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The exact Green function is constructed for a quantum system, with known Green

function, which is decorated by two delta function impurities. It is shown that when

two such impurities coincide they behave as a single singular potential with combined

amplitude. The results are extended to N impurities and higher dimensions.
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1. INTRODUCTION

The one dimensional harmonic oscillator or square well, for example, for which the energy
-dependent Green function G0(x, x

′;E) is known, have been taken for many years as solvable
models for semi-conductor quantum wells [1]. Frequently delta function potentials are placed
at various points to simulate defects or impurities. In the case of a single impurity potential,
V(x) = λδ(x− a), the Green function for the composite system is known to be [2]

G(x, x′;E) = G0(x, x
′)+ λ

G0(x, a;E)G0(a, x
′)

1− λG0(a, a;E)
(1)

In this note a corresponding formula is derived for the case V(x) = λδ(x − a) + µδ(x − b) On
the basis of the analogy of the algebraic structure the result is extended to N-impurities and for a
standard interpretation of the Dirac delta function, to higher dimension.

2. CALCULATION

We first note that the same argument can be used for the time dependent-, as well as the
energy-dependent Green functions, so we shall omit the third argument and write simply G(x, x′).

Beginning with the Dyson equation, noting that G0(x, y) = G0(y, x)

G(x, x′) = G0(x, x
′)+

∫

G0(x, y)V(y)G(y, x
′)dy, (2)

where the integration extends over the system domain, one has the set of equations

G(x, x′) = G0(x, x
′)+ λG0(x, a)G(a, x

′)+ µG0(x, b)G(b, x
′) (3)

G(a, x′) = G0(a, x
′)+ λG0(a, a)G(a, x

′)+ µG0(a, b)G(b, x
′), (4)

G(b, x′) = G0(b, x
′)+ λG0(a, b)G(a, x

′)+ µG0(b, b)G(b, x
′). (5)
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The linear Equations (4) and (5) are easily solved for G(a, x′) and
G(b, x′) :

G(a, x′) =
G0(a, x

′)+ µ[G0(b, x
′)G0(a, b)− G0(a, x

′)G0(b, b)]

D
(6)

G(b, x′) =
G0(b, x

′)+ λ[G0(a, x
′)G0(a, b)− G0(b, x

′)G0(a, a)]

D
(7)

with

D = [1− λG0(a, a)][1− µG0(b, b)]− λµ[G0(a, b)]
2. (8)

By inserting (6) and (7) into (3) we obtain the desired expression

G(x, x′) = G0(x, x
′)

+
1

D
{λG0(x, a)G0(a, x

′)+ µG0(x, b)G0(b, x
′)

+λµ[G0(x, a)
(

G0(a, b)G0(a, x
′)− G0(b, b)G0(b, x

′)
)

+G0(x, b)
(

G0(a, b)G0(a, x
′)− G0(a, a)G0(a, x

′)
)

]}. (9)

3. DISCUSSION

By setting µ to 0 (9) reduces to (1), proving this expression
as well. The most salient feature of (9) is the denominator D
whose zeros form the exact spectrum of the composite system.
For example, when a and b coincide, D reduces to 1 − (λ +
µ)G(a, a) and (9) reduces to (1) with λ replaced by the amplitude
λ + µ. I.e., the two impurities combine to form one with
combined amplitude. This generalizes the result of Fasssari and
Rinaldi [3], for two identical defects symmetrically placed with
respect to the center of a harmonic oscillator. An expression
similar to (9) has been derived recently by Horing (private
communication) for the case of a quantum dot in a magnetic
field.

Two further points can be made. Nothing in the derivation
of (9) restricts it to the line. If we accept the standard definition
δ(Ex) = 5d

j=1δ(xj), then (9), and its consequences, are valid for

d-dimensional quantum systems. This has been proven function-
theoretically for the three dimensional quantum dot with two
symmetrically placed identical impurities by Albeverio et al.
[4].

A second observation is that D is simply the Cramer
determinant for the pair of simultaneous linear Equations (4) and
(5). In the case of impurity potential

V(x) =

N
∑

j=1

λjδ(x− aj) (10)

there will be N such equations and the determinant is easily
evaluated. The general result is

If a quantum system having Green function G0(x, y) is
decorated with N delta function impurities λjδ(x − aj),
j = 1, 2, · · ·N, then the new energy levels are the
roots of

DN =

N
∏

j=1

Ajj −

N
∑

j=2

(−1)j
∑

1≤k1<···kj≤N

Ak1k2Ak2k3 · · ·Akjk1 = 0

(11)
where Alm = δlm − λlG0(al, am).

Thus,

D3 =

3
∏

j=1

[1− λjG0(aj, aj)]−
∑

i<j

λiλjG0(ai, aj)G0(aj, ai)

+λ1λ2λ3G0(a1, a2)G(a2, a3)G0(a3, a1), (12) :

which reduces to the N = 1 and N = 2 cases appropriately and
shows that any two coinciding impurities coalesce as indicated
above.

Note that if all the λs and a’s coincide then

DN = (1−λG0(a, a))
N−

N
∑

j=2

(

N
j

)

λjG0(a, a)
j = (1−NλG0(a, a)).

(13)
Equation (11) might offer a new approach to Kronig-
Penney-type systems for periodic or random unit
cells.

Finally, it should be pointed out that the work in this note
is paralleled in the theory of quantum graphs introduced by
Linus Pauling about 1930 to describe electrons in molecules
which has developed into a sophisticated and important branch
of quantum physics [5]. For relations of this discipline to the
present work see the papers by Andrade et al. [6] and Andrade
and Severini [7].
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