec

]

−
(0)

Rab(J) ∧
(2)

Ec ∧(1)

τ + 2
(1)

Ra(G) ∧
(2)

Eb ∧
(0)

Ec+

+
(3)

Ra(G) ∧
(0)

Eb ∧
(0)

Ec

]

p = 1p = 1p = 1 ǫABab

[

(2)

Rab(J) ∧(0)

τA ∧(0)

τB + 2
(0)

Rab(J) ∧(2)

τA ∧(0)

τB+ ǫABab

[

(0)

Rab(J) ∧(1)

τA ∧(1)

τB +
(2)

RAB(J) ∧
(0)

Ea ∧
(0)

Eb+

+
(0)

RAB(J) ∧
(1)

Ea ∧
(1)

Eb − 4
(1)

RAa(G) ∧(0)

τB ∧
(1)

Eb

]

+2
(0)

RAB(J) ∧
(2)

Ea ∧
(0)

Eb − 4
(1)

RAa(G) ∧(1)

τB ∧
(0)

Eb

]

p = 2p = 2p = 2 −ǫABC

[

(0)

RAB(J) ∧(0)

τC ∧
(3)

E +
(2)

RAB(J) ∧(0)

τC ∧
(1)

E+ −ǫABC

[

(2)

RAB(J) ∧(1)

τC ∧
(0)

E +
(0)

RAB(J) ∧(3)

τC ∧
(0)

E+

+
(0)

RAB(J) ∧(2)

τC ∧
(1)

E + 2
(1)

RA(G) ∧(2)

τB ∧(0)

τC+
(0)

RAB(J) ∧(1)

τC ∧
(2)

E +
(1)

RA(G) ∧(1)

τB ∧(1)

τC
]

+
(3)

RA(G) ∧(0)

τB ∧(0)

τC
]

Table 5: This table gives the Lagrangians resulting from the next to lowest order in the Lie algebra expansion of
the 4D Einstein-Hilbert Lagrangian (3.5) corresponding to the 4D extended Carroll and Galilei algebra for both
particles (p = 0), strings (p = 1) and membranes (p = 2).

3.5 Higher Order Expansion and Invariance Conditions

The results that we have obtained in the previous sections, considering action terms at second
or third order in the expansion parameter, could be easily generalized to study higher order terms
. In particular, following the approach discussed in [23], it is possible to define a set of conditions
between the action of order n and the truncation of order N0, N1, such that the order n action
term is invariant under the algebra g(N0, N1). Since the derivation follows exactly the same steps
discussed in [23] we refer to that work for details and we just list the results:

p = D − 1 n 6 N1 +D + 1 (3.7a)

p = D − 2

{

D = 3 n 6 N0

D 6= 3 n 6 N1 +D − 4
(3.7b)

1 < p 6 D − 3 n 6 N1 + p− 2 (3.7c)

p = 1 n 6 N0 (3.7d)

p = 0 n 6 N1 . (3.7e)
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We remark that the conditions can be obtained just exchanging p with D−p−2 , with the exception
of the p = D − 1 which has no Galilei dual.5 From these conditions, we may also derive that, for
given (D, p), the smallest algebra consistent with the invariance of the Lagrangian density at order
n is given by

p = D − 1 g(n−D,n−D + 1) (3.8a)

p > 1 g(n− p+ 1, n− p+ 2) (3.8b)

p = 1 g(n, n− 1) (3.8c)

p = 0 g(n− 1, n) . (3.8d)

In the case with n = 0 it is understood that the algebra g(0,−1) corresponds to V0.

4 ppp-brane Sigma Models

We now consider the symmetry between Carroll and Galilei at the level of the p-brane sigma
model. Our starting point is the relativistic p-brane Polyakov-type Lagrangian 6

LPol =
√
hhαβ∂αX

µ∂βX
νEÃ

µ E
B̃
ν ηÃB̃ − (p− 1)T

√
h , (4.1)

where T is the p-brane tension, Xµ(σ) are the embedding coordinates, EÃ
µ are the relativistic

Vielbeine and hαβ is the worldvolume metric with h = |dethαβ |. Since this Lagrangian is only
invariant under Lorentz rotations it is not clear how to perform a full Lie algebra expansion of this
Lagrangian with respect to the Poincaré algebra. Another complicating factor is that, unlike in the
case of the EH Lagrangian considered in the previous section, one cannot relate the P -translations
of the Poincaré algebra to the general coordinate transformations via so-called trivial symmetries
[23]. In fact, the sigma models considered in this section are strictly speaking not invariant under
general coordinate transformations. They are so-called ‘sigma model symmetries’. For all these
reasons we will avoid in this section using the Lie algebra expansion method.

In the next two subsections we will discuss p-brane sigma models first without and next with
central charge symmetries using different methods. As we will see, the p-brane sigma models
without central charge symmetries are based on the Galilei and Carroll algebras. On the other
hand, the p-brane sigma models with central charge symmetries are based on what we will call the
enhanced Galilei and Carroll algebra. 7 These algebras are smaller than the extended Galilei and
Carrol algebras discussed in the previous section and do not have an invariant action.

4.1 Sigma Models Without Central Charge Symmetry

To define a non-relativistic limit of the sigma model Lagrangian (4.1), we redefine the back-
ground fields using the velocity of light c in the same way that we defined the non-relativistic
limit of the Einstein-Hilbert Lagrangian leading to Galilei or Carroll gravity [10]. Substituting this
lowest-order expansion into the sigma model Lagrangian (4.1) we obtain the following Lagrangian:

LPol(lowest) =
√
hhαβ

(

c2τAα τBβ ηAB + Ea
αE

b
βδab

)

− (p− 1)T
√
h , (4.2)

where we have defined the pull-backs

τAα ≡ ∂αX
µτAµ , Ea

α ≡ ∂αX
µEa

µ . (4.3)

Taking the non-relativistic limit c → ∞, we consider two cases. 8 Either, we first eliminate the
c2 factor in the first leading term by a rescaling of hαβ and T ending up with a c−2 factor in front

5The case p = D−1 is special since it is dual to a Galilei instanton, p = −1 corresponding to Euclidean signature
for the flat space.

6We use here a unified notation including particles, i.e. p = 0. In that case one should take h00 = e2 and T = m2

where e is the worldline Einbein and m is the mass of the particle.
7See Appendix A for our nomenclature. The enhanced Galilei algebra is the well-known Bargmann algebra.
8We only consider NR limits where we preserve the relativistic symmetries of the world-sheet.
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of the second term and then take the limit or we effectively remove the leading term by using the
following equivalent Lagrangian that contains an auxiliary field λAα (before taking the limit): 9

−
√
hhαβ

[

Ea
αE

b
βδab − ηAB

(

1

c2
λAαλBβ − 2λAατBβ

)]

− (p− 1)T
√
h . (4.4)

We next take the limit. This leads to the two cases given in the left column of Table 6. The
first row corresponds to the NR ‘particle limit’ of branes that has been discussed in [30]. 10 The
second row corresponds, for p = 0, to the Souriau (zero spin) Galilean particle [31] which has been
discussed in [29].

Similarly, when taking the ultra-relativistic limit c → 0, we either take this limit straight-away
in the Polyakov Lagrangian (4.2) such that we end up with the second term or we first redefine
hαβ and T such that there is a c−2 factor in front of the second term which becomes leading and
constrain this leading term to be zero by introducing a Lagrange multiplier field λaα as follows:

√
hhαβ

[

τAα τBβ ηAB − δab

(

c2λaαλbβ − 2λaαEbβ

)]

− (p− 1)T
√
h (4.5)

and then take the limit. This leads to the two cases given in the right column of Table 6. The first
row corresponds to a Carroll system that, for p = 0, has been discussed in [32]. 11

Galilei Carroll

Leading Term hαβτAα τBβ ηAB hαβEa
αE

b
βδab

hαβEa
αE

b
βδab hαβτAα τBβ ηAB

Sub-leading Term

τAα = 0 Ea
α = 0

Table 6: This table summarizes the four different ways in which we can define the Galilei and Carroll limits of a
p-brane at lowest order in an expansion of c consistent with the Carroll and Galilei algebras. In all cases we have
not given the (p − 1)T

√

h term that is common to all Lagrangians.

We note that the four cases given in Table 6 are consistent with the formal map between Carroll
and Galilei discussed in section 2. Note also that to show that the Lagrangians in the second row
of the table are invariant under Galilean or Carroll boosts one needs to use the given constraint
equation.

4.2 Sigma Models With A (Non-)Central Charge Symmetry

We now wish to consider examples of particle and string sigma models with an enhanced Galilei
or Carroll algebra of symmetries involving a central extension. Although the enhanced Galilei
algebra, i.e. the Bargmann algebra, does not occur in the Lie algebra expansion of the Poincaré
algebra as discussed in this paper, it is clear, based on the symmetry

HA ↔ Pa , JAB ↔ Jab , GaA ↔ GaA (4.6)

of the decomposed Poincaré algebra (2.4), that for every p-brane enhanced Galilei algebra there
is a corresponding (D − p − 2)-brane enhanced Carroll algebra. In Table 7 we have given the
explicit commutations relations of the enhanced Galilei and enhanced Carroll algebras for 3D

9In the second case, we change the sign of the E2 term in the Lagrangian before taking the limit in order to avoid,
after taking the limit, getting negative signs under the square root in the Nambu-Goto formulation that follows from
solving for the world-sheet metric hαβ . We follow here [29].

10Note that for p = 0 and flat Newtonian spacetime the Lagrangian is a total derivative.
11Private communication with S. Vandoren.
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particles and strings. Note that these algebras have both central charge as well as non-central
charge generators. 12

Galilei Carroll

D = 4D = 4D = 4

p = 1p = 1p = 1

[J, Pa] = −ǫa
bPb

[J ′, HA] = −ǫA
BHB

[J ′, GAa] = −ǫA
BGBa

[J,GAa] = −ǫa
bGAb

[GAa, HB] = −ηABPa

[GAa, GBb] = δabZ[AB]

[J ′,MA] = −ǫA
BMB

[J ′, ZAB] = −ǫA
CZCB − ǫB

CZAC

[GAa, Pb] = δabMA

[HA, ZBC ] = 2ηACMB − ηBCMA

[J, Pa] = −ǫa
bPb

[J ′, HA] = −ǫA
BHB

[J ′, GAa] = −ǫA
BGBa

[J,GAa] = −ǫa
bGAb

[GAa, Pb] = −δabHA

[GAa, GBb] = ηABZ[ab]

[J,Ma] = −ǫa
bMb

[J, Zab] = −ǫa
cZcb − ǫb

cZac

[GAa, HB] = ηABMa

[Pa, Zbc] = 2δacMb − δbcMa

D = 3D = 3D = 3

p = 0p = 0p = 0

[J, Pa] = −ǫa
bPb

[J,Ga] = −ǫa
bGb

[Ga, H ] = Pa

[Ga, Pb] = δabM

[J, Pa] = −ǫa
bPb

[J,Ga] = −ǫa
bGb

[J,Ma] = −ǫa
bMb

[J, Zab] = −ǫa
cZcb − ǫb

cZac

[Ga, Gb] = Z[ab]

[Ga, Pb] = −δabH

[Ga, H ] = Ma

[Pa, Zbc] = 2δacMb − δbcMa

C
o
m
m
u
ta
ti
o
n

R
u
le
s

D = 3D = 3D = 3

p = 1p = 1p = 1

[J ′, HA] = −ǫA
BHB

[J ′, GA] = −ǫA
BGB

[J ′,MA] = −ǫA
BMB

[J ′, ZAB] = −ǫA
CZCB − ǫB

CZAC

[GA, GB] = Z[AB]

[GA, HB] = −ηABP

[GA, P ] = MA

[HA, ZBC ] = 2ηACMB − ηBCMA

[J ′, HA] = −ǫA
BHB

[J ′, GA] = −ǫA
BGB

[GA, HB] = −ηABM

[GA, P ] = HA

Table 7: This table summarizes the non-zero commutation relations defining the p = 0 and p = 1 enhanced
Galilei and enhanced Carroll algebras in three and four dimensions discussed in the text. The generators ZAB

of the enhanced p = 1 Galilei algebra and Zab of the p = 0 enhanced Carroll algebra are traceless 2-tensors,
i.e. ZA

A = Za
a = 0.

A new feature of Carroll and Galilei p-brane sigma models with (non-)central charge symmetries
is that, compared to the previous subsection, they contain extra terms describing the coupling of the
(non-)central charge gauge field to the p-brane via a Wess-Zumino term. Since this Wess-Zumino
term looks different for different dimensions of the worldvolume, this complicates comparing Galilei

12We call a generator non-central charge if it has non-zero commutation relations with the other generators due
to its index structure.
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with Carroll. The only cases where the symmetry between Galilei and Carroll is restored are those
for which the number of longitudinal directions is equal to the number of transverse directions,
i.e. particles in 2 dimensions, strings in 4 dimensions, membranes in 6 dimensions etc. For those
branes the formal symmetry between Carroll and Galilei sigma models is very natural due to the
fact that under the Galilei/Carroll map branes are mapped onto branes with the same spatial
extension and therefore with a similar Wess-Zumino term.

As a warming up example, we first consider the Galilei and Carroll particle in 2 dimensions:

A. 2D2D2D Enhanced Galilei particle

The Lagrangian of a 2D enhanced Galilei particle coupled to 2D enhanced Galilei gravity with
field content {τµ̂ , Eµ̂ ,mµ̂} is given by

L = me−1ẊµẊν [Eµ̂Eν̂ − 2m(µ̂τν̂)] , (4.7a)

with e = Ẋµτµ̂ and ∂[µ̂τν̂] = 0 , (4.7b)

where we adopt the convention

m(µ̂τν̂) =
1

2
(mµ̂τν̂ +mν̂τµ̂). (4.8)

This Lagrangian is invariant under the following Galilean boosts and central charge transforma-
tions:

δEµ̂ = λτµ̂ , (4.9)

δmµ̂ = ∂µ̂σ + λEµ̂ . (4.10)

We note that the proof of invariance works in any dimension provided we assign the transverse
Vielbein an additional transverse index.

B. 2D2D2D Enhanced Carroll particle

Under the formal Galilei/Carroll map the 2D enhanced Galilei particle (4.7) is mapped to the
following 2D enhanced Carroll particle coupled to a 2D Carroll background with field content
{τµ̂ , Eµ̂ , nµ̂}:

L = me−1ẊµẊν [τµ̂τν̂ − 2n(µ̂Eν̂)] , (4.11a)

with e = ẊµEµ̂ and ∂[µ̂Eν̂] = 0 . (4.11b)

This Carroll Lagrangian is invariant under the following Carroll boosts and central charge trans-
formations:

δτµ̂ = λEµ̂ , (4.12)

δnµ̂ = ∂µ̂σ + λτµ̂ . (4.13)

Unlike the enhanced Galilean particle, the proof of invariance of the enhanced Carroll particle
only works in 2D. This is due to the fact that, when going to higher dimensions, the solution for
the Einbein is inconsistent with the assignment of a transverse index to the transverse Vielbein.
We will see below how an expression for the 3D Carroll particle can be derived by the double
dimensional reduction of a 4D Carroll string.

This is the end of the story for Carroll particles in 2D whose Lagrangian (4.11) follows from
those of the corresponding 2D Galilean particles (4.7). We now consider enhanced Galilean and
Carroll strings in 4D. We will only consider those symmetries that are not realized manifestly at
the level of the sigma model, see table 8.

C. 4D4D4D Enhanced Galilei string

The Lagrangian of the 4D enhanced Galilei string in a 4D string (p = 1) enhanced Galilei

gravity background with field content {τµ̂Â, Eµ̂
â,mµ̂

Â} is given by [33]

L = T
√
hhαβ∂αX

µ̂∂βX
ν̂
[

Eµ̂
âEν̂

b̂δ
âb̂

− 2m(µ̂
Âτν̂)

B̂η
ÂB̂

]

(4.14a)
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Generator Field Parameter

JAB, Jab – –

GAa – λAa

Za
b with Za

a = 0 – σa
b with σa

a = 0

ZA
B with ZA

A = 0 – σA
B with σA

A = 0

HA, Pa τA, Ea g.c.t.

MA,Ma mA, na σA, σa

Table 8: In this table we only give the parameters of the symmetries that are not realized manifestly in the sigma
models given below. We do not give the longitudinal and transverse rotations. Neither do we give the general
coordinate transformations (g.c.t.) which are realized in the sigma models as a so-called sigma model symmetry.

with hαβ = ∂αX
µ̂∂βX

ν̂τµ̂
Âτν̂

B̂ηÂB̂ (4.14b)

and D[µ̂τν̂]
Â = 0 (zero torsion) , (4.14c)

where we have integrated out the Lagrange multipliers. The curved hatted indices denote 4D
indices: µ̂ = 0, 1, 2, 3 while the two flat indices (Â, â) refer to the two longitudinal and two transverse
directions, respectively. The action corresponding to the 4D enhanced Galilei string (4.14a ) is
invariant under the following Galilean boosts, first and second non-central charge transformations

with parameters λÂâ, λÂ and σÂ
B̂ (with σÂ

Â = 0) , respectively: 13

δEµ̂
â = λâ

Â τµ̂
Â , (4.16)

δmµ̂
Â = Dµ̂σ

Â + λÂ
â Eµ̂

â + σÂ
B̂ τµ̂

B̂ . (4.17)

Note that the proof of invariance of the 4D enhanced Galilei string action under the above sym-
metries extends to any spacetime dimension. This is due to the fact that the range of the α and Â

indices do not change when going to higher dimensions and therefore the same identities as given
in footnote 13 can be used.

D. 4D4D4D enhanced Carroll string

Using the formal map between the 4D string (p = 1) enhanced Galilei and enhanced Carroll
algebras the Lagrangian (4.14a ) leads to the following corresponding Lagrangian for the 4D en-
hanced Carroll string in a 4D string (p = 1) enhanced Carroll gravity background with field content

{τµ̂Â, Eµ̂
â, nµ̂

â}:

L = T
√
hhαβ∂αX

µ̂∂βX
ν̂
[

τµ̂
Âτν̂

B̂ηÂB̂ + 2n(µ̂
âEν̂)

b̂δ
âb̂

]

(4.18a)

with hαβ = ∂αX
µ̂∂βX

ν̂Eµ̂
âEν̂

b̂δ
âb̂

(4.18b)

and D[µ̂Eν̂]
â = 0 . (4.18c)

13 To show the invariance of the action corresponding to the Lagrangian (4.14) under the first and second non-
central charge transformation, it is useful to use the identities

hαβ = ǫαγǫβδhγδ/h , det τα
A = 1

2
ǫαβτα

Âτβ
B̂ǫ

ÂB̂
. (4.15)

Additionally, to prove the invariance under the first non-central charge transformation, one needs to use the zero
torsion constraint (4.14c ).
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The action corresponding to this Lagrangian is invariant under the following Carroll boosts, first

and second non-central charge transformations with parameters λÂâ, λâ and σâ
b̂
(with σâ

â = 0) ,
respectively:

δτµ̂
Â = λÂ

â Eµ̂
â , (4.19)

δnµ̂
â = Dµ̂σ

â + λâ
Â τµ̂

Â + σâ
b̂
Eµ̂

b̂ . (4.20)

Unlike the enhanced Galilean string, the enhanced Carroll string is only invariant under the above
symmetries in 4D. This is related to the fact that the range of the index â is only 2 in 4D and,
according to footnote 13, this is needed in the proof of invariance.

We now use the above string-string duality in 4D to see whether it leads to a corresponding
string-particle duality between sigma models in 3D. For this purpose, we will perform below four
different reductions leading to the following 3D particles and strings:

(1) enhanced Galilei particle

(2) enhanced Galilei string

(3) enhanced Carroll string

(4) enhanced Carroll particle

Each of these four reductions requires a reduction of the corresponding background fields that are
described, independent of their couplings to sigma models, in Appendix B.

(1) 3D3D3D enhanced Galilei particle

We first reduce the 4D enhanced Galilean string over a spatial longitudinal direction. For the
background fields we use the double dimensional reduction Ansatz (B.1a )-(B.1j ) to go from 4D
enhanced Galilei gravity to 3D enhanced Galilei gravity with field content {τµ, Eµ

a,mµ} as given
in Appendix A.

In this so-called double dimensional reduction of the string we have imposed the gauge Xy = σ

where (t, σ) are the worldsheet coordinates. We have furthermore assumed that all background
fields are independent of Xy = σ. After reduction we obtain the Lagrangian for a 3D enhanced
Galilei particle:

L = me−1ẊµẊν
[

Eµ
aEν

bδab − 2m(µτν)

]

(4.21a)

e = Ẋµτµ and ∂[µτν] = 0 , (4.21b)

where the string tension T becomes m2 under the reduction. The action corresponding to this
Lagrangian is invariant under the following Galilean boosts and central charge transformations
with parameters λa and λ, respectively:

δEµ
a = λaτµ , (4.22)

δmµ = ∂µσ + λaEµ
b δab . (4.23)

(2) 3D3D3D enhanced Galilei string

Performing a direct dimensional reduction of 4D string (p = 1) enhanced Galilei gravity to 3D
string (p = 1) enhanced Galilei gravity with field content {τµA, Eµ,mµ

A} as given in eqs. (B.2a )
- (B.2h ) of Appendix A, we obtain the following Lagrangian for a 3D enhanced Galilei string in
a 3D string (p = 1) enhanced Galilei background:

L = T
√
hhαβ∂αX

µ∂βX
ν
[

EµEν + 2m(µ
Aτν)

BηAB

]

(4.24a)

hαβ = ∂αX
µ∂βX

ντµ
Aτν

BηAB and D[µτν]
A = 0 . (4.24b)
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Note that we have also truncated away in a consistent way the transverse scalar Xy. The action
corresponding to this Lagrangian is invariant under the following Galilean boosts, first and second
central charge transformations with parameters λA, σA and σA

B with σA
A = 0, respectively:

δEµ = λA τµ
B ηAB , (4.25)

δmµ
A = Dµσ

A + λA Eµ + σA
Bτµ

B . (4.26)

We now consider the two different reductions of the 4D Carroll string. Here things are more
complicated due to the fact that a naive Ansatz leads to a degenerate world-sheet metric. As we
will see below, to avoid such a singular metric, in the case of the Carroll string the number of
transverse directions has to be larger or equal to two whereas in the case of the Carroll particle we
should keep several matter fields when reducing the background Carroll fields.

(3) 3D3D3D enhanced Carroll string

At first sight, one would expect that the 3D enhanced Galilei particle discussed in (1) is formally
dual to a 3D enhanced Carroll string. From the 4D point of view this means that, when we
reduce the enhanced Galilei string over a longitudinal direction, we should instead reduce the
corresponding 4D enhanced Carroll string over a transverse direction.

To obtain the enhanced Carroll string, we perform a direct dimensional reduction of 4D string
(p = 1) enhanced Carroll gravity to 3D string (p = 1) enhanced Carroll gravity with field content
{τµA, Eµ , nµ} as given in (B.3a ) - (B.3j ) of Appendix A. After reduction we obtain the following
Lagrangian for the 3D enhanced Carroll string:

L = T
√
hhαβ∂αX

µ∂βX
ν
[

τµ
Aτν

BηAB + 2n(µEν)

]

(4.27a)

hαβ = ∂αX
µ∂βX

νEµEν + ∂αX
y∂βX

y and ∂[µEν] = 0 . (4.27b)

Note that, unlike the Galilei string, we cannot truncate away in a consistent way the transverse
scalar Xy since this would lead to a degenerate world-sheet metric. This has the effect that our
answer for the 3D enhanced Carroll string is not formally dual to that of the Galilei particle. The
action corresponding to the Lagrangian (4.27a ) is invariant under the following Carroll boosts and
central charge transformations with parameters λA and λ, respectively:

δτµ
A = λA Eµ , (4.28)

δnµ = ∂µσ − λAτµ
B ηAB . (4.29)

(4) 3D3D3D enhanced Carroll particle

We first impose the gauge-fixing condition

Xy = σ (4.30)

and assume that nothing depends on Xy. Next, we observe that the reduction of the worldsheet
metric gives

hαβ =

(

EaEa EaEya

EaEya Ea
yEya

)

, (4.31)

where we have defined

Ea = ∂τX
µEa

µ . (4.32)

This implies that hαβ is degenerate if we set the scalar fields Ea
y to zero. Therefore, we need to

work with matter-coupled Carroll gravity. Keeping these scalars we write the Carroll string action
as

L = T
√
hhαβ∂αX

µ̂∂βX
ν̂

[

τ Âµ̂ τ B̂ν̂ η
ÂB̂

+ 2nâ
(µ̂E

b̂
ν̂)δâb̂

]

(4.33a)
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= T
√
hhαβτ Âα τ B̂β ηÂB̂ + 2ǫ

âb̂
ǫαβEâ

αn
b̂
β , (4.33b)

where

h = E2E2
y − (EEy)

2 = (ǫabE
aEb

y)
2 . (4.34)

Performing a double dimensional reduction of 4D string enhanced Carroll gravity to 3D particle
enhanced Carroll gravity with field content {τµ , Eµ

a , nµ
a} coupled to matter with field content

{τy , Ey
a , ny

a} as given in eqs. (B.4a ) - (B.4h ) of Appendix A, we obtain the following Lagrangian
for a 3D enhanced Carroll particle in a 3D enhanced matter-coupled Carroll gravity background:

L = −Te−1(Ea
y τ − Eaτy)(Eyaτ − Eaτy) + 2T ǫab(E

anb
y − Ea

yn
b) (4.35)

with e−1 = ǫabE
aEb

y and D[µE
a
ν] = DµE

a
y = 0 . (4.36)

The action corresponding to this Lagrangian is invariant under the following transformation rules:

δτµ = λaEµ
a , (4.37a)

δτy = λaEy
a , (4.37b)

δna
µ = Dµσ

a + λaτµ + σa
bEµ

b , (4.37c)

δna
y = λaτy + σa

bEy
b . (4.37d)

All background fields are needed to avoid a singular Carroll string in 4D and to keep the boost
invariance.

This finishes our discussion of enhanced Carroll particles and strings in three dimensions.

5 Conclusions

In this work we exploited a formal relation between Galilei and Carroll symmetries, first ob-
served in [17], to obtain new results on Carroll gravity theories and the couplings of particles and
strings to a curved Carroll background by making use of known results in the Galilei case. A
crucial ingredient was to consider these symmetries from a brane perspective instead of particles
only. We pointed out that the formal relationship between Galilei and Carroll remained valid in
the Lie algebra expansion of the Poincaré algebra. This enabled us to construct several new ex-
amples of Carroll gravity actions. Concerning the sigma model couplings, we found both example
without (non-) central charge symmetries and including (non-)central charge symmetries. The first
category corresponds to massless representations of the Galilei and Carroll algebras, which have
been discussed before in the literature. The second category leads to several examples of massive
particle and string actions in two, three and four dimensions. We made use here of a particle-
particle duality in two dimensions and a string-string duality in four dimensions. Other examples
of sigma models were derived from these cases by dimensional reduction but the results are not so
symmetric anymore under the Galilei-Carroll symmetry discussed in this paper. We related this to
the fact that the naive dimensional reduction leads to a degenerate world-sheet metric that could
be avoided by either keeping the extra higher-dimensional embedding scalar (3D Carroll strings)
or by working with matter coupled Carroll gravity (3D Carroll particle).

Extending this method to higher dimensions one could consider membrane-membrane dualities
in six spacetime dimensions. The latter should lead, after dimensional reduction, not only to string-
membrane dualities in 5D but also to string-string and particle-membrane dualities in 4D. This
should lead to many more examples of branes moving in a curved Galilei or Carroll background.

It would be interesting to extend the methods exploited in this paper to other algebras such as
the AdS algebra including a cosmological constant or supersymmetric algebras involving fermionic
fields. We hope to come back to these algebras in the nearby future.
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A Nomenclature

In order to avoid confusion with the many different gravity theories that circulate in this paper,
we have introduced the following nomenclature thereby avoiding using the word Bargmann since
that name is too specific:

(1) The gravity theories corresponding to the smallest algebras that occur at lowest order in the
Lie algebra expansion of the Poincaré algebra are called Galilei and Carroll gravity. The
algebras can be obtained by a Inönü-Wigner contraction of the Poincaré algebra and the
dynamics of the gravity theories can be described by an action.

(2) The smallest extensions of the Galilei and Carroll gravity theories corresponding to an algebra
that does not occur in the Lie algebra expansion of the Poincaré algebra are called the
enhanced Galilei and the enhanced Carroll algebra. Using this nomenclature, we call the
Bargmann algebra the enhanced Galilei algebra. These are the gravity theories that can be
coupled to particles and/or strings but we cannot write down an action for them.

(3) The smallest extensions of the Galilei and Carroll gravity theories corresponding to an algebra
that occurs in the Lie algebra expansion of the Poincaré algebra and for which we can write
down an action are called the extended Galilei algebra and the extended Carroll algebra.
Using this nomenclature we call the 3D extended Bargmann algebra the 3D extended Galilei
algebra. The dynamics of these gravity theories is described by an action but in general
we do not know how to couple these gravity theories to particles and/or strings.14 A prime
example is the extended Bargmann algebra leading to extended Bargmann gravity. An action
for extended Bargmann gravity has been constructed [24, 25, 26] but a coupling to a particle
including the second central charge is not known.

For each of the above algebras we can distinguish between the particle (p = 0) version, the string
(p = 1) version, the membrane (p = 2) version etc., where the number p refers to the number of
longitudinal directions. For the convenience of the reader we have summarized the main properties
of the above gravity theories in Table 9.

Name Coupling Action

Galilei/Carroll Yes Yes

enhanced Galilei/Carroll Yes No

extended Galilei/Carroll No Yes

Table 9: This Table summarizes the main properties of the enhanced/extended Galilei/Carroll gravity theories
discussed in the work. By coupling in the second column we mean the coupling to particles and/or strings.

B Dimensional Reduction

In this appendix we discuss the dimensional reduction of the 4D enhanced string Galilei and
Carroll gravity theories to three dimensions. Due to the foliated geometry one can either per-
form a so-called double dimensional reduction where the compactification direction coincides with

14In low dimensions there could be exceptions, due to the fact that some generators simply do not appear; an
example of this is represented by the 3D enhanced string Galilei algebra of Table 7 when ZAB is restricted to its
antisymmetric part. This algebra could both occur in sigma models and in the Lie algebra expansion.
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one of the foliation directions, or one may perform a direct dimensional reduction where the com-
pactification direction differs from the foliation directions. This leads to four possibilities for the
dimensional reduction of the string (p = 1) enhanced Galilei and Carroll gravity fields which we
shortly discuss one by one below.

To describe the different reductions, we will for simplicity omit the (0) upper index for the
lowest-order fields in the Lie algebra expansion used in sections 2 and 3. Furthermore, we will
always indicate the second-order vector field, with upper index (2), that occurs in the Galilei case
with a mµ and the one that occurs in the Carroll case with a nµ. Both 1-forms could have an
additional other index in some cases. Finally, we will indicate all 4D indices with a hat and
decompose them as µ̂ = (µ, y) and (Â, â) = (A, a) = (0, 1, 2, 3).

(1) Double dimensional reduction of 4D enhanced string Galilei gravity

The double dimensional reduction of 4D string (p = 1) enhanced Galilei gravity with field

content {τµ̂Â , Eµ̂
â ,mµ̂

Â} to 3D particle (p = 0) enhanced Galilei gravity with field content
{τµ, Eµ

a ,mµ} is given by

Eâ
µ = Ea

µ (B.1a)

Eâ
y = 0 (B.1b)

m1
µ = 0 (B.1c)

τ0y = 0 (B.1d)

m0
y = 0 (B.1e)

m1
y = 0 (B.1f)

τ1µ = 0 (B.1g)

τ1y = 1 (B.1h)

m0
µ = mµ (B.1i)

τ0µ = τµ (B.1j)

(2) Direct dimensional reduction of 4D enhanced string Galilei gravity

The direct dimensional reduction of 4D string (p = 1) enhanced Galilei gravity with field content

{τµ̂Â , Eµ̂
â ,mµ̂

Â} to 3D string (p = 1) enhanced Galilei gravity with field content {τµA, Eµ ,mµ
A}

is given by

mÂ
µ = mA

µ (B.2a)

τ Âµ = τAµ (B.2b)

E2
µ = Eµ (B.2c)

E3
µ = 0 (B.2d)

E3
y = 1 (B.2e)

E2
y = 0 (B.2f)

τ Ây = 0 (B.2g)

mÂ
y = 0 (B.2h)

(3) Direct dimensional reduction of 4D enhanced string Carroll gravity

The direct dimensional reduction of 4D enhanced string Carroll gravity with field content

{τµ̂Â, Eµ̂
â, nµ̂

â} to 3D enhanced string Carroll gravity with field content {τµA, Eµ, nµ} is given
by:

τ Âµ = τAµ (B.3a)

τ Ây = 0 (B.3b)

n2
µ = nµ (B.3c)

E3
µ = 0 (B.3d)

E2
µ = Eµ (B.3e)

n2
y = 0 (B.3f)

E2
y = 0 (B.3g)

n3
µ = 0 (B.3h)

E3
y = 1 (B.3i)

n3
y = 0 (B.3j)

(4) Double dimensional reduction of 4D enhanced string Carroll gravity

The double dimensional reduction of 4D enhanced string Carroll gravity with field content

{τµ̂Â, Eµ̂
â, nµ̂

â} to 3D enhanced Carroll gravity with field content {τµ , Eµ
a , nµ

a} coupled to matter
with field content {τy , Ey

a , ny
a} is given by
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nµ
â = nµ

a (B.4a)

Eµ
â = Eµ

a (B.4b)

τ0µ = τµ (B.4c)

τ1µ = 0 (B.4d)

τ0y = τy (B.4e)

τ1y = 0 (B.4f)

Ey
â = Ey

a (B.4g)

ny
â = ny

a (B.4h)

When coupling to a Carroll particle the matter cannot be truncated away in a consistent way
and/or without giving up boost invariance, see the main text.
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