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We study the spectrum of the 1D Dirac Hamiltonian encompassing the bound and

scattering states of a fermion distorted by a static background built from δ-function

potentials. After introducing the most general Dirac-δ potential for the Dirac equation

we distinguish between “mass-spike” and “electrostatic” δ-potentials. Differences in the

spectra arising depending on the type of δ-potential are studied in deep detail.
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1. INTRODUCTION

The Dirac equation with various relativistic potentials mimicking string-like or vortex-like
backgrounds has a long history. The best known example is the Aharonov-Bohm [1] interaction
of charged fermions with a field of an infinitesimally thin solenoid. The scattering of fermions on
magnetic ’tHooft-Polyakov monopoles and on Abrikosov-Nielsen-Olesen strings with consequent
fractional fermion numbers and fermion number non-conservation was a hot topic in the late 70s
and early 80s [2, 3]. The cosmic strings predicted by grand unified theories also appeared to interact
with fermions (matter) via the Aharonov-Bohm mechanism [4]. The non-relativistic limit of the
scattering problem for spin-one-half particles in the Aharonov-Bohm potential in (1+2) conical
space was examined in [5, 6].

It was observed that in the case of a point magnetic vortex (Aharonov-Bohm interaction) one
can either with gauge transformation reduce the problem to a Laplace equation with delta-potential
or to a free Dirac equation with a special angular boundary condition [7]. A radial boundary
condition specifies the self-adjoint extension. From the operator theory viewpoint the Dirac
operator with relativistic point interaction (δ-function potentials) and its self-adjoint extensions
were considered in [8, 9]. In the last years the low-dimensional problems of this kind were
investigated topologically with the Levinson theorem, which proved to be closely related to an index
theorem [10].

A renewed interest to Dirac equation with singular potentials was inspired by the appearance
of the new 2D materials. Graphene in the field of a Aharonov-Bohm solenoid perpendicular to its
plane was considered in [11]. The induced current and induced charge density were calculated.
Another example is a magnetic Kronig-Penney model for Dirac electrons in single-layer graphene
developed in [12]. The model is a series of very high and very narrow magnetic δ-function barriers
alternating in sign.

In this paper we describe the distortion caused by impurities in the free propagation of fermionic
fields in the 1 + 1-dimensional Minkowski spacetime by means of Dirac δ-point interactions. We
elaborate on and develop further previous work on this subject in References [13, 14]. Thematching
conditions appropriated to define the δ-potential inserted in a Dirac Hamiltonian restricted to a line
were proposed some time ago in References [15, 16].
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Our aim is to generalize the study carried out in References
[17–19] to fermionic fields so that we can use the results in
effective QFT models of 2D materials.

Throughout the paper we shall use natural units where h̄ =
c = 1 (henceforth, L = T = M−1). In addition we will fix the
Minkowski spacetime metric tensor to be: ηµν ≡ diag(+,−).
Having done these choices, the Hamiltonian form of the Dirac
equation, governing the dynamics of a free fermionic particle of
massmmoving on a line, reads

i∂tψ(t, x) = H
(0)
D ψ(t, x) = [−iα∂x + βm]ψ(t, x), (1)

or, in covariant form:

(iγ µ∂µ −m )ψ(x) = 0.

For the fermionic anti-particle the dynamics is governed by the
conjugate Dirac Hamiltonian

i∂tφ(t, x) = H
(0)
D φ(t, x) = [−iα∂x − βm]φ(t, x), (2)

or, in covariant form

(iγ µ∂µ +m )φ(x) = 0.

Here, the {γ µ}µ=0,1 matrices close the Clifford algebra of R1,1

that can be minimally represented by “pseudo-Hermitian”two-
by-two matrices: γ µ † = γ 0γ µγ 0. Explicitly,

{γ µ, γ ν} ≡ γ µγ ν + γ νγ µ = 2ηµν ⇒
γ 0γ 0 = 1 = −γ 1γ 1 , γ 0γ 1 = −γ 1γ 0.

We shall need also the 1+1-dimensional analogue of the γ 5

matrix, denoted throughout this paper as γ 2:

γ 2 = γ 0γ 1.

The free Dirac Hamiltonians appearing in the formulas (1)–(2)
demand thus the definition of the α and β Dirac matrices:

β = γ 0, α = γ 0γ 1 = γ 2.

In order to perform explicit calculations we shall stick to the
following choice of γ -matrices:

γ 0 = σ3 = β , γ 1 = iσ2, γ 2 = σ1 = α, (3)

where σ1, σ2, σ3 are the Pauli matrices:

σ1 =
(

0 1
1 0

)

, σ2 =
(

0 −i
i 0

)

, σ3 =
(

1 0
0 −1

)

.

Our choice of gamma matrices enables us to identify the three
discrete transformations acting on the Dirac spinors:

1. Parity transformation P : Pψ(x, t) = (−1)pγ 0ψ(−x, t), where
p = 0, 1, is the intrinsic parity of the particle

2. Time-reversal transformation T : T ψ(x, t) = γ 0ψ∗(x,−t).

3. Charge conjugation transformation C: Cψ(x, t) = γ 2ψ∗(x, t).

Parity and time-reversal are symmetries of the free Dirac
Hamiltoninan (1) and its conjugate (2). Charge conjugation,
however, transforms the free Dirac Hamiltonian into its
conjugate and viceversa. This property is the secret behind the
common wisdom in Fermi field theory where negative energy
fermions are traded by positive energy antifermions. More

precisely: both H
(0)
D and H

(0)
D have a Dirac sea of negative energy

states. The idea is to form a complete set of spinors from the

positive energy states of H(0)
D , fermions, and the positive energy

eigen spinors of H
(0)
D , anti-fermions. In this spirit one checks

that the solutions for the conjugate Dirac equation are related
to the solutions of the Dirac equation by the charge conjugation
transformation. Given the spectral problems

H
(0)
D ψω(x) = ωψω(x), H

(0)
D φω(x) = ωφω(x), (4)

the eigenspinors are related through charge conjugation: φω =
γ 2ψ∗

ω(x). Equivalently, one finds that: CH
(0)
D C−1 = H

(0)
D .

Consider next a bunch of relativistic Fermi particle
propagating in (1+1)D Minkowski spacetime under the
influence of a external time-independent classical background.
The most general Dirac Hamiltonian describing this situation
reads:

HD = H0 + V(x) = −iα∂x + βm+ V(x). (5)

The external potential comprises four types (see [14]):

V(x) = V0(x)1+ V1(x)α + V2(x)β + V3(x)αβ . (6)

In Ref. [14], it is shown that:

• It is possible to assume V1(x) = 0 without loss of generality
since it can be absorbed by a gauge transformation.

• It is convenient to choose V3(x) = 0 to avoid interactions of
the type ψ̄γ 2V3(x)ψ which are only consistent if V3 is purely
imaginary.

Hence, we shall focus our attention on background potentials of
the form

V(x) = ξ (x)1+M(x)β , (7)

leading to the following Dirac spectral problem

HDψ(x) = ωψ(x) ⇒ [−iα∂x + β(m+M(x))]ψ(x)

= [ω − ξ (x)]ψ(x). (8)

In formula (8) the ξ (x) potential clearly appears as an electrostatic
potential, whereas the potential energy M(x) shows itself as a
position dependent mass. Note that this last potential can be
reinterpreted as an interaction of the Dirac field with a classical
scalar field. Different elections for the electrostatic potential ξ (x),
and the mass-like potential M(x) have been done in the last two
decades: in Ref. [20] it is studied the choice of ξ (x) and M(x) as
Coulomb and quadratic vetor potentials, and and in Refs. [21, 22]
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the possibility of ξ (x) andM(x) being quadratic, linear, and other
confining potentials is considered.

We shall focus on external potentials localized in one point
meaning that the propagating fermion finds an impurity at that
point. Analytically we mimic the influence of the impurity on the
fermion by a δ-function potential. We thus choose:

V(x) = Ŵ(q, λ)δ(x); Ŵ(q, λ) = q1+ λβ . (9)

It is of note that the weight term Ŵ(q, λ) multiplying the δ(x)-
function in formula (9) is a 2 × 2 matrix depending on two
coupling constants: physically q plays the role of a dimensionless
electric charge1 and λ is also non dimensional, but plays the role
of a scalar or gravitational coupling because it couples to the
Fermi fields like a mass. Physically all this enables to interpret
the most general form of the delta potential as a point charge plus
a variable mass, in parallel to that taken in [17] devoted to scalar
field interactions with external δ-plates.

Early distributional definitions of δ-point interaction for Dirac
fields were proposed in Refs. [15, 16]. In these references,
the purely electrostatic fermionic Dirac-δ potential was defined
through a matching condition of the form

ψ(0+) = TEδ(q)ψ(0
−); TEδ(q) = 1 cos(q)− iγ 2 sin(q). (10)

Later, in Ref. [14] the matching condition (10) was extended for
the general δ-potential (9), following the approach of [16], to be:

ψ(0+) = Tδ(q, λ)ψ(0
−); Tδ(q, λ) = exp

(

−iγ 2Ŵ(q, λ)
)

(11)

Tδ(q, λ) = 1 cos�−
i

2
sin�

[

�

q+ λ
(γ 2 + γ 1)+

q+ λ
�

(γ 2 − γ 1)

]

,

being � =
√

q2 − λ2. It is straightforward to obtain the matrix
that defines the mass-spike Dirac-δ potential:

TMδ(λ) = Tδ(0, λ) = 1 cosh(λ)+ iγ 1 sinh(λ). (12)

This last particular case is what is studied in detail in Ref.
[14] regarding the Casimir effect induced by vacuum fermionic
quantum fluctuations.

In order to comprehend the results of the calculations in
the following sections it is convenient to take into account
the transformation properties of the point-supported potential
defined by equation (11) under parity (P), time-reversal (T ), and
charge conjugation (C).

• Taking into account that the parity-transformed spinor ψP ≡
Pψ satisfies

ψP(0±) = γ 0ψ(0∓),

the matching condition ψP(0+) = TP
δ (q, λ)ψ

P(0−) is
automatically satisfied:

TP
δ (q, λ) ≡ γ 0Tδ(q, λ)

−1γ 0 = Tδ(q, λ). (13)

1We shall allow q to vary as an angle proportional to the fine structure constant,

which in a 1D space is α = | e2
m2 |, the electron charge times the Compton particle

wavelength to the square.

Thus, (13) guarantees that Tδ(q, λ) remains invariant under
parity transformation such that the general fermionic δ-
potential is parity invariant, as it happens in the bosonic
case.

• Denoting ψT(x, t) ≡ T ψ(x, t), the matching condition (11)
imposes over ψT the time-reversal transformed matching
conditon

ψT(0+) = TT
δ (q, λ)ψ

T(0−); TT
δ (q, λ) = γ 0Tδ(q, λ)

∗γ 0.
(14)

One immediately realizes that TT
δ (q, λ) = Tδ(q, λ). Hence the

fermionic δ-potential maintains the time-reversal invariance
as in the scalar case.

• The charge conjugated spinors ψC ≡ Cψ must satisfy the
conjugated matching conditions:

ψC(0+) = TC
δ (q, λ)ψ

C(0−), (15)

where the charge-conjugated matching matrix is:

TC
δ (q, λ) = γ 2Tδ(q, λ)

∗γ 2 = Tδ(−q, λ). (16)

Thus, the fermionic δ-potential as defined in (11) is not
invariant under charge conjugation changing q by −q as long
as q 6= 0. This result is what one expects implicitly considering
the term with the coupling q in (11) as an electrostatic
potential [14].

Therefore, we are led to solve simultaneously the spectral
problems for the Dirac Hamiltonian and its conjugate together
with the δ-matching condition and its conjugate:

H
(0)
D ψ(x) = ωψ(x); ψ(0+) = Tδ(q, λ)ψ(0

−), (17)

H
(0)
D φ(x) = ωφ(x); φ(0+) = Tδ(−q, λ)φ(0−). (18)

The eigenspinors of H(0)
D with ω > m obeying the matching

condition in (17) correspond to electron scattering states,
whereas those with −m < ω < m refer to electron bound states.
On the contrary, the H

(0)
D eigenspinors with ω > m complying

with the matching condition in (18) can be treated as positron
scattering states, but those with −m < ω < m we attribute to
positron bound states.

The main objective of the present work is the study of this
spectral problem in 1D relativistic quantum mechanics in order
to build a fermionic quantum field theory system where the

one-particle/antiparticle states are the eigenstates of HD/H
(0)
D .

The fermionic Fock space is thus constructed from these eigen-
states instead of plane waves. In the next Section we introduce
the necessary notation and basic formulas to understand the
behavior of fermions in a flat background without any external
potential. In section 3 we consider the dynamics of a relativistic
1D Fermi particle and antiparticle in one electrostatic δ-potential
V = qδ(x)1 describing the effect of one impurity on the
free propagation. Fermions (antifermions) are either trapped in
bound states or distorted in scattering waves of HD (HD). The
charge density of the bound states is also computed. In section 4,
the same study is performed for a mass-spike delta potential V =
λδ(x)σ3. A summary and outlook are offered in the last section.
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2. ELECTRON/POSITRON PROPAGATION
ON A LINE

We consider the one-dimensional Dirac field

9(t, x) =
(

ψ1(t, x)
ψ2(t, x)

)

; ψ1(t, x) : R
1,1 → C, ψ2(t, x) : R

1,1 → C,

and set the following Dirac action:

SD =
∫

dt

∫

dx
{

9̄(t, x)
(

iγ µ∂µ −m
)

9(t, x)
}

, (19)

in the Dirac representation of the Clifford algebra taking into
account our choice of γ matrices. In the natural system of units,
the dimension of the Dirac field 9 is: [9] = L−1/2. The Euler-
Lagrange equation derived from the action (19) is the Dirac
equation

iσ3∂t9 = σ2∂x9 +m9 , (20)
(

i∂t −m i∂x
−i∂x −i∂t −m

)(

ψ1(t, x)
ψ2(t, x)

)

=
(

0
0

)

.

The time-energy Fourier transform

ψ1(t, x) =
∫

dω e−iωt ψω1 (x), ψ2(t, x) =
∫

dω e−iωt ψω2 (x),

reduces the PDE Dirac equation to the ODE system

(ω −m)ψω1 (x)+ i
dψω2
dx

= 0 , i
dψω1
dx

+ (ω +m)ψω2 (x) = 0.

(21)
It is clear that the system (21) is no more than the spectral
equation for the quantum mechanical free Dirac Hamiltonian:

H09
ω(x) = ω9ω(x) ,H0 = −iσ1

d

dx
+mσ3 =

(

m −i d
dx

−i d
dx

−m

)

,

acting on time-independent spinors2. We remark now that a
similar strategy based on time-energy Fourier transform also
works when the effect of an external static potential, like those
mentioned in the Introduction, is included in the action. The only
required modification is to replaceH0 byHD.

The analysis of free propagation also admits a position-
momentum Fourier transform:

ψω1 (x) =
∫

dkA(k)eikx, ψω2 (x) =
∫

dk B(k)eikx,

which converts the ODE system (21) in the algebraic
homogeneous system

(ω−m)A(k)−k B(k) = 0, kA(k)− (ω+m)B(k) = 0. (22)

2We shall refer as spinor fields to the Fermi fields even though in one-dimension
there is no spin.

Introducing the positive and negative energy eigenspinors which
satisfy (22) with k = 0,

9+(t, x) = A

(

e−imt

0

)

, 9−(t, x) = B

(

0
e+imt

)

,

it is easy to derive the non-trivial solutions of (22).
They occur if the following spectral condition holds

det

(

ω −m −k
k −(ω +m)

)

= 0 ≡ ω = ω± = ±
√

k2 +m2,

and the eigenspinors of moving electrons split in two types:
(1) Positive energy ω+ electron spinor plane waves moving along
the real axis with momentum k ∈ R. The solution of (22), B(k) =
k/(ω++m)A(k), implies that the positive energy eigenspinors are

9+(t, x; k)=A e−iω+teikx u+(k) , u+(k) =
(

1
k

ω++m

)

. (23)

(2) Negative energy ω− electron spinor plane waves moving
along the real axis with momentum k ∈ R. We choose the
solution A(k) = k/(ω− − m)B(k) of (22) to find the negative
energy eigenspinors

9−(t, x; k)=B e−iω−teikxu−(k) , u−(k) =
(

k
ω−−m

1

)

. (24)

In 1D space the concept of the holes in the Dirac sea is
implemented by replacing the negative energy spinors u−(k) with
the positron spinors,

v+(k) = γ 2u∗+(k) =
(

k
ω++m

1

)

. (25)

which are solutions of the conjugated Dirac equation:

(ω+m)φω1 (x)+i
dφω2
dx

= 0 , i
dφω1
dx

+(ω−m)φω2 (x) = 0 . (26)

Note that the v+(k) spinors are also orthogonal to the positive
energy spinors u+(k). We thus describe the propagation of 1D
fermions in terms of electron and positron plane waves:

ψ+
k

∝ u+(k)e
ikxe−iω+t electron with momentum k, energy ω+

φ+
k

∝ v+(k)e
ikxe−iω+t positron with momentum k, energy ω+

Therefore, from now on, we will work with the bihamiltonian
system given in (17-18), where the positron energy and the
electron energy are always chosen as ω = +

√
k2 +m2.

3. “ELECTROSTATIC”POINT
DELTA-INTERACTION

Consider now a relativistic 1D fermion whose free propagation
is disturbed by one impurity concentrated in one point
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that we describe by including a δ-potential. The one-
dimensional Dirac Hamiltonian with a single Dirac δ-potential
of “electrostatic”type is:

HEδ = −iσ1
d

dx
+ mσ3 + qδ(x)1, q = ν

e2

m2
∈ S

1 ,

ν ∈ (0, 2π
m2

e2
).

Recall that q is dimensionless: [q] = 1. The spectral equation for
this Hamiltonian HEδ9(x) = ω9(x) is equivalent to the Dirac
system of two first-order ODE’s:

− i
dψ2

dx
= (ω −m)ψ1(x), (27)

−i
dψ1

dx
= (ω +m)ψ2(x), (28)

where the eigenspinors for the free Dirac Hamiltonian in zone
I (x < 0) and those in zone II (x > 0), must be related across
the singularity at x = 0 by the “electrostatic”matching conditions
defined in (10):

(

ψ1(0+)
ψ2(0+)

)

=
(

cos q −i sin q
−i sin q cos q

)(

ψ1(0−)
ψ2(0−)

)

. (29)

Similarly, positron propagation disturbed by impurities that can
be studied through HEδ8(x) = ω8(x) is equivalent to the Dirac
system of two first-order ODE’s:

− i
dφ2

dx
= (ω +m)φ1(x), (30)

−i
dφ1

dx
= (ω −m)φ2(x). (31)

The solution of the system (30)–(31) is identical to the solution
of the previous system but the “electrostatic”matching conditions
must be conjugated:

(

φ1(0+)
φ2(0+)

)

=
(

cos q i sin q
i sin q cos q

)(

φ1(0−)
φ2(0−)

)

. (32)

Our goal is to search for, bound states, i.e., |ω| < |m|, and
scattering states, i.e., |ω| > |m|, both for the case of electrons
and positrons.

3.1. Relativistic Electron and Positron
Bound States
In order to compute bound states, exponentially decaying
solutions of (27)–(28) system in zone I must be related to
exponentially decaying solutions of the same system in zone II
by implementing the electrostatic matching conditions (29) to
identify the electron bound states and identical procedure will
provide positron bound states replacing the ODE system by
(30)–(31) and using the matching condition (32).

• Zone I: x < 0

ψ I
1(x, κ) = AI(κ)eκx, ψ I

2(x, κ) = BI(κ)eκx , κ > 0.

Plugging this ansatz in the spectral equation system (27)–(28)
one finds a linear algebraic homogeneous system in AI and
BI whose solution (taking into account that the value of the
energyω =

√
m2 − κ2 is compatible with bound states in zone

I provided that 0 < κ < |m|) is the following eigenspinor:

9I
+(x, κ) = AI

+(κ)

(

1
−iκ
ω+m

)

eκx. (33)

• Zone II: x > 0

ψ II
1 (x, κ) = AII(κ)e−κx , ψ II

2 (x, κ) = BII(κ)e−κx, κ > 0.

Similarly, plugging this ansatz in the spectral equation system
(27)–(28) one finds a linear algebraic homogeneous system in
AII and BII whose solution (taking into account the possible
value of the energy ω compatible with the existence of bound
states in zone II provided that 0 < κ < |m|) is the
following eigenspinor:

9II
+(x, κ) = AII

+(κ)

(

1
iκ
ω+m

)

e−κx. (34)

In order to join the eigenspinors in zone I with those in zone II at
x = 0, we impose the matching conditions at the origin (29) and
obtain the linear homogeneous system:

(

− cos q+ κ sin q
ω+m 1

i(sin q+ κ cos q
ω+m ) iκ

ω+m

)

·
(

AI
+

AII
+

)

=
(

0
0

)

. (35)

Non null solutions of the homogeneous system (35) correspond
to the roots of the determinant of the previous 2×2matrix. In the
same way, imposing similar anstaz for the φ field and solving the
spectral equation system (30)–(31) the possible eigenstates take
the form

• Zone I: x < 0

8I
+(x, κ) = DI

+(κ)

( −iκ
ω+m
1

)

eκx. (36)

• Zone II: x > 0

8II
+(x, κ) = DII

+(κ)

(

iκ
ω+m
1

)

e−κx. (37)

Relating the spinors in both zones through the matching
condition for positrons in x = 0 (32) we obtain the linear
homogeneous system

(

− cos q− κ sin q
ω+m 1

i(− sin q+ κ cos q
ω+m ) iκ

ω+m

)

·
(

DI
+

DII
+

)

=
(

0
0

)

, (38)

that allow us to obtain the bound states of positrons.
Since the parameter q is an angle and because the δ-potential

is defined by means of trigonometric functions, the signs of κ ,ω
change in every quadrant. The outcome is that there exists one
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FIGURE 1 | Bound states for electrons and positrons in an electrostatic

δ-potential (λ = 0).

bound state in each quadrant, two for electrons and two for
positrons, distributed as shown in the Figure 1.

These bound states correspond to one positive energy electron
trapped in either one positive or negative energy state and
one positive energy positron trapped alternatively in positive or
negative energy states. This structure is periodic in q.

Positron bound states

1. 0< q < π
2 ; κb = m sin q > 0, ωb =

√

m2 − κ2
b
= m cos q > 0

DII
+ = DI

+,

8(x, κb) = D+

(

i sign(x) sin q
1+cos q

1

)

e−m|x| sin q. (39)

2. π <q< 3π
2 ; κb=−m sin q>0, ωb=

√

m2 − κ2
b
=−m cos q>0

DII
+ = −DI

+,

8(x, κb) = D+

(

i sin q
1−cos q

−sign(x)

)

em|x| sin q. (40)

Electron bound states

1. π
2 <q<π ; κb= m sin q>0, ωb =

√

m2 − κ2
b
=−m cos q > 0

AII
+ = −AI

+,

9(x, κb) = A+

(

−sign(x)
−i sin q
1−cos q

)

e−m|x| sin q. (41)

2. 3π
2 <q<2π ; κb=−m sin q>0, ωb=

√

m2−κ2
b
= m cos q > 0

AII
+ = AI

+,

9(x, κb) = A+

(

1

−i sign(x) sin q
1+cos q

)

em|x| sin q. (42)

It is worthwhile to mention that if q = π
2 or q = 3π

2 zero modes
exist. For instance when q = π

2 we have κb = m, ωb = 0 whereas
the eigenspinor reads:

8(x,m) = D+

(

i sign(x)
1

)

e−m|x| .

We stress that the bound states just described are closer to the
bound states in the scalar case with mixed potential of the form
V(x) = −aδ(x)+bδ′(x) (see [23]). In both cases the normalizable
wave functions exhibit finite discontinuities at the origin.

3.2. On the Charge Density
The charge density can be written as:

j0(t, x) = ±Qϕ(t, x)γ 0ϕ(t, x) = ±Qϕ†(t, x)ϕ(t, x)

= ±Q
(

ϕ∗1 (t, x)ϕ1(t, x)+ ϕ∗2 (t, x)ϕ2(t, x)
)

, (43)

being Q a positive constant and taken into account that+ will be
chosen in the case of electrons and − for positrons. On the one
hand, if we substitute the positron bound states (39, 40) in (43)
the charge density obtained is

j0(x) = −mQ sin q e−2m|x| sin q, iff 0 < q <
π

2
. (44)

j0(x) = +mQ sin q e2m|x| sin q, iff π < q <
3π

2
. (45)

On the other hand, if we substitute the electron bound states (41,
42) in (43) the charge density obtained is

j0(x) = +mQ sin q e−2m|x| sin q, iff
π

2
< q < π . (46)

j0(x) = −mQ sin q e2m|x| sin q, iff
3π

2
< q < 2π . (47)

All the results are shown in Figure 2.

3.3. Relativistic Electron and Positron
Scattering Spinors
We pass to study the scattering of 1D Dirac particles through
a Dirac electrostatic δ-potential (V(x) = qδ(x)1) in order to
obtain the scattering amplitudes. On the one hand, electron
scattering spinors coming from the left toward the δ-impurity
(“diestro”scattering) have the form:

9R(x, k) =
{

u+(k) eikx + ρR(k) γ 0u+(k) e−ikx, x < 0
σR(k) u+(k) eikx, x > 0

, (48)

where u+(k) is the positive energy electron spinor that solves the
free static Dirac equation for plane waves moving along the real
line (23). The solutions in both zones are related at the origin
through the electrostatic δ-matching conditions (10) if and only
if the transmission and reflection scattering amplitudes are:

σR(k) =
k

k cos q+ i
√
k2 +m2 sin q

,
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FIGURE 2 | Charge density as a function of x when Q = m = 1 and λ = 0

(electrostatic δ-potential). For 0 < q < π/2 and π < q < 3π/2 the charge

densities of a positron bound state are plotted [(44), (45), respectively]. For

π/2 < q < π and 3π/2 < q < 2π the charge densities of a electron bound

state are plotted [(46), (47), respectively].

ρR(k) = −
i m sin q

k cos q+ i
√
k2 +m2 sin q

, (49)

which obviously satisfy the unitarity condition:
∣

∣

∣
σR(k)

∣

∣

∣

2
+

∣

∣

∣
ρR(k)

∣

∣

∣

2
= 1. On the other hand, electrons coming from the

right toward the δ-impurity, (“zurdo”scattering), are described
by spinors of the form

9L(x, k) =
{

σL(k) γ 0u+(k) e−ikx, x < 0
ρL(k) u+(k) eikx + γ 0u+(k) e−ikx, x > 0

,

(50)
The δ-well matching conditions (10) for this “zurdo” scattering
ansatz are satisfied if σR(k) = σL(k) and ρR(k) = ρL(k). It is
worth noting that

• Since the scattering amplitudes for “diestro”and
“zurdo”scattering of the electrons through an electrostatic
δ-potential are identical, the processes governed by this
potential are parity and time-reversal invariants.

• Purely imaginary poles k = iκ of the transmission amplitude
σ are the bound states of the spectrum if κ is real and positive.
In formula (49) we observe that poles of this type appear if the
imaginary momentum satisfies the equation

κb
√

m2 − κ2
b

= − tan q,

which admits positive solutions for κb only if tan q < 0, i.e.,
if q lives in the second or fourth quadrant. Moreover, explicit
solutions of the previous equation are: κb = ±m sin q, i.e.,

assuming that m > 0 the plus sign must be selected in the
second quadrant and the minus sign is valid in the fourth
quadrant.

• Probability is conserved even in this relativistic quantum
mechanical context provided that ω2 > m2,m > 0.

For positrons, the “diestro”scattering ansatz of the spinor (that is
a solution of the conjugate Dirac equation in zones I and II) is

8R(x, k) =
{

v+(k) e−ikx − ρ̃R(k) γ 0v+(k) eikx, x < 0
σ̃R(k) v+(k) e−ikx, x > 0

,

(51)
where v+(k) is the positive energy positron spinor that represents
plane waves moving along the real line (25). By imposing the
matching conditions on x = 0 (18), the following scattering
coefficients are obtained

σ̃R(k) =
k

k cos q− i
√
k2 +m2 sin q

,

ρ̃R(k) =
i m sin q

k cos q− i
√
k2 +m2 sin q

. (52)

Again, unitarity is preserved:
∣

∣

∣
σ̃ (k)

∣

∣

∣

2
+
∣

∣

∣
ρ̃R(k)

∣

∣

∣

2
= 1.

The “zurdo”positron scattering ansatz, however, takes
the form

8L(x, k) =
{

−σ̃L(k) γ 0v+(k) eikx, x < 0
ρ̃L(k) v+(k) e−ikx − γ 0v+(k) eikx, x > 0

,

(53)
Again, by imposing the matching conditions on x = 0 (18),
we find that σ̃L(k) = σ̃R(k) and ρ̃L(k) = ρ̃R(k). It is worth
noting that

• The scattering amplitudes for “diestro” and “zurdo” scattering
of positrons through an electrostatic δ-well are identical: there
is no violation of parity and time reversal invariance in the
scattering of positrons by δ-impurities.

• The purely imaginary k = iκ poles of σ̃ are the positron bound
states in the spectrum of the conjugate Dirac Hamiltonian. In
formula (52) we observe that poles of this type appear if the
imaginary momentum satisfies the equation

κb
√

m2 − κ2
b

= tan q,

which admits positive solutions for κb only if tan q > 0, i.e.,
if q lives in the first or third quadrant. Between the explicit
solutions of this equation, κb = ±m sin q, the plus sign must
be chosen in the first quadrant, and the minus sign in the third
quadrant assuming thatm > 0.

• The relations between diestro and zurdo scattering amplitudes
for electrons and positrons are as follows:

σR(k) = σL(k) = σ̃ ∗
R (k) = σ̃ ∗

L (k),

ρR(k) = ρL(k) = ρ̃∗R(k) = ρ̃∗L (k). (54)
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The unitary S-matrix

S =
(

σ (k) ρ(k)
ρ(k) σ (k)

)

, S
† · S = I,

encodes the phase shifts in its spectrum; λ± = σ ± ρ = e2iδ±(k).
The phase shifts δ±(k) in the even and odd channels are thus

tan 2δ±(k) =
Im(σ (k)± ρ(k))
Re(σ (k)± ρ(k))

,

whereas the total phase shift δ(k) = δ+(k) + δ−(k) is
easily derived:

tan 2δ(k) =
Im[σ 2(k)− ρ2(k)]
Re[σ 2(k)− ρ2(k)]

=
2k
√
k2 +m2 sin(2q)

m2 − (2k2 +m2) cos(2q)
.

4. “MASS-SPIKE”δ-POTENTIAL

Next, we consider the one-dimensional Dirac Hamiltonian with
a single Dirac δ-potential disturbing the mass term:

HMδ = −iσ1
d

dx
+ (m+ λδ(x))σ3.

4.1. Relativistic Bound States in
Mass-Spike δ Wells
Firstly, we will search for bound states where electrons and
positrons are trapped by mass-spike δ wells. In the case
of electrons, away from the singularity the positive energy
spinors take the form (33, 34). The continuation to the
whole real line is achieved by applying to those spinors the
relativistic matching conditions at the origin x = 0 (12)
as follows:

(

ψ II
1+(0, κ)
ψ II
2+(0, κ)

)

=
(

cosh λ i sinh λ
−i sinh λ cosh λ

)(

ψ I
1+(0, κ)
ψ I
2+(0, κ)

)

.(55)

In this way, we obtain the following homogeneous algebraic
system written in matrix form as:








−
(

cosh λ+ κ sinh λ
m+

√
m2−κ2

)

1

i
(

κ cosh λ
m+

√
m2−κ2

+ sinh λ
)

iκ

m+
√
m2−κ2













AI
+

AII
+



 =





0

0



 .

(56)
The determinant of this 2 × 2 matrix is zero such that there is
a non null solution of (56) if κb = −m tanh λ which provides
a normalizable spinor only if λ < 0. The energy of the electron
bound state is ωb = m sechλ. This bound state spinor is extended
to the whole line by means of the condition AII

+ = AI
+, i.e., the

spinor takes the form:

9+(x, κb) = A+

(

1
−i sign(x) sinh λ

1+cosh λ

)

em|x| tanh λ. (57)

The charge density of this bound state is obtained by
replacing the spinor (57) in the equation (43), arriving at
the result

j0(x) = −mQ tanh λ e2m|x| tanh λ, (58)

which is represented in Figure 3.
Investigation of positron bound states requires applying the

same relativistic matching conditions (12) at the origin to
the bound state positron spinors (36)–(37) in order to obtain
the following homogeneous algebraic system written in matrix
form as:







i
(

κ cosh λ
m+

√
m2−κ2

− sinh λ
)

iκ

m+
√
m2−κ2

− cosh λ+ κ sinh λ
m+

√
m2−κ2

1











DI
+

DII
+



 =





0

0



 .

(59)
The determinant of this 2 × 2 matrix is zero such that there is
a non null solution of (59) if κb = m tanh λ. This imaginary
momentum provides a normalizable spinor only if λ > 0. The
energy of this positron bound state is ωb = m sech λ. The
spinor bound state is extended to the whole line by means of the
condition DII

+ = DI
+:

8+(x, κb) = D+

(

i sign(x) sinh λ
1+cosh λ

1

)

e−m|x| tanh λ. (60)

The charge density of this bound state is obtained by replacing
the spinor (60) in the equation (43), arriving at the result

j0(x) = −mQ tanh λ e−2m|x| tanh λ, (61)

which is represented in Figure 4.

4.2. Electron and Positron Scattering
Spinors
To obtain the scattering amplitudes for electrons coming from
the left (“diestro”scattering) on mass-spike impurities the free
spinors in zones I and II away from the origin (48) must be joined
by using the SU(1, 1) matrix appearing in (55). More explicitly,

FIGURE 3 | Charge density (58) as a function of x for electrons when

Q = m = 1 and q = 0 (mass-spik δ-potential).
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FIGURE 4 | Charge density (61) as a function of x for positrons when

Q = m = 1 and q = 0 (mass-spike δ-potential).

this matching sets an algebraic system whose solutions are the
scattering coefficients:

σR(k) =
k

k cosh λ+ im sinh λ
, ρR(k) =

−i
√
k2 +m2 sinh λ

k cosh λ+ im sinh λ
,

which obviously respect probability conservation:

∣

∣

∣
σR(k)

∣

∣

∣

2
+
∣

∣

∣
ρR(k)

∣

∣

∣

2
= 1.

Repeating this procedure for the “zurdo”scattering spinorial
ansatz (50) we conclude with the same relativistic δ-interaction
scattering amplitudes as in “diestro”scattering. In sum

• The scattering amplitudes for diestro and zurdo scattering
of electrons through a mass-spike δ-interaction are identical.
This means that the mass-spike δ interaction respect both
parity and time-reversal symmetries.

• The S-matrix is unitary and the phase shifts appear as the
exponents of its eigenvalues. The total phase shift is:

tanh 2δ(k) =
Im[σ 2(k)− ρ2(k)]
Re[σ 2(k)− ρ2(k)]

=
−2km sinh 2λ

k2 +m2 + (k2 −m2) cosh 2λ
.

• The purely imaginary poles of the transmission amplitude
σ (k) with positive imaginary part are the bound states of the
spectrum and occur when: kb = iκb = −im tanh λ, i.e.,
ωb = m sechλ. It must be fulfilled that tanh λ < 0.

Investigation of the positron “diestro”scattering amplitudes is
achieved by imposing the relativistic matching conditions

8II
+(0, k) =

(

cosh λ i sinh λ
−i sinh λ cosh λ

)

·8I
+(0, k),

on the positron spinor scattering ansatz (51). This criterion is
tantamount to an algebraic system for the scattering amplitudes
whose solutions are:

σ̃R(k) =
k

k cosh λ− im sinh λ
, ρ̃R(k) =

i
√
k2 +m2 sinh λ

k cosh λ− im sinh λ
,

which also respects probability conservation:

∣

∣

∣
σ̃R(k)

∣

∣

∣

2
+
∣

∣

∣
ρ̃R(k)

∣

∣

∣

2
= 1 .

To avoid repetitions, we skip a detailed computing of the positron
scattering amplitudes for “zurdo”scattering, we merely states that
are identical to the scattering amplitudes for positrons coming
from the left toward the δ-obstacle. Thus, we summarize themain
features of positron scattering through a mass-spike δ-imputity
as follows:

• The scattering amplitudes for diestro and zurdo scattering of
positrons through a mass-spike δ-interaction are identical to
each other. Therefore, there is no breaking of either parity or
time-reversal symmetries.

• The S-matrix is unitary and the phase shifts appears as
the exponents of its eigenvalues. The total phase shifts for
positrons are

tanh 2δ̃(k) =
Im[σ̃ 2(k)− ρ̃2(k)]
Re[σ̃ 2(k)− ρ̃2(k)]

=
2km sinh 2λ

k2 +m2 + (k2 −m2) cosh 2λ
.

• The purely imaginary poles of the transmission amplitude σ̃ (k)
with positive imaginary part are the positron bound states of
the spectrum and occur when kb = iκb = im tanh λ, i.e.,
ωb = m sechλ. It must be fulfilled that tanh λ > 0.

• The relations between diestro and zurdo scattering amplitudes
for electrons and positrons in a mass-spike δ-potential are
as follows:

σR(k) = σL(k) = σ̃ ∗
R (k) = σ̃ ∗

L (k),

ρR(k) = ρL(k) = ρ̃∗R(k) = ρ̃∗L (k). (62)

5. SUMMARY AND OUTLOOK

The spectrum of the 1D Dirac Hamiltonian providing the one-
particle spectrum for 1D electrons and positrons has been
analyzed when there is one impurity that distorts the free
propagation of fermions. We have implemented the impurity
by means of Dirac δ-potentials of two types that we denote
respectively as electrostatic and mass-spike according to their
physical meaning.

In the electrostatic case (where the coupling is an angle) we
find that:

1. There are two quadrants (π/2 < q < π and 3π/2 < q <
2π) where the coupling of the δ-interaction gives rise to one
electron bound state. One positron bound state arise in the
other two quadrants (0 < q < π/2 and π < q < 3π/2).
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2. Regarding scattering amplitudes we found that positrons
and electrons are scattered by the impurity so that the
electron scattering coefficients are the conjugate of the
positron ones.

For mass-spike δ-potentials our results are:

1. There is one bound state of electrons if the coupling is negative
and other one of positrons if the coupling is positive.

2. The scattering amplitudes of electrons due to a mass-spike
δ-impurity are the conjugate of positrons ones.

We plan to continue this investigation along the following lines
of research:

• First, our purpose is to study the effect on free fermions of an
impurity carrying both electrostatic and mass-spike couplings.

• Second, it is our intention to consider two, several or even
infinity δ-impurities (often called as δ-comb potential), as the
periodic potentials arise in various materials models.

• Third, after having managed all these tasks, we envisage
to compute quantum vacuum energies and Casimir forces
induced by these 1D fermions, in a parallel analysis to that
performed for bosons in [17] and references quoted therein.
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