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Abstract: Using the Hubbard representation for SU(2), we write the time-evolution operator of a
two-level system in the disentangled form. This allows us to map the corresponding dynamical law
into a set of nonlinear coupled equations. In order to find exact solutions, we use an inverse approach
and find families of time-dependent Hamiltonians whose off-diagonal elements are connected with
the Ermakov equation. A physical model with the so-obtained Hamiltonians is discussed in the
context of the nuclear magnetic resonance phenomenon.
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1. Introduction

The dynamical manipulation of two-level systems has been a long-standing issue in quantum
mechanics [1–3]. In recent times, the problem has acquired more relevance due to its potential
applications in quantum computing and quantum information [4–6], where the design of robust and
precise control protocols is essential. To this end, the analytically solvable, time-dependent problems
in quantum mechanics are of great importance. However, it is well known that the solution of the
Schrödinger equation with time-dependent Hamiltonians represents, in general, a difficult task and
the number of exactly solvable cases is very limited. These include rotating fields [6,7], nonlinear
modulated Rabi fields [8], periodic driving fields [9,10], and pulse shaped fields [11]. Another method
that has been widely used to generate exact solutions of the evolution equation concerns the inverse
technique approach, where some aspects on the dynamics are prescribed and then the interactions are
found. In [12], for instance, some families of exactly solvable driving fields for spin-1/2 systems are
obtained by requiring the spin to accomplish particular trajectories in the projective space. In [9,13,14],
on the other hand, this approach has been used to find analytical solutions for a two-level system
driven by a single-axis control field.

Of particular interest in the solution of the evolution equation and in the generation of
exactly solvable models is the Lie algebraic technique, which takes advantage of the fact that the
Hamiltonian can be written as a linear combination of the generators of a Lie algebra [15–22].
In this scheme, the Wei Norman theorem establishes that the corresponding evolution operator can
be factorized (or disentangled) into independent exponential factors involving only one generator
of the algebra [23]. This technique has deserved a lot of interest as it is closely related to the group
theoretical approach to the time evolution of quantum systems and has found a number of applications
in the disentangling of exponential operators for the study of the dynamics of systems with SU(2)
and SU(1, 1) symmetries [15–18], as, e.g., the interaction of two-level atoms with electromagnetic
radiation [20], the field modulation in nuclear magnetic resonance [19], the propagation and perfect
transmission in three-waveguide axially varying structures [24], the time-evolution of harmonic
oscillators with time-dependent, both mass and frequency [25,26], the description of coherent and
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squeezed states [27] and the optical coupling in nonlinear crystals [28], among others. In a previous
work, we show that the disentangling of the SU(2) evolution operator is reduced to the solution of a
scalar parametric oscillator-type equation, whose time-dependent frequency is given in terms of the
driving field in a non trivial form [22]. Hence, the core difficulty in solving the problem lies in the fact
that the solutions to the parametric oscillator-like equation can be explicitly written only in a restricted
number of cases.

The aim of the present work is to obtain new families of analytically solvable driving fields in
the framework of the Wei–Norman Lie algebraic approach and the inverse problem technique. Once
the evolution operator is expressed in its disentangled form, the driving fields will be obtained by
considering well known solutions to the corresponding parametric oscillator-type equation for a
real-valued time-dependent frequency. It will be shown that, in this approach, the construction of
the driving fields is accomplished by solving an Ermakov equation whose solutions can be readily
expressed in terms of that of a parametric oscillator-like equation. In the statement of the direct
approach, we consider the realization of the group SU(2) constituted by the Hubbard operators
(also called X-operators). These operators were introduced by Hubbard in [29–31] and are useful to
describe models of strongly correlated electrons. In addition, the algebraic properties of such operators
allow for dealing with the observables of quantum systems in a suitable way [32,33]. For instance,
a d-level system Hamiltonian can be diagonalized through a sequence of unitary transformations
properly written in terms of Hubbard operators [34]. This method has been extended to the multipartite
case by taking advantage of the Kronnecker product of the X-operators. The geometric measure of
entanglement of a symmetric n-qubit is easily calculated in this approach [33].

The paper is organized as follows. In Section 2, the statement of the problem and the direct
approach are reviewed. The inverse problem and the main result of this work are reported in Section 3.
In addition, a physical model concerning a spin 1/2-particle in a time-dependent external magnetic
field is discussed in Section 4. Some concrete examples are analyzed in Section 5 where we show that
our results generalize the case of a circularly polarized field and discuss some aspects of the dynamics
such as the time-evolution of population inversion. Finally, the conclusions and perspectives of our
work are presented in Section 6.

2. The Direct Approach

We are interested in the dynamics of systems whose Hamiltonians can be written in the form

H(t) = ∆J0 + V(t)J+ + V(t)J−, (1)

where the operators {J0, J±} are the generators of the su(2) algebra and ∆ ∈ R, so that H(t) is
Hermitian. For the two-dimensional representation, one obtains the Hamiltonian of a driven two-level
system (or qubit). In this case, the constant ∆ is interpreted as the splitting between the two energy
eigenvalues, while the complex-valued function V is the driving field that rules the transitions between
the two energy states. A convenient realization of the group SU(2) is constituted by the Hubbard
operators as they provide a useful mathematical framework to deal with some calculations in a simpler
way [22,32,33], as well as to extend our formalism to the cases of qudits and multipartite systems.

In an n-dimensional vector space, the Hubbard or X-operators are defined as a set of n2 two-labeled
operators {Xi,j}n

i,j=1 fulfilling the properties [32]

1. Xi,jXk,m = δj,kXi,m (multiplication rule),

2.
n

∑
k=1

Xk,k = I (completeness),

3. (Xi,j)† = X j,i (non-hermiticity),
4. [Xi,j, Xk,m] = δj,kXi,m − δm,iXk,j (commutation rule),

where [·, ·] stands for the conventional commutator. The most elementary case arises for n = 2, for
which it is possible to construct a representation of the Hubbard operators in the space of states of
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a two-level system. Indeed, if |p〉 and |q〉 are two orthonormal qubit states corresponding to the
eigenvalues εp, εq, respectively, the four operators defined as

Xk,`
2 := |k〉〈`|, k, ` = p, q (2)

conforms a representation of the set of Hubbard operators in the spaceH2 = span{|p〉, |q〉}. Here, the
subindex 2 is related to the dimension of the corresponding representation. Additionally, a simple
calculation shows that the action of the operator (2) on the basis vectors reads

Xk,`
2 |n〉 = δ`,n|k〉, k, `, n = p, q. (3)

On the other hand, it is not difficult to verify that the three operators

J0 :=
1
2
(Xp,p

2 − Xq,q
2 ), J− = Xq,p

2 , J+ = (J−)† := Xp,q
2 (4)

constitute a representation of the su(2) algebra. Remark that, even though we are restricting ourselves
to the representation of this algebra corresponding to j = 1/2, our results are equivalent for any value
of j once the generators are written in the proper realization (see [32] for details). The Hamiltonian (1)
in terms of the X-operators reads

H2(t) =
∆
2
(Xp,p

2 − Xq,q
2 ) + V(t)Xp,q

2 + V(t)Xq,p
2 . (5)

A discussion on a physical model associated to this operator is given in Section 4.
In the direct approach, once the driving field V(t) and the initial state |ψ(0)〉 are given, one must

determine the state of the system |ψ(t)〉 at an arbitrary time according to

|ψ(t)〉 = U(t)|ψ(0)〉,

where U(t) is the time evolution operator associated to the Hamiltonian (5) fulfilling the dynamical law

i
dU(t)

dt
= H2(t) ·U(t), (6)

with the initial condition U(0) = I. This operator can be cast in a factorized or disentangled form
using the Wei–Norman theorem [23], yet

U(t) = exp[α(t)Xp,q
2 ] exp[∆ f (t)J0] exp[β(t)Xq,p

2 ], (7)

where α, f and β are three factorizing complex-valued functions to be determined in such a way that
α(0) = f (0) = β(0) = 0. The action of the time-evolution operator (7) on the basis vectors can be
straightforwardly computed by using the following relations [22]

exp[α(t)Xp,q
2 ] = 1 + α(t)Xp,q

2 , exp[β(t)Xq,p
2 ] = 1 + β(t)Xq,p

2 ,

exp
[

∆ f (t)
2 Xp,p

2

]
= Xq,q

2 + e∆ f (t)/2Xp,p
2 , exp

[
−∆ f (t)

2 Xq,q
2

]
= Xp,p

2 + e−∆ f (t)/2Xq,q
2 ,

exp [∆ f (t)J0] = e∆ f (t)/2Xp,p
2 + e−∆ f (t)/2Xq,q

2 .

(8)

Thus, if the qubit is initially, for instance, in the state |p〉, the state of the system at an arbitrary
time reads

|ψ(t)〉 = e−∆ f (t)/2[e∆ f (t) + α(t)β(t)]|p〉+ e−∆ f (t)/2β(t)|q〉. (9)
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In Ref. [22], it is shown that the solutions to the evolution problem (5)–(7) is given by

α(t) = i
e−i∆t

R(t)

[
ϕ′(t)
ϕ(t)

+
1
2

R′(t)
R(t)

]
, (10)

∆ f (t) = −2 ln
[

ϕ(t)
ϕ0

]
− ln

[
R(t)
R0

]
− i∆t, ϕ0 = ϕ(0), R0 = R(0), (11)

and

β(t) = −iR0 ϕ2
0

∫ t

0

ds
ϕ2(s)

, (12)

where the function R(t) = e−i∆t V(t), which will be also referred to as the driving field, has
been introduced to shorten the notation. The function ϕ turns out to fulfill the parametric
oscillator-like equation

ϕ′′(t) + Ω2(t)ϕ(t) = 0, (13)

with time-dependent frequency given by

Ω2(t) = −1
4

[
d
dt

ln R(t)
]2

+
1
2

d2

dt2 ln R(t) + |R(t)|2. (14)

Without having a loss of generality we may set ϕ0 = 1, as the predictions will not depend on
this initial value. In addition, the initial condition α(0) = 0 will fix the initial condition for the first
derivative of ϕ in terms of R0 and R′0 = R′(0) through

lim
t→0

1
R(t)

[
ϕ′(t)
ϕ(t)

+
1
2

R′(t)
R(t)

]
= 0. (15)

We emphasize that, given a particular driving field V(t) (or equivalently R(t)), the problem of
finding the time-evolution operator U(t) for the Hamiltonian (5) is turned into solving Equation (13).
As it was mentioned before, the number of exactly solvable cases is limited as the form of the
frequency (14) is in general non-trivial. Some exactly solvable cases are V(t) = constant [15],
the circularly polarized field: V(t) ∝ e−iδt [22] and the hyperbolic secant pulse: V(t) ∝ sech(σt) [19],
just to mention some.

The aim of the next section is to explore the possibility of constructing new analytical solutions
from the framework of the inverse approach.

3. The Inverse Approach

From the inverse problem technique point of view, a natural question at this point is what would
be the form of a driving field R(t) giving rise to a particular well known solution of (13) fulfilling the
proper initial conditions? In order to answer this question, we have to consider the expression (14) as a
differential equation for the driving field, rather than a definition for the time-dependent frequency.
First note that this equation is not of the Riccati-type in the function ln R(t) because of the term
|R(t)|2. Therefore, in order to transform this equation into a known one, let us consider the function γ

defined by

γ(t) =
d
dt

ln R(t). (16)

It follows immediately that

R(t) = R0 exp
[∫ t

0
γ(s) ds

]
. (17)
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In general, γ is a complex-valued function that can be split into its real and imaginary parts as
γ(s) = γ1(s) + iγ2(s). We will restrict ourselves to the case in which the function Ω2 is real-valued.
Under this assumption, the substitution of expression (17) into the Equation (14) leads to the
set of equations

− 1
4

γ2
1 +

1
4

γ2
2 +

1
2

γ′1 + |R0|2 exp
(

2
∫ t

0
γ1ds

)
= Ω2, (18)

γ1 =
γ′2
γ2

=
d
dt

ln γ2. (19)

This last equation suggest that the function γ1 can be written in the form [35]

γ1(t) = k
d
dt

ln µ(t),

with k a real constant and µ a real-valued function. Indeed, it can be shown that Equation (18) can be
reduced to an Ermakov equation choosing k = −2. In this case,

γ1 = − d
dt

ln µ2, γ2 =
λ

µ2 , (20)

where λ is an integration constant and µ satisfies the Ermakov equation

µ′′(t) + Ω2(t)µ(t) =
Ω2

0
µ3(t)

, with Ω2
0 = λ2

[
|R0|2

γ2
2(0)

+
1
4

]
. (21)

The corresponding initial conditions for µ define the initial conditions on the driving field R as

γ1(0) = −2
µ′0
µ0

= Re
[

R′0
R0

]
, γ2(0) =

λ

µ0
= Im

[
R′0
R0

]
, (22)

where µ0 = µ(0) and µ′0 = µ′(0). However, without loss of generality, we may fix µ0 = 1. In this case,
γ2(0) = λ and

Ω0 =

[
|R0|2 +

λ2

4

]1/2

. (23)

For reasons that will be clarified in the sequel, we call this quantity the generalized
Rabi-like frequency.

Finally, inserting the functions γ1 and γ2 into the expression (17), we obtain the driving field in
terms of the solutions of the Ermakov Equation (21)

R(t) =
R0

µ2(t)
exp

[
iλ
∫ t

0

ds
µ2(s)

]
. (24)

This function defines a two-parametric family of exactly solvable time-dependent Hamiltonians
of the form (5) with V(t) = e−i∆tR(t).

It is worthwhile to stress that the solutions to Equation (21) can be constructed provided that the
solutions of (13) are known. Indeed, it can be shown that, if ϕ1 is a particular solution of such equation,
then the function µ is given by [35,36]:

µ2(t) =
Ω2

0 ϕ2
1(t)

c1
+ c1 ϕ2

1(t)

[
c2 +

∫ t ds
ϕ2

1(s)

]2

. (25)
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Here, c1 and c2 are integration constants [36,37] that can be determined from the initial conditions
imposed on µ. Moreover, for the so-obtained Hamiltonians, the time-evolution operator U(t) is readily
written from Equation (7) with the factorization functions α, f and β given by

α(t) =
i

R0
µ2(t) exp [−i∆t− iλη(t)]

[
ϕ′(t)
ϕ(t)

− µ′(t)
µ(t)

+
iλ

2µ2(t)

]
, (26)

∆ f (t) = ln
[

µ2(t)
ϕ2(t)

]
+ iλη(t)− i∆t, β(t) = −iR0

∫ t

0

ds
ϕ2(s)

, (27)

where the real-valued function

η(t) =
∫ t

0

ds
µ2(s)

(28)

has been introduced to shorten the notation.

Periodic Interactions

Of particular interest are the driving fields fulfilling the condition V(t) = V(t + τp) leading to the
Floquet Hamiltonians or quasi-energy operators. Remark that a periodic function µ does not assure
the periodicity of V. Indeed, if the period of the function µ is τ, it can be shown that

V(t + τ) = exp [−i (λη(τ) + ∆τ)]V(t). (29)

From this last expression, it is clear that, for V to be a periodic function, we should adjust λ and
the parameters involved in the function µ in a very restrictive form. However, note that, for a natural
number p, the following expression holds

V(pτ) = exp [−i (pλη(τ) + ∆τ)]V(0). (30)

This parameter p gives versatility to manipulate the period of the function V. Indeed, by
requiring that

pλη(τ) + ∆τ = pλ
∫ τ

0

ds
µ2(s)

+ ∆τ ≡ 0 (mod 2π), (31)

it is assured that V is a periodic function with period τp = pτ.

4. A Physical Model

In this section, we consider a quantum system whose Hamiltonian has the form (5) in terms of
the Hubbard operators. Consider a spin-1/2 particle with magnetic moment m = µBg ~̀σ in an external
magnetic field B(t), where µB and g` stand for the Bohr magneton and the Landé factor, respectively,
and~σ = (σ1, σ2, σ3) with σi, i = 1, 2, 3 the Pauli matrices. The corresponding Hamiltonian reads

H = −m · B =
b
2
~σ · B, (32)

where b = −2g`µB is constant. We pay attention to the case where the field precesses around a fixed
axis, say, the axis defined by e3. Thus, the magnetic field is written as B = B12(t) + B3e3, where B3 is a
constant and the driving field B12(t) = B1(t)e1 + B2(t)e2 is used to manipulate the spin states of the
particle. This field is represented schematically in Figure 1. In Hubbard notation, the Hamiltonian (32)
is expressed as

H =
bB3

2
(Xp,p

2 − Xq,q
2 ) +

b
2
[B1(t)− iB2(t)]X

p,q
2 +

b
2
[B1(t) + iB2(t)]X

q,p
2 . (33)
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Thus, with the identification V(t) = b[B1(t) − iB2(t)]/2 and ∆ = bB3, the Hamiltonian (33)
takes the form (1). Note that the real and imaginary parts of the function V are proportional to the
components 1 and 2 of the field, respectively. This justifies the name given to the function V. Although
this model is valid in general, a particularly interesting exactly solvable problem arises whenever
the transverse field has a constant amplitude B0. In addition, if we take B1(t) = B0 cos ωt and
B2(t) = B0 sin ωt, ω being the oscillation frequency, then the transverse vector B12 describes a circle in
a plane transverse to e3 and thus B(t) becomes a circularly polarized field. Hence V(t) = b

2 B0e−iωt

and the solutions to the factorization problem (7) are easily constructed. We obtain R(t) = geiδt

where g = b
2 B0 is a real constant, and the detuning δ = ω − ∆. The factorization functions are

(compare to [22]):

α(t) =
−2ige−iωt sin(Ω0t)

2Ω0 cos(Ω0t)− iδ sin(Ω0t)
,

∆ f (t) = −2 ln
[

cos(Ω0t)− iδ
2Ω0

sin(Ω0t)
]
− iωt,

β(t) =
−2ig sin(Ω0t)

2Ω0 cos(Ω0t)− iδ sin(Ω0t)
,

(34)

where Ω0 =
(

g2 + δ2/4
)1/2 is the Rabi frequency. If it is assumed that the system is initially in the

state |ψ(0)〉 = |p〉, then, according to expression (9), the state of the system at an arbitrary time can be
computed to yield

|ψ(t)〉 = e−iωt/2
[

cos(Ω0t) +
iδ

2Ω0
sin(Ω0t)

]
|p〉 − i g

Ω0
eiωt/2 sin(Ω0t)|q〉. (35)

In addition, the population inversion P = |cp|2 − |cq|2 is also computed:

P(t) =
g2

Ω2
0

cos(2Ω0t) +
δ2

4Ω2
0

. (36)

e1

e2

e3

B(t)

B12(t)
Figure 1. Schematic representation of the magnetic field B. The transversal component B12 rotates
around the axis e3 in the plane z = B3. The amplitude of the driving field is time-dependent and
describes a trajectory that in general is not closed. The circularly polarized field is a particular case of
this expression when the amplitude is constant.

5. Some Simple Applications

In this section, we explicitly obtain some families of exactly solvable one-qubit time-dependent
Hamilitonians for a given function Ω. This function is chosen in such a way that the solutions to the
parametric oscillator Equation (13) are known. The construction of the driving field R(t) through
Equation (14) involves two arbitrary parameters, namely µ′0 and λ (or equivalently c1 and c2 from
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Equation (25)) that fix the corresponding parameters R0 and R′0. We will discuss the case for which
[ln R(0)]′ = iδ, with δ ∈ R, analogous to the case of a circularly polarized field of the previous section.
This choice leads to the simple conditions [ln µ(0)]′ = 0, and λ = δ. We may also write R0 = −ig,
where g may be, in general, a complex constant. Thus, the driving field will be given in terms of the
parameters δ and g.

We will consider that the frequency Ω is a constant. In this case, two important limits are of interest.
In the first one, the frequency Ω = Ω1 = 0, which leads to a decaying driving field. The second one
arises as Ω = Ω1 → Ω0 and corresponds to the problem of one qubit interacting with a single mode
circularly polarized field.

5.1. Case Ω(t) = 0: A Decaying Driving Field

On one hand, note that, when the frequency Ω(t) vanishes, the parametric oscillator Equation (13)
becomes ϕ′′(t) = 0, whose solution meeting the initial conditions (15) is ϕ(t) = −iδt/2 + 1. Next, the
function µ can be found by taking ϕ1(t) = t in (25). The initial conditions µ(0) = 1 and [ln µ(0)]′ = 0
lead to µ2(t) = Ω2

0 t2 + 1 and to the corresponding driving field

R(t) =
−ig

Ω2
0t2 + 1

exp
[

i
δ

Ω0
arctan(Ω0t)

]
, Ω2

0 = |g|2 + δ2

4
. (37)

The factorizing functions α, β and f can be explicitly constructed to yield

α(t) =
−2igt
−iδt + 2

exp
[
−i∆t− i

δ

Ω0
arctan(Ω0t)

]
, β(t) =

−2igt
−iδt + 2

, (38)

and

∆ f (t) = ln

[
4Ω2

0t2 + 4
(−iδt + 2)2

]
+ i

δ

Ω0
arctan(Ω0t)− i∆t. (39)

According to Equation (9), the time-evolution of the state |ψ(t)〉 can be computed in terms of the
factorization functions as

|ψ(t)〉 = (iδt + 2)e−i∆t/2

2µ(t)
exp

[
−i

δ

2Ω0
arctan(Ω0t)

]
|p〉

−i
gtei∆t/2

µ(t)
exp

[
i

δ

2Ω0
arctan(Ω0t)

]
|q〉.

(40)

Hence, the population inversion P is calculated as function of time

P(t) =
(δ2/4− |g|2)t2 + 1

Ω2
0t2 + 1

. (41)

Figure 2 shows the function R in the complex plane for several values of the parameters g and δ.
Remark that the real and imaginary parts can be considered as the transversal components of a control
magnetic field. It can be seen from the driving field (37) that as t→ ∞, we have R(t)→ 0. This fact is
noted in the population inversion P, which tends to a fixed value as time increases (see Figure 2)

P(t→ ∞) =
δ2 − 4|g|2
δ2 + 4|g|2 . (42)
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Figure 2. (Left) the interaction term (37) in the complex plane; (Right) population inversion as a function
of time. The parameters in both cases are: g = 0.5, δ = 0.01 (red), δ = 1 (black) and δ = 2 (blue).

5.2. Case Ω(t) = Ω1: A Precessing Field with Oscillating Amplitude

A more general instance arises if the frequency is a real constant Ω1 6= 0. With this choice,
the parametric oscillator-like equation reduces to the conventional Newtonian harmonic oscillator equation

ϕ′′(t) + Ω2
1 ϕ(t) = 0. (43)

The solution that meets the initial conditions (15) reads

ϕ(t) = cos(Ω1t)− iδ
2Ω1

sin(Ω1t). (44)

On the other hand, the solution (25) to the corresponding Ermakov equation can be constructed
either with ϕ1(t) = cos(Ω1t) or with ϕ1(t) = sin(Ω1t). After imposing the required initial conditions,
we get

µ2(t) = cos2(Ω1t) + κ2 sin2(Ω1t), κ = Ω0/Ω1. (45)

The corresponding driving field can be readily obtained

R(t) =
−i g eiδ η(t)

cos2(Ω1t) + κ2 sin2(Ω1t)
(46)

with

η(t) =
∫ t

0

ds
cos2(Ω1s) + κ2 sin2(Ω1s)

. (47)

The interaction term (46) has the form of a precessing field with an oscillating amplitude. Note
that a circularly polarized field is a particular case of our driving fields. Indeed, taking κ = 1, we have
µ2(t) = 1 and hence η(t) = t. Therefore, R(t) = −igeiδt, which is the field discussed in Section 4.

On the other hand, note that the function (47) is well-defined in the interval [0, ∞) as µ−2 is
continuous and hence Riemann integrable. In the Appendix A, we discuss the possibility of writing
this integral in terms of elementary functions and also show that η(π/Ω1) = π/Ω0. This last result is
useful to determine the conditions of periodicity of V. In fact, the period of the function µ is τ = π/Ω1

and, according to Equation (31), for p ∈ Z+, we must impose the condition that

ν =
∆

Ω1
+

pδ

Ω0



Symmetry 2018, 10, 567 10 of 15

is an even integer number in order to get a periodic driving field of period τp = pτ, p being the
minimum natural number for which the former condition holds. Remark that, in this case, if ∆ = 2Ω1,
the periodicity of V also assures the periodicity of R. Some plots of the corresponding functions R are
shown in Figure 3 for several values of δ, ∆ and g for which the periodicity condition holds. These
describe a flower-like pattern which inscribes (circumscribes) a circle of radius |g| when κ < 1 (κ > 1).
Additionally, an outer (inner) circle of radius |g|/κ2 bounds the oscillations amplitude. In both cases,
the number p is related to the number of ‘petals’ of the field, that is to say, the number of times the
function R reaches its maximum and minimum values in one period τp. On the other hand, in Figure 4,
we have chosen the parameters so that the periodicity condition is not fulfilled, giving rise to open
curves in the complex plane.
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Figure 3. The driving field (46) with g =
√

5 and δ = 4 for (a) κ = 0.6, ∆ = 10 and (b) κ = 3.1,
∆ = 1.9. In the lower graphics g =

√
160 and δ = 6, and (c) κ = 0.8, ∆ = 32.5 and (d) κ = 2.5,

∆ = 10.4. The choice of the parameters grants the periodicity of V and R. The blue circle in all the cases
corresponds to the case of a circularly polarized field and the gray one is the maximum (minimum)
amplitude for κ < 1 (κ > 1).

Now, we can determine the evolution operator. Indeed, after some calculations, we find that the
factorizing functions α, f and β take the form

α(t) =
−2ig sin(Ω1t)e−i∆t−iδ η(t)

2Ω1 cos(Ω1t)− iδ sin(Ω1t)
, β(t) =

−2ig sin(Ω1t)
2Ω1 cos(Ω1t)− iδ sin(Ω1t)

, (48)

∆ f (t) = ln
[

µ2(t)
ϕ2(t)

]
− iδ η(t)− i∆t, (49)
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where the functions ϕ, µ and η are given in Equations (44), (45), and (47), respectively. Again, if the
initial state is |ψ(0)〉 = |p〉, the state of the system at an arbitrary time is

|ψ(t)〉 = e−i∆t/2−iη(t)/2

µ(t)

[
cos(Ω1t) +

iδ
2Ω1

sin(Ω1t)
]
|p〉 − ige−i∆t/2−iη(t)/2

µ(t)
sin(Ω1t)

Ω1
|q〉. (50)
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(a) (b)

Figure 4. The driving field (46) with g =
√

π, δ = 2
√

π and (a) κ = 0.6 and (b) κ = 2.5. These
parameters do not fulfill the periodicity condition and the corresponding trajectories are not closed.
In both cases, the time interval is [0, 10κπ/Ω0].

The population inversion as function of time can also be computed yielding

P(t) =
4Ω2

1 cos2(Ω1t) + (δ2 − 4|g|2) sin2(Ω1t)
4Ω2

1[cos2(Ω1t) + κ2 sin2(Ω1t)]
, (51)

which is a periodic function of time with period τ = π/Ω1 = πκ/Ω0. Remark that, for κ = 1,
the former expression retrieves the conventional expression (36) for the population inversion of a
single qubit driven by a circularly polarized field. One can also note that regardless the value of κ,
the population invertion (51) has local minima

Pmin =
δ2 − 4|g|2
δ2 + 4|g|2 , (52)

which are achieved at times tn = nπ/2Ω1, with n ∈ Z+. In Figure 5, it is depicted the population
inversion for several values of g and δ as well as for different values of κ. The blue-dashed curve
corresponds to the case of a qubit interacting with a circularly polarized field (κ = 1). It can be also
seen that the period of oscillation for κ < 1 is shortened with respect to the case κ = 1 while it is
enlarged for κ > 1. On the other hand, in the limits κ ≈ 0 and κ � 0, the oscillations become more
defined giving rise to a collapse-and-revival-like behaviour. This can be noted if one compares the
shape of the oscillations shown in the plots (a) and (b) with those depicted in (c) and (d) of Figure 5,
where we have set the value of κ according to the limits mentioned before. Finally, the parameters g
and δ can be used to manipulate both the amplitude and shape of the oscillations on demand, as it is
shown in Figure 6.
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Figure 5. Population inversion (51) as function of time. In the upper panels, the dashed line corresponds
to the case of a qubit interacting with a circularly polarized field. In these plots, we have used (a)
κ = 0.6 and (b) κ = 3.1. In the lower plots, the function P shows a collapse-and-revival-like behavior
for (c) κ = 0.005 and (d) κ = 50. In all cases, we have taken g =

√
5 and δ = 4.

(a) (b)

Figure 6. Time-evolution of population inversion (51) as a function of the parameters (a) g and (b) δ,
which can be used to manipulate the amplitude and period of the oscillations.

5.3. Case Ω(t) = i Ω1: A Precessing Decaying Driving Field

We now consider a pure imaginary constant frequency such that Ω(t) = i Ω1, with Ω1 ∈ R. In this
case, the solutions to both the parametric oscillator-like Equation (13) and the Ermakov Equation (21)
are given in terms of hyperbolic sine and cosine functions. This can be immediately seen from the fact
that Equation (13) reduces to ϕ′′(t)−Ω2

1 ϕ(t) = 0. The corresponding driving fields have analogous
forms to those obtained in the previous case once the trigonometric functions in Equations (46) and (47)
are interchanged by the corresponding hyperbolic ones. Accordingly, such control fields are no longer
oscillating as they give rise to a decaying behavior in the atomic population inversion. A detailed
analysis of this case will be reported elsewhere.
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6. Conclusions

We have proposed a procedure to generate exactly solvable families of single qubit driving fields.
Requiring that the corresponding time-evolution operator is written as a product of exponential
operators, we find analytical solutions to the dynamical law using an inverse approach. The control
fields are determined by means of the solutions of an Ermakov equation, which is obtained once the
time-dependent frequency of the related parametric-oscillator equation is specified. The connection
between these equations can be straightforwardly stated if such frequency is either a real-valued
or a pure imaginary function of time. The dynamics of a qubit interacting with the so-obtained
driving fields strongly depend on the form and the parameters of such a function. We have provided
some examples of non-periodic and periodic control fields, as well as decaying fields for the case
of a constant frequency. These results may shed some light in the problem of qubit control and the
development of quantum gates. Some results on the construction of new solutions for the general case
of a complex-valued frequency are in progress.
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Appendix A. The Function η(t)

This Appendix is devoted to the search for a primitive of the function µ−2 in R+ for µ given in the
expression (45). We first consider the function defined by the integral for t in the interval [0, π/2Ω1)

χ1(t) =
∫ dt

cos2(Ω1t) + κ2 sin2(Ω1t)
=

1
Ω0

arctan[κ tan(Ω1t)] + c1. (A1)

The last equality can be easily shown by making the substitution

u(t) = tan(Ω1t). (A2)

The initial condition lim
t→0+

χ1(t) = η(0) = 0 allows us to conclude that c1 = 0. A similar procedure

can be accomplished to evaluate an anti-derivative χ2 for t taking values in the interval (π/2Ω1, π/Ω1].
In addition, in order to ensure the continuity in the point t = π/2Ω1, it is required that

lim
t→(π/2Ω1)+

χ1(t) = lim
t→(π/2Ω1)−

χ2(t). (A3)

Equation (A1) can be used to evaluate the right-hand side of the former condition. We find
lim

t→(π/2Ω1)+
χ1(t) = π/2Ω0, and

χ2(t) =
1

Ω0
arctan[κ tan(Ω1t)] +

π

Ω0
. (A4)
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Thus, the the function

η(t) =


χ1(t), 0 ≤ t < π/2Ω1,

π/2Ω0, t = π/2Ω1,

χ2(t), π/2Ω1 < t ≤ π/Ω1,

(A5)

is a primitive of µ−2 in the interval (0, π/Ω1]. Finally, in order to find an antiderivative for this function
in R+, a piecewise function must be defined for each subinterval [nπ/Ω1, (n + 1)π/Ω1] with n ∈ Z+

and the corresponding integrals can be evaluated in a similar form as in the previous case.

References

1. Rabi, I. Space quantization in a gyrating magnetic field. Phys. Rev. 1937, 51, 652. [CrossRef]
2. Zener, C. Non-adiabatic crossing of energy levels. Proc. R. Soc. A 1932, 137, 696. [CrossRef]
3. Rosen, N.; Zener, C. Double Stern-Gerlac experiment and related collision phenomena. Phys. Rev. 1932, 40,

502. [CrossRef]
4. Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press:

Cambridge, UK, 2000.
5. Gerardot, B.D.; Öhberg, P. A strongly driven spin. Science 2009, 326, 1489–1490. [CrossRef] [PubMed]
6. Fuchs, G.D.; Dobrovitski, V.V.; Toyli, D.M.; Heremans, F.J.; Awschalom, D.D. Gigahertz dynamics of a

strongly driven single quantum spin. Science 2009, 326, 1520. [CrossRef] [PubMed]
7. Cruz, S.C.y.; Mielnik, B. Quantum control with periodic sequences of non resonant pulses. Rev. Mex. Fis.

2007, 53, 37–41.
8. Bezvershenko, Y.V.; Holod, P.I. Resonance in a driven two-level system: Analytical results without the

rotating wave approximation. Phys. Lett. A 2011, 375, 3936–3940. [CrossRef]
9. Gangopadhyay, A.; Dzero, A.; Galitski, V. Exact solution for quantum dynamics of a periodically driven

two-level system. Phys. Rev. B 2010, 82, 024303. [CrossRef]
10. Xie, Q.; Hai, W. Analytical results for a monochromatically driven two-level system. Phys. Rev. A 2010,

82, 032117. [CrossRef]
11. Vitanov, N.V. Complete population inversion by a phase jump: An exactly soluble model. New J. Phys. 2007,

9, 58. [CrossRef]
12. Fernández, D.J.; Rosas-Ortiz, O. Inverse techniques and evolution of spin-1/2. Phys. Lett. A 1997, 236,

275–279. [CrossRef]
13. Barnes, E.; Sarma, S.D. Analytically solvable driven time-dependent two-level quantum systems. Phys. Rev. Lett.

2012, 109, 060401. [CrossRef] [PubMed]
14. Messina, A.; Nakazato, H. Analytically solvable Hamiltonians for quantum two-level systems and their

dynamics. J. Phys. A Math. Theor. 2014, 47, 445302. [CrossRef]
15. Dattoli, G.; Gallardo, J.; Torre, A. Time-ordering and solution of differential difference equation appearing in

quantum optics. J. Math. Phys. 1986, 27, 772–780. [CrossRef]
16. Dattoli, G.; Torre, A. SU(2) and SU(1,1) time-ordering theorems and Bloch-type equations. J. Math. Phys.

1987, 28, 618–621. [CrossRef]
17. Dattoli, G.; Richetta, M.; Torre, A. Evolution of SU(2) and SU(1,1) states: A further mathematical analysis.

J. Math. Phys. 1988, 29, 2586–2588. [CrossRef]
18. Dattoli, G.; Gallardo, J.C.; Torre, A. An algebraic view to the operatorial ordering and its applications to

optics. La Rivista del Nuovo Cimento 1988, 11, 1–79. [CrossRef]
19. Campolieti, G.; Sanctuary, B.C. The Wei–Norman Lie-algebraic technique applied to field modulation in

nuclear magnetic resonance. J. Chem. Phys. 1989, 91, 2108–2123. [CrossRef]
20. Prants, S.V. A group-theoretical approach to study atomic motion in a laser field. J. Phys. A Math. Theor. 2011,

44, 265101. [CrossRef]
21. Kenmoe, M.B.; Fai, L.C. Wei–Norman-Kolokolov approach for Landau-Zener problems. J. Phys. A

Math. Theor. 2014, 47, 465202. [CrossRef]

http://dx.doi.org/10.1103/PhysRev.51.652
http://dx.doi.org/10.1098/rspa.1932.0165
http://dx.doi.org/10.1103/PhysRev.40.502
http://dx.doi.org/10.1126/science.1183659
http://www.ncbi.nlm.nih.gov/pubmed/20007888
http://dx.doi.org/10.1126/science.1181193
http://www.ncbi.nlm.nih.gov/pubmed/19965386
http://dx.doi.org/10.1016/j.physleta.2011.09.039
http://dx.doi.org/10.1103/PhysRevB.82.024303
http://dx.doi.org/10.1103/PhysRevA.82.032117
http://dx.doi.org/10.1088/1367-2630/9/3/058
http://dx.doi.org/10.1016/S0375-9601(97)00782-2
http://dx.doi.org/10.1103/PhysRevLett.109.060401
http://www.ncbi.nlm.nih.gov/pubmed/23006253
http://dx.doi.org/10.1088/1751-8113/47/44/445302
http://dx.doi.org/10.1063/1.527182
http://dx.doi.org/10.1063/1.527648
http://dx.doi.org/10.1063/1.528100
http://dx.doi.org/10.1007/BF02724503
http://dx.doi.org/10.1063/1.457071
http://dx.doi.org/10.1088/1751-8113/44/26/265101
http://dx.doi.org/10.1088/1751-8113/47/46/465202


Symmetry 2018, 10, 567 15 of 15

22. Enríquez, M.; Cruz, S.C.y. Disentangling the time-evolution operator of a single qubit. J. Phys. Conf. Ser.
2017, 839, 012015. [CrossRef]

23. Wei, J.; Norman, E. Lie algebraic solution of linear differential equations. J. Math. Phys. 1963, 4, 575–581.
[CrossRef]

24. Rodríguez-Lara, B.M.; Moya-Cessa, H.M.; Christodoulides, D.N. Propagation and perfect transmission in
three-waveguide axially varying couplers. Phys. Rev. A 2014, 89, 013802. [CrossRef]

25. Datolli, G.; Solimeno, S.; Torre, A. Algebraic time-ordering technics and harmonic oscillator with
time-dependent frequency. Phys. Rev. A 1986, 34, 2646. [CrossRef]

26. Lo, C.F. Squeezing in harmonic oscillator with time-dependent mass and frequency. Il Nuovo Cimento B 1990,
105, 497–506. [CrossRef]

27. Cheng, C.M.; Fu, P.C.W. The evolution operator technique in solving the Schrödinger equation, and its
application to disentangling exponential operators and solving the problem of a mass-varying harmonic
oscillator. J. Phys. A Math. Gen. 1988, 21, 4115. [CrossRef]

28. Croxson, P. Time dependent quadratic Hamiltonians SU(2) and SU(2, 1). Phys. Lett. A 2006, 355, 12–17.
[CrossRef]

29. Hubbard, J. Electron correlations in narrow energy bands. Proc. R. Soc. Ser. A 1963, 276, 238–257. [CrossRef]
30. Hubbard, J. Electron correlations in narrow energy bands. II. The degenerate band case. Proc. R. Soc. Ser. A

1964, 277, 237–259. [CrossRef]
31. Hubbard, J. Electron correlations in narrow energy bands-IV. The atomic representation. Proc. R. Soc. Ser. A

1965, 285, 542–560. [CrossRef]
32. Enríquez, M.; Rosas-Ortiz, O. The Kronecker product in terms of Hubbard operators and the Clebsch-Gordan

decomposition of SU(2)× SU(2). Ann. Phys. 2013, 339, 218. [CrossRef]
33. Enríquez, M. Hubbard operators in multiqubit systems. J. Phys. Conf. Ser. 2016, 624, 012019. [CrossRef]
34. Enríquez, M. On the eigenvalue problem in multipartite quantum systems. J. Phys. Conf. Ser. 2016,

698, 012021. [CrossRef]
35. Rosas-Ortiz, O.; Casta nos, O.; Schuch, D. New supersymmetry-generated complex potentials with real

spectra. J. Phys. A Math. Theor. 2015, 48, 445302. [CrossRef]
36. Ermakov, V.P. Second order differential equations. Conditions to complete integrability. Kiev Univ. Izvestia

Ser. III 1880, 9, 125. (In Russian) [CrossRef]
37. Pinney, E. The nonlinear differential equation y′′ + p(x)y + cy−3 = 0. Proc. Am. Math. Soc. 1950, 1, 681.

[CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1088/1742-6596/839/1/012015
http://dx.doi.org/10.1063/1.1703993
http://dx.doi.org/10.1103/PhysRevA.89.013802
http://dx.doi.org/10.1103/PhysRevA.34.2646
http://dx.doi.org/10.1007/BF02722882
http://dx.doi.org/10.1088/0305-4470/21/22/015
http://dx.doi.org/10.1016/j.physleta.2006.02.006
http://dx.doi.org/10.1098/rspa.1963.0204
http://dx.doi.org/10.1098/rspa.1964.0019
http://dx.doi.org/10.1098/rspa.1965.0124
http://dx.doi.org/10.1016/j.aop.2013.08.016
http://dx.doi.org/10.1088/1742-6596/624/1/012019
http://dx.doi.org/10.1088/1742-6596/698/1/012021
http://dx.doi.org/10.1088/1751-8113/48/44/445302
http://dx.doi.org/10.2298/AADM0802123E
http://dx.doi.org/10.2307/2032300
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Direct Approach
	The Inverse Approach
	A Physical Model
	Some Simple Applications
	Case (t)=0: A Decaying Driving Field
	Case (t)=1: A Precessing Field with Oscillating Amplitude
	Case (t)=i 1: A Precessing Decaying Driving Field

	Conclusions
	The Function (t)
	References

