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The quantum vacuum energy for a hybrid comb of Dirac δ-δ′ potentials is computed by

using the energy of the single δ-δ′ potential over the real line that makes up the comb.

The zeta function of a comb periodic potential is the continuous sum of zeta functions

over the dual primitive cell of Bloch quasi-momenta. The result obtained for the quantum

vacuum energy is non-perturbative in the sense that the energy function is not analytical

for small couplings.
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1. INTRODUCTION

In this paper we analyse a generalization of the Kronig-Penney model [1] in which the periodic
point potential considered is a combination of the Dirac δ-potential and its first derivative, i.e., the
δ-δ′ potential (see ref. [2]). Note that the Kronig-Penney model is an example of a one dimensional
exactly solvable periodic potential, widely used in Solid State Physics to describe electrons moving
in an infinite periodic array of rectangular potential barriers. The δ-δ′ potential has been a focus of
attention over the last few years [3–7], but the δ-δ′ comb as a classical background in interaction
with a scalar quantum field has not been considered.

The main goal of this work is to compute the quantum vacuum energy of a scalar field
propagating in a (1+1)-dimensional spacetime in interaction with the background of a generalized
Dirac comb composed of δ-δ′ potentials (see [2–4]). Interpreting the scalar field as electrons
(disregarding spin) we would get a (non-additive) contribution to the internal energy of the lattice.
In a periodic structure it is possible to calculate the quantum vacuum energy per unit cell, which
gives a contribution to the internal pressure of the lattice. In addition, it is possible to interpret
the quantum scalar field as phonons of the lattice. In such a case we would obtain the phonon
contribution to the internal pressure of the lattice when computing the quantum vacuum energy
per unit cell. However, since the (1+1)-dimensional quantum field theory is a highly simplified
theoretical model we will not go into more detail about the interpretation.

Specifically, we study the one dimensional periodic Hamiltonian

H = − h̄2

2m

d2

dx2
+ V(x) where V(x) =

∑

n∈Z
µδ(x− nd)+ 2λδ′(x− nd), (1)

with couplings µ, λ ∈ R, and lattice spacing d > 0. We will work with dimensionless quantities
defined as

y = mc

h̄
x, a = mc

h̄
d, w0 =

1

h̄c
µ, w1 =

m

h̄2
λ, (2)

so that [y, a,w0,w1] = 1. In that way, the dimensionless time independent Schrödinger equation
for the one-particle states of a quantum scalar field is
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(

− ∂2

∂y2
+ V(y)

)

φ(y) = k2φ(y),

V(y) =
∑

n∈Z
w0δ(y− na)+ 2w1δ

′(y− na). (3)

Its solutions enables us to determine the energy levels and energy
bands of the crystal. Following ref. [8] the general form of the
band equation in terms of scattering coefficients (t, rR, rL) for the
compact supported potential from which the comb is built is

cos(qa) = eiak(t(k)2 − rR(k)rL(k))+ e−iak

2t(k)
, (4)

being q the quasi-momentum. This equation relates the quasi-
momenta q ∈ [−π/a,π/a] in the first Brillouin zone and
the wave-vector k. The quasi-momentum determines the Bloch
periodicity for a given wave function on the lattice:

φ(y+ a) = eiqaφ(y). (5)

Since the cosine of the left hand side in (4) is a bounded
function, the energy spectrum of the system is organized into
allowed/forbidden energy bands/gaps. As a particular case, when
the scattering data for a Dirac-δ potential V = w0δ(x) on
the line [9]

tδ(k) =
2ik

2ik− w0
, rδ(k) =

w0

2ik− w0
(6)

are plugged into equation (4) we obtain

cos
(

qa
)

= cos
(

ka
)

+ w0

2k
sin
(

ka
)

(7)

which is the well known band equation for the Kronig-Penney
model [1].

The general secular equation (4) will enable us to calculate the
vacuum energy of the crystal. The vacuum energy per unit cell
(in the interval [0, a]) is computed by spatially integrating the
expectation value of the 00-component of the energy-momentum
tensor Tµν :

E0 =
∫ a

0
dy 〈0|T00 |0〉 . (8)

The non regularized infinite quantum vacuum energy can be
represented as well as the summation over modes of the spectrum
corresponding to the one-particle states of the field theory.

E0 =
∫ a

0
dy 〈0|T00 |0〉 =

∑

n

kn (9)

being {ω2
n = kn} the eigenvalues characterizing the one-

particle states of the quantum field theory given by equation
(4). The ultraviolet divergences that appear naturally in this
expression must be subtracted taking into account the self-
energy of the individual potential that makes up the comb and
the fluctuations of the field in the chosen background. The

calculation of 〈0|T00 |0〉 provides the energy density per unit
length within a unit cell. This of course contains much more
information than just the total energy contained in a unit cell.
Nevertheless, the calculation using Green functions will not be
addressed in this paper for most general combs. On the other
hand we can compute E0 using spectral zeta functions [10] to
skip the intermediate calculation of 〈0|T00 |0〉 for which the exact
Green function of the quantum field on the crystal is needed.
When using the zeta function approach the infinite contributions
are subtracted using the regularized expression for the quantum
vacuum energy:

E0(s) =
∑

n

k−s
n . (10)

This expression is nothing but the spectral zeta function
associated to the Schödinger operator defined in equation (3). In
order to subtract the divergences one has to perform the analytic
continuation of equation (10) for s to the whole complex plane,
and then subtract the contribution of the pole at s = −1. A
detailed explanation of how to proceed in most general cases is
explained in refs. [10–12].

The structure of the present paper is the following. In section
2 we reproduce some basic results on spectral zeta functions
that are needed throughout the paper. The section 3 provides
a way to re-interpret a general comb formed by superposition
of identical potentials with compact support centered at the
lattice points, as a 1-parameter family of pistons mimicked
by quasi-periodic boundary conditions using the formalism
to characterise selfadjoint extensions developed in ref. [13].
Afterwards in section 4 and subsection 5.1, we will use the
results from refs. [13, 14] to give a general formula for the finite
quantum vacuum energy general comb formed by superposition
of identical potentials with compact support. The subtraction of
infinites follows from ref. [13]. The rest of section 5 is dedicated to
the numerical results for the particular example of the δ-δ′ comb,
and the non-perturbative character inherent to the quantum
vacuum energy of this particular example. Finally in section 6 we
explain the conclusions of our paper.

2. SOME BASICS FORMULAS ON
SPECTRAL ZETA FUNCTIONS

In general, given an arbitrary potential with small1 support and
its associated comb, the secular equation (4) can not be solved.
Nevertheless, the summation over eigenvalues in (10) can be
rewritten down using the residue theorem. In this section we
explain the method to replace the summation over eigenvalues
in equation (10) by a complex contour integral involving the
logarithmic derivative of the function that defines the secular
equation (4).

Let Ĥ be an elliptic non-negative selfadjoint, second order
differential operator and fĤ(z) an holomorphic function on C

1Many of the results of this paper generalize straightforward to any comb built

from a superposition of potentials with compact support centered at the lattice

points, provided that the compact support of such potentials is smaller than the

lattice spacing.
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such that

i) lim
z→0

fĤ(z) 6= 0,∞.

ii)If we define

Z(fĤ) ≡ {kn ∈ R/fĤ(kn) = 0}
σ̃ (Ĥ) ≡ {λn ∈ R

+/λn is eigenvalue},
then∀kn ∈ Z(fĤ), k

2
n = λn ∈ σ̃ (Ĥ). The multiplicity of kn is the

degeneracy of λn.

The formal definition of the spectral zeta function associated to
Ĥ is

ζĤ(s) =
∑

σ̃ (Ĥ)

λ−s
n for Re(s)> certain positive real number.

(11)
Taking into account that the function

d

dz
log
(

fĤ(z)
)

(12)

has poles at Z(fĤ) and that the residue coincides with the
multiplicity of the corresponding zero, the summation over λn
is equivalent to the summation over the zeroes of fĤ(z) and
therefore can be written as

∑

σ̃ (Ĥ)

{...} =
∑

Z(fĤ)

{...} =
∮

C
dz

d

dz
log
(

fĤ(z)
)

{...} (13)

where C is a contour that encloses all the zeroes contained in
Z(fĤ). Since Ĥ is an elliptic non-negative selfadjoint, second
order differential operator we can ensure Z(fĤ) ⊂ R. Hence
we can choose C to be the semicircle in the complex plane
[−iR, iR] ∪ {z ∈ C/ |z| = R, and arg(z) ∈ [−π ,π]} and then
deform the contour taking the limit R → ∞. After the limit is
done, and with the properties assumed for fĤ(z) we obtain an
expression for the spectral zeta function that admits analytical
continuation to the whole complex plane:

ζĤ(s) =
sin(πs)

π

∫ ∞

0
dkk−2s∂k log[fĤ(ik)]. (14)

In this representation the information about the poles of ζĤ(s)
and the values at s ∈ Z is contained in

sin(πs)

π

∫ ∞

1
dkk−2s∂k log[fĤ(ik)]. (15)

Hence it all reduces to study (15) in order to obtain the pole
structure (Res) and ζĤ(s ∈ Z). In subsection 3.2 of ref. [14]
it can be seen an example where all the calculations can be
performed analytically.

3. THE COMB AS A PISTON

In order to perform the calculation of the quantum vacuum
energy per unit cell for the comb, it is of great interest to re-
interpret the corresponding quantum system as a one-parameter

family of hamiltonians defined over the finite interval, by
using general quantum boundary conditions in the formalism
described in refs. [13, 15]. Bloch’s theorem ensures that knowing
the wave functions on a primitive cell is equivalent to the
knowledge of the wave function in the whole lattice. Hence, if
the origin of the real line is chosen in a way that it is coincident
with one of the lattice potential centers, then it is enough
to study the quantum mechanical system characterized by the
quantum hamiltonian

H = − d2

dx2
+ w0δ(x)+ 2w1δ

′(x), (16)

defined over the closed interval [−a/2, a/2], being a the
lattice spacing. Since the hamiltonian in (16) is not essentially
selfadjoint when is defined over the square integrable functions
over the closed interval [−a/2, a/2] we need to impose
boundary conditions at x = ±a/2 over the boundary values
{ψ(±a/2),ψ ′(±a/2)}. If in addition such boundary condition
ensures that the domain of the corresponding selfadjoint
extension is a set of wave functions that satisfy Bloch’s semi-
periodicity condition2, then we can understand the comb as a
1-parameter family of selfadjoint extensions where the parameter
is to be interpreted as the quasi-momentum. Below we construct
the family of selfadjoint extensions that model the comb.

To start with, let us study the δ-δ′ potential sitting at x = 0
and confined in the interval [-a/2, a/2]. The hamiltonian of the
system is given by (16) and its domain (the space of quantum
states) in general would be characterized by the general boundary
condition
(

ψ(−a/2)+ iψ ′(−a/2)
ψ(a/2)− iψ ′(a/2)

)

=U

(

ψ(−a/2)− iψ ′(−a/2)
ψ(a/2)+ iψ ′(a/2)

)

,(17)

where U ∈ SU(2). In general any U ∈ SU(2) makes
(16) selfadjoint in the interval [−a/2, a/2]. Nevertheless,
we are focused on mimicking with (17) Bloch’s semi-
periodicity condition:

ψ(a/2) = eiqaψ(−a/2)

ψ ′(a/2) = eiqaψ ′(−a/2). (18)

It is straightforward to see that the U that gives rise to (18) is
given by

UB =
(

0 eiθ

e−iθ 0

)

. (19)

Plugging (19) in (17) one gets

ψ(a/2)+ iψ ′(a/2) = e−iθ [ψ(−a/2)+ iψ ′(−a/2)]

ψ(a/2)− iψ ′(a/2) = e−iθ [ψ(−a/2)− iψ ′(−a/2)]. (20)

Adding and subtracting both expressions we obtain

ψ(a/2) = e−iθψ(−a/2)

2It is of note that in the interval [−a/2, a/2], the subinterval [−a/2, 0) belongs

to one primitive cell, meanwhile the subinterval (0, a/2] belongs to a different

primitive cell.
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ψ ′(a/2) = e−iθψ ′(−a/2), (21)

and making θ = −qa, we obtain the equations (18). Hence, the
selfadjoint extension that gives Bloch’s condition is given by

UB =
(

0 e−iqa

eiqa 0

)

. (22)

In addition let us remember that the matching conditions that
define the potential V = w0δ(x)+ 2w1δ

′(x) are given by (see
ref. [2])

(

ψ(0+)
ψ ′(0+)

)

=
(

α 0
β 1/α

)(

ψ(0−)
ψ ′(0−)

)

α = 1+ w1

1− w1
,

β = w0

1− w2
1

. (23)

When we solve the equation:

− d2

dx2
ψ(x) = k2ψ(x), (24)

with the matching conditions (23) and the boundary condition
(17) with U = UB given by (22) we can rearrange everything to
write down the secular equation and the general solution in terms
of the scattering data for the δ-δ′ potential over the real line as was
done in ref. [8]. This approach enables to interpret the δ-δ′ comb
as a one-parameter family of quantum pistons by reinterpreting
the primitive cell of the comb in the following way:

1. The middle piston membrane is represented by the δ-δ′

potential placed at x = 0. To ensure that the lattice
quantum fields satisfy the matching conditions (23) we can
assume the ansatz for the one-particle states wave functions in
[−a/2, a/2] is given by a linear combination of the two linear
independent scattering states determined by the scattering
amplitudes of the δ-δ′ potential (see refs. [2–4])

t = −2k(w2
1 − 1)

2k(w2
1 + 1)+ iw0

, rR = −4kw1 − iw0

2k(w2
1 + 1)+ iw0

,

rL = 4kw1 − iw0

2k(w2
1 + 1)+ iw0

. (25)

From this amplitudes the determinant of the scattering matrix
reads

⇒ det Sδδ′ = t2 − rRrL = 2k(w2
1 + 1)− iw0

2k(w2
1 + 1)+ iw0

. (26)

2. The endpoints of the primitive cell correspond to the external
walls of the piston placed at x = ±a/2, and the quantum
field satisfies the one-parameter family of quantum boundary
conditions depending on the parameter θ = −qa, which is the
quasi-momentum, given by the unitary matrix UB in (19).

The spectral function for U = UB written in terms of
the scattering data (t, rR, rL) and the quasi-momentum q is
(see formula 34 in ref. [8])

h(k) = 4k [2t cos
(

qa
)

− e−ika − eika(t2 − rRrL)]. (27)

The band structure of this comb is given by those kj such
that h(kj) = 0. In general the solutions {k0, k1, ..., kn, ...} are
functions of q ∈ [−π/a,π/a], so kj(q)

2 is an energy band
when we let q take its continuum values in [−π/a,π/a]. In
order to use zeta function regularization we need to remove
in (27) the 4k global factor to get the “good” spectral function
according to section 2 (see refs. [10, 14]). Hence the spectral
function to be used in our zeta function regularization approach
is given by

fq(k) = 2t

[

cos
(

qa
)

− 1

2t
(e−ika + eika(t2 − rRrL))

]

. (28)

In (27) and (28), t, rR, rL are the scattering data for the compact
supported potential from which the comb is built up on the real
line. In addition it is trivial to see that

fq(k) = 0 → cos
(

qa
)

= 1

2t
[e−ika + eika(t2 − rRrL)], (29)

which is the usual form for the band equation written in standard
text books such as [16], and generalized in [8]. Note that because
t2− rRrL is the determinant of the unitary scattering matrix, then
t(0)2 − rR(0)rL(0) 6= 0. Hence, in general we can work under the
assumption that

lim
k→0

fq(k) 6= 0,∞. (30)

REMARK

It is of note that all the formulas presented in this section,
specially (28) is valid for any comb built from repetition of
potentials with compact support smaller than the lattice spacing.
All that is needed are the scattering amplitudes for a single
potential of compact support over the real line, to obtain the
corresponding spectral function that characterises the band
structure of the corresponding comb.

4. SPECTRAL ZETA FUNCTION FOR THE
CRYSTAL

Following the interpretation of the comb as a 1-parameter family
of selfadjoint extensions given in the previous section we rethink
the band spectrum in the following way

1. For a fixed value of q ∈ [−π/a,π/a], fq(k) = 0 with fq(k)
given by (28), gives a discrete set of values of k in one-to-one
correspondence with N.

2. If we let q take values from −π/a to π/a and put together all
the discrete spectra from the previous item, thenwewill obtain
all the allowed energy bands.

Hence in order to perform the calculation of the quantum
vacuum energy for a massless scalar field we can write down
the spectral zeta function that corresponds to the Schrödinger
Hamiltonian of the comb

∑

bands

∫

√

ǫ
(n)
max

√

ǫ
(n)
min

dkk−2s=
∫ π/a

−π/a

dq a

2π

sin(πs)

π

∫ ∞

0
dkk−2s∂k log fq(ik).

(31)

Frontiers in Physics | www.frontiersin.org 4 April 2019 | Volume 7 | Article 38

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Bordag et al. Vacuum Energy for Generalized Combs

In this way we can write in general the spectral zeta function for
the comb as

ζC(s) =
a

2π

∫ π/a

−π/a
dq

sin(πs)

π

∫ ∞

0
dkk−2s∂k log fq(ik). (32)

Since the integration in q runs over a finite interval, and q enters
as a parameter of the selfadjoint extension associated to the
unitary operator UB in (22), all the infinite contributions of the
quantum vacuum energy are enclosed in the zeta function for a
δ-δ′ potential placed at x = 0 confined between two plates placed
at x = ±a/2, i. e.

ζq(s) =
sin(πs)

π

∫ ∞

0
dkk−2s∂k log fq(ik). (33)

As a result of the formulas for the spectral zeta function it is
easy to conclude that the finite quantum vacuum energy for the

comb, E
fin

comb
, can be obtained from the finite quantum vacuum

energy E
fin
0 (q) for the quantum scalar field confined between two

plates placed at x = ±a/2 represented by the boundary condition
associated to (22), and under the influence of a δ-δ′ potential
placed at x = 0:

E
fin

comb
= a

2π

∫ π/a

−π/a
dqE

fin
0 (q). (34)

Hence our problem reduces to compute E
fin
0 (q).

5. THE FINITE QUANTUM VACUUM
ENERGY AT ZERO TEMPERATURE FOR
GENERALIZED DIRAC COMBS

5.1. General Formulas
From this point we will use formula 2.26 in ref. [13] to obtain

E
fin
0 (q). In ref. [13] there was no point potential between plates,

so the final result arising there did not depend on the reference
length L0 used to subtract the infinite parts. In our case the
existence of a potential with compact support between plates
forces to take the limit L0 → ∞. Physically this limit means
that what we subtract is the quantum vacuum energy of the
potential with compact support on the whole real line.With these
assumptions and changing the length L in ref. [13] by our lattice
spacing a we can write

E
fin
0 (q) = lim

a0→∞
−a0

2π(a− a0)
×

∫ ∞

0
dk k

[

a− a0 −
d

dk
log

(

f aq (ik)

f
a0
q (ik)

)]

. (35)

In taking this limit, we must keep qa = qa0 = −θ as a
free parameter coming from the selfadjoint extension, and just
after having done the limit and obtained a finite result make the
replacement θ = −qa. Hence to avoid confusion we can write

E
fin
0 (θ) = lim

a0→∞
−a0

2π(a− a0)

∫ ∞

0
dk k

[

a− a0 −
d

dk
log

(

f aθ (ik)

f
a0
θ (ik)

)]

, (36)

with

f aθ (k) = 2t

[

cos(θ)− 1

2t
(e−ika + eika(t2 − rRrL))

]

, (37)

and finally

E
fin

comb
=
∫ π

−π

dθ

2π
E
fin
0 (θ), (38)

being θ the parameter of the selfadjoint extension defined by
UB that is to be interpreted after obtaining a finite answer as
θ = −qa.

5.2. Some Comments on Efin
comb and Efin

0 (θ )
With the formulas written above for the finite quantum vacuum

energy of the comb (E
fin

comb
) and the finite quantum vacuum

interaction energy between two plates modeled by the boundary
condition associated to UB with a compact supported potential

centered in the middle point of both plates (E
fin
0 (θ)), we are

assuming that the zero point energy corresponds to the situation
in which we have a free scalar quantum field over the real line.
Under this assumption when the potential with compact support
between plates is made identically zero (t = 1, rR = rL = 0),
the quantity

E0(θ) ≡ E
fin
0 (θ)

∣

∣

∣

t=1,rR=rL=0
6= 0,∞, (39)

is nothing but the scalar quantum vacuum interaction energy
between two plates mimicked by quasi-periodic boundary
conditions. This was analytically obtained in refs. [13, 17] for the
1D, 2D, and 3D cases. The fact that E0(θ) 6= 0,∞means that one
would expect

E
fin

comb
(t = 1, rR = rL = 0) =

∫ π

−π

dθ

2π
E0(θ) 6= 0,∞, (40)

which makes sense, since turning off the potential with
compact support does not leave us with a quantum scalar
field over the real line, because the Bloch periodicity condition
remains. Nevertheless, if we take into account that any plane
wave on the real line satisfies Bloch periodicity, the energy

E
fin

comb
(t = 1, rR = rL = 0) should be that of the

free scalar field on the real line, i.e., zero. Knowing from
refs. [17, 18] that

E0(θ) =
1

2a

(

|θ | − θ2

2π
− π

3

)

,

it is straightforward to see that

E
fin

comb
(t = 1, rR = rL = 0) =

∫ π

−π

dθ

2π
E0(θ) = 0. (41)

As a result, we ensure that our general formula (38) gives total
quantum vacuum energy for the comb identically zero when the
potentials with compact support that form the comb are zero, as
it should be.
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5.3. Efin
comb for the δ-δ′ Comb

Plugging the scattering amplitudes given in (28) and after some
algebraic manipulations we obtain

fθ (k) = −4k(1+ w2
1)

1δδ′

[

� cos(θ)+ cos
(

ka
)

+ γ

2k
sin
(

ka
)

]

,

(42)
being1δδ′ = [2k(w2

1+1)+iw0]
2,� ≡ (w2

1−1)/(w2
1+1) and γ ≡

w0/(1 + w2
1). In order to have a well behaved spectral function

(fθ (k → 0) 6= 0) we have to remove the global −4k(1 + w2
1)

factor. In addition, the global factor 1/1δδ′ does not change the
zeroes of the spectral function so it can also be dropped. Hence
we obtain the following expression for the spectral function of the
δ-δ′ comb:

gθ (k) = � cos(θ)+ cos
(

ka
)

+ γ

2k
sin
(

ka
)

. (43)

The quantum vacuum energy is obtained from equation (38) after
taking the limit a0 → ∞:

E
fin

δδ′comb
=
∫ π

−π

dθ

4π2

∫ ∞

0
dk Fδδ′ (k, θ), (44)

where

Fδδ′ (k, θ) =
A(k)

B(k)+ C(k) cos θ
+ ak− γ

γ + 2k
, (45)

and A(k), B(k), and C(k) are defined as

A(k) = −akγ cosh
(

ka
)

+ (−2ak2 + γ ) sinh
(

ka
)

(46)

B(k) = 2k cosh
(

ka
)

+ γ sinh
(

ka
)

, C(k) = 2k�. (47)

Since now everything is finite in (44) we can exchange the order
of integration to do first the integration in θ

Iδδ′ (k) =
∫ π

−π

dθ

4π2
Fδδ′ (k, θ). (48)

The integral in (48) can be obtained from ref. [19] (page 402
formula 3.645)

∫ π

0

cosn(x)

(b+ τ cos x)n+1
= π

2n(b+ τ )n
√
b2 − τ 2

×
n
∑

k=0

(−1)k
(2n− 2k− 1)!!(2k− 1)!!

(n− k)!k!

(

τ + b

b− τ

)k

,

for b2 > τ 2. In order to use this integral to obtain I(k) in (48) we
need to ensure that B2(k, a) > C2(k, a). Taking into account the
definition of B(k),C(k) in (47), this condition is always fulfilled
because−1 < � < 1 and

cosh
(

ka
)

+ γ

2k
sinh

(

ka
)

> 1, ∀k, a, γ > 0. (49)

Hence the integration in θ is given by

Iδδ′ (k) =
1

2π

[

A(k)
√

B2(k)− C2(k)
+ ak− γ

γ + 2k

]

. (50)

With this result the quantum vacuum energy for the comb is
finally reduced to a single integration in k :

E
fin

δδ′comb
=
∫ ∞

0
dkIδδ′ (k). (51)

This integral can be calculated numerically with Mathematica.
The results are shown below. As can be seen in Figure 2 the
quantum vacuum energy produced by a quantum scalar field
can be positive (repulsive force), negative (attractive force), or
zero. Taking into account that the potentials sitting in each
lattice node mimic atoms that have lost their most external
electron, classically the force between them is repulsive (they
all have positive charge). The fact that the quantum vacuum
energy of the scalar field can be negative and hence reduce the
repulsive classical force means that when the quantum vacuum
energy is negative the lattice spacing tends to be smaller. On
the other hand when the quantum vacuum force is positive the
classical repulsion is enhanced promoting that the lattice spacing
in the crystal becomes bigger. Figure 1 shows the behavior of
the quantum vacuum energy (51) as a function of the lattice
spacing a. In all the cases shown the quantum vacuum energy
becomes zero as a → ∞ and tends to ±∞ as a → 0. In
addition it is very easy to check that in the limit γ → ∞,
i.e., w0 → ∞,

lim
γ→∞

Iδδ′ (k) = −ka e−ka csch(ka)

2π
, (52)

one recovers the very well-known result for the quantum vacuum
energy between two Dirichlet plates in 1 + 1: E0 = −π/(24a).
The limit w0 → ∞ gives the minimum quantum vacuum energy
that the δ-δ′ can have. On the other hand from Figure 2 it is
easy to see that the maximum energy is positive, and it occurs
for� = γ = 0, i.e., w1 = ±1 and w0 = 0. In this case

lim
�,γ→0

Iδδ′ (k) = −
ka(tanh

(

ka
)

− 1)

2π
⇒

E
fin

δδ′comb
(� = γ = 0) = π

48a
, (53)

and it corresponds to mixed boundary conditions [20, 21], where
Dirichlet boundary conditions are imposed on one side and
Neumann ones on the other.

It is interesting to remark that, as it happens for the quantum
vacuum interaction energy between two Dirac- δ plates in a 1+ 1
dimensional scalar quantum field theory, the limit

lim
w0→0

E
fin

δδ′comb
(� = −1,w0), (54)

is not analytical in w0 due to the infrared divergence that appears
in the Feymann diagrams (see refs. [22, 23]). This can be seen in
(50) if we take into account that the non analyticity is enclosed in
the third term of the r.h.s.
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FIGURE 1 | Quantum vacuum energy as a function of the distance a for different values of the δδ′ couplings.

FIGURE 2 | Quantum vacuum energy for a = 0.5 in the coupling
space γ -�. The black line represents the zero energy curve.

6. CONCLUSIONS AND FURTHER
COMMENTS

We calculated the quantum vacuum energy of a comb formed
by linear combinations of δ- and δ′-functions given in (1). The
method presented in this paper is based on the spectral zeta
function. We showed that the δ-δ′ comb with lattice spacing a
is equivalent to a single δ-δ′ potential in the interval [−a/2, a/2]
at x = 0 together with a 1-parameter family of quasi-periodic
boundary conditions at x = ±a/2 given by (22). The band
structure (27) arises when one takes into account that the
spectrum of the comb is the set obtained by the union of all the
discrete spectra of all the selfadjoint extensions obtained from
the 1-parameter family of boundary conditions (22). The method
can be easily generalized to any comb formed by the repetition of
potentials with compact support, as long as the compact support
is smaller than the lattice spacing. The ultraviolet divergences

FIGURE 3 | Plot of Efin
δδ′comb

(� = −1,w0 → 0)/(w0 logw0) for a = 1.

The w0 axis is in logarithmic scale.

of these combs are the same as those of the quantum vacuum
energy for one potential with compact support over the real
line, which does not have a band structure but a continuum
spectrum. Therefore, the ultraviolet divergences for the kind of
combs studied in this paper do not depend on the lattice spacing.
Subtracting these contributions we get a finite quantum vacuum
energy that represents the part of the vacuum expectation value of
the Hamiltonian of the quantum field theory, which depends on
the lattice spacing. As expected, the generalized vacuum energy
vanishes in the limit of infinite lattice spacing. This procedure
has already been applied in ref. [24] for two δ-functions. The
interpretation of this vacuum energy is a contribution (one-loop
quantum correction) to the elastic lattice forces produced by the
quantum scalar field of the phonons.

The calculations are to a large extent explicit. The result (51),
has a fast converging single integration over k with the integrand
(50), given in terms of elementary functions: exponential
and hyperbolic functions. This integration is over imaginary
frequency after performing a Wick rotation [24]. In addition, the
result presented in (51) enables us to infer that when w1 = 0,
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i.e., � = −1, the function E
fin

δδ′comb
(� = −1, γ = w0) is

not analytical when w0 → 0. Moreover, the plot in Figure 3

shows that

E
fin

δδ′comb
(� = −1,w0 → 0) ∼ w0 logw0, (55)

as known from the vacuum energy of a single delta function (see
refs. [22, 23]).

From this we can conclude that E
fin

δδ′comb
(w1,w0) does not admit

a perturbative expansion in powers of w0 around w0 = 0
when w1 = 0. Hence the result given in formula (51) is non-
perturbative in the sense that there is no power series expansion

for E
fin

δδ′comb
(� = −1,w0) when w0 → 0.

With a two-dimensional parameter space (the strength w0

of the δ-potential and the strength w1 of the δ′-potential) the
quantum vacuum energy can be positive (repulsive force between
nodes of the lattice) and negative (attractive force between nodes
of the lattice). The interface between the two regimes mentioned
is the line of zero quantum vacuum energy in the �-γ plane
shown in Figure 2.

The techniques developed in this paper have provide a
framework to calculate relevant quantities such as the free energy
and the entropy at finite temperatures different from zero.
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