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Abstract

Admissible vectors for unitary representations of locally compact groups

are the basis for group-frame and coherent state expansions. This work

studies the existence and characterization of admissible vectors. Convolu-

tion Hilbert algebras, positive functions, square-integrable representations

and weights on von Neumann algebras enter into the picture.
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1 Introduction

Let G be a locally compact (lc for brevity) group and let π be a unitary rep-
resentation of G on a Hilbert space Hπ. This work studies the existence and
description of admissible vectors for {π,Hπ}, i.e., vectors η ∈ Hπ such that
the operator

Lη : Hπ → L2(G), [Lηψ](x) = (ψ|π(x)η) ,

is a bounded map and L∗
ηLη = IHπ , where IHπ denotes the identity operator

on Hπ. Admissible vectors lead to (weak) resolutions of the identity in terms of
the orbit π(G)η ⊂ Hπ:

IHπ =

∫

G

|π(x)η)(π(x)η| dx ,

∗In memoriam.
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where dx is a fixed left Haar measure for G (see Proposition 2 below). Relations
of this type are known as coherent state expansions and the admissible vector
η as fiducial vector in mathematical physics; see e.g. [1] and references therein.
The orbit π(G)η may also be interpreted as a tight frame for Hπ, a useful
concept in harmonic analysis [2].

Admissible vectors have been explicitly discussed for irreducible representa-
tions [3], groups of type I [4, 5], unimodular separable groups [6] and countable
discrete groups [7]. On the other hand, the notion of admissible vector is closely
related to the subjects of positive functions and square-integrable repre-
sentations of both groups and Hilbert algebras, and there is a huge amount
of literature on these topics of interest here; see e.g. [8, 9, 10, 11, 12, 13, 14,
15, 16, 17]. We shall comment the connections with these works all along the
exposition.

Next we describe the organization and main results of the work.
Section 2 begins by introducing basic concepts and notation on lc groups

G and their unitary representations. In particular, the left and right regular
representations, λ and ρ, of G on L2(G) are defined, respectively, in (3) and (4).
Among other things, in Proposition 2 we recall a well-known result:

η is an admissible vector for {π,Hπ} if and only if the range LηHπ

of Lη is a closed invariant subspace of L2(G) for the left regular rep-
resentation λ of G, π is equivalent to the subrepresentation λ|LηHπ

and Lηη is an admissible vector for λ|LηHπ
.

In what follows, given an admissible vector η for {π,Hπ}, we shall write

gη := Lηη, Hη := LηHπ .

Section 3 translates the concept of admissible vector to the context of the
convolution Hilbert algebras associated to a lc group G [15, 18]. In some sense,
the theory of Hilbert algebras is the non-commutative version of the algebra of
all bounded square integrable functions on a measure space. Starting with the
modular Hilbert algebra Cc(G) of continuous functions with compact support,
one can build the full right and left convolution Hilbert algebras U ′ and
U ′′, given in (14) and (15). Convolution products on the right f 7→ f ∗ g extend
to bounded operators πr(g) on L

2(G) for elements g of U ′ and, in a similar way,
convolution products on the left f 7→ g ∗ f extend to bounded operators πl(g)
on L2(G) for elements g of U ′′, i.e.,

πr(g)f := f ∗ g, g ∈ U ′, f ∈ L2(G) ,

πl(g)f := g ∗ f, g ∈ U ′′, f ∈ L2(G) .

U ′ and U ′′ generate right and left von Neumann algebras, RG and LG, as follows:

RG := {πr(g) : g ∈ U ′}′′ = {ρ(x) : x ∈ G}′′ ,

LG := {πl(g) : g ∈ U ′′}′′ = {λ(x) : x ∈ G}′′ ,
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(double commutant). One has L′
G = RG. Main ingredients in the theory of

Hilbert algebras are the involution operators f 7→ f ♯ and f 7→ f ♭ with respective
domains D♯ and D♭, defined by (9) and (10), the modular operator ∆, given
by (16), and the modular conjugation J , defined in (17).

Theorems 9 and 15 characterize admissible vectors in the following terms:

The following assertions are equivalent:

(i) η is an admissible vector for {π,Hπ}.

(ii) gη ∈ U ′ and πr(gη) = PHη .

(iii) Jgη ∈ U ′′ and πl(Jgη) = PJHη .

In such case, Hη and JHη are reproducing kernel Hilbert spaces [19] with re-
spective kernels

kη(x, y) := gη(x
−1y), k̃η(x, y) := δ−1

G (x)Jgη(yx
−1) ,

PHη ∈ RG and PJHη ∈ LG.
Section 4 connects the above results with the classical theory of positive

functions and square-integrable representations. Recall that an element e ∈ U ′

is called a right self-adjoint idempotent if e = e♭ = e2. Denote by E ′ the
set of nonzero right self-adjoint idempotents of U ′. E ′ is a subset of P♭, the
convex cone of right positive elements of L2(G) or, in classical terms, the set of
functions in L2(G) of positive type. By Theorem 20,

η is an admissible vector for {π,Hπ} if and only if gη ∈ E ′ and
πr(gη) = PHη .

In Theorem 24 we prove:

The following assertions are equivalent:

(i) {π,Hπ} has an admissible vector.

(ii) {π,Hπ} is equivalent to a subrepresentation of λ, {λ|H0
,H0},

with a cyclic vector g ∈ U ′ such that 0 does not belong to
the spectrum σ(|πr(g)|) of |πr(g)| or 0 is an isolated point of
σ(|πr(g)|).

In such case, {π,Hπ} is square-integrable and πr(g)|πr(g)|
−2g♭ is an

admissible vector for {λ|H0
,H0}.

Corollary 26 says:

The following assertions are equivalent:

(i) {π,Hπ} is irreducible and has an admissible vector.

(ii) {π,Hπ} is equivalent to an irreducible subrepresentation of λ,
{λ|H0

,H0}, such that H0 ∩ D♭ 6= ∅.
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In such case, H0 ∩ E ′ = {e} and e is an admissible vector for
{λ|H0

,H0}.

Some results due to Perdrizet [12] and Phillips [13] are included to complete the
picture.

Section 5 explores standard forms [20, 18] for the study of admissible vectors
η in order to avoid the duality between Hη and JHη and to give a description
in terms of weights. As Takesaki [18] comments, “weights give a simultaneous
generalization of positive linear functionals and traces, which corresponds to
infinite measures in the commutative case”. Taking into account the modular
conjugation J defined in (17) and the self-dual closed convex cone P of L2(G)
given by

P := (∆−1/4P♭)− ,

where the bar means closure, the quadruple
{

LG, L
2(G), J,P

}

is a standard
form of the von Neumann algebra LG. Every element of L2(G) is represented as
a linear combination of four vectors of P and to each positive linear functional
ω in the predual [LG]∗ there corresponds a unique g ∈ P with ω = ωg, i.e.,

ω(A) = ωg(A) := (Ag|g), A ∈ LG .

The Plancherel weight ϕl on LG is given in (25).
Now, let η be an admissible vector for {π,Hπ}. By Lemma 29, we can

consider the closed subspace Ĥη of L2(G) defined by

Ĥη := 〈LG∆
−1/4gη〉 = 〈RG∆

−1/4gη〉 ,

where 〈·〉 means span{·}. Let L̂η and R̂η denote, respectively, the reduced von

Neumann algebras of LG and RG to Ĥη (see footnote 3 and (23)). Let us

consider the associated weight ω̂η on L̂η given by

ω̂η(A) := ω∆−1/4gη (A) = (A∆−1/4gη|∆
−1/4gη), A ∈ L̂η ,

In Theorem 30 and Proposition 33 we prove the following facts:

(a) PĤη
belongs to the center LG ∩RG.

(b) [L̂η]
′ = R̂η.

(c) ∆−1/4gη is a cyclic and separating vector of Ĥη for L̂η.

(d) [πr(∆
−1/4gη)]|Ĥη

= IĤη
.

(e) If Ĵη := J|Ĥη
and P̂η := P ∩ Ĥη, then

{

L̂η, Ĥη, Ĵη, P̂η

}

is a

standard form of the von Neumann algebra L̂η.

(f) The modular operator ∆̂η on Ĥη associated to ω̂η satisfies

∆̂η[λ(x)∆
−1/4gη] = ρ(x)∆−1/4gη, x ∈ G .
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The modular automorphism groups {σϕl

t }t∈R and {σ
ω̂η

t }t∈R corresponding
to the weights ϕl and ω̂η are of the form

σϕl
t (A) := ∆itA∆−it, A ∈ LG ,

σ
ω̂η

t (A) := ∆̂it
ηA∆̂

−it
η , A ∈ L̂η .

As Theorem 34 shows, they are related by the so-called cocycle derivative of
ω̂η relative to ϕl, a one parameter family {Ut} of partial isometries belonging

to LG with initial and final space Ĥη in this case:

(a) Us+t = Usσ
ϕl
s (Ut), s, t ∈ R.

(b) UtU
∗
t = U∗

t Ut = PĤη
, t ∈ R.

(c) σ
ω̂η

t (A) = Utσ
ϕl
t (A)U∗

t , A ∈ L̂η, t ∈ R.

Finally, Theorem 35 includes a sort of orthogonality relations in this context.
Some additional remarks in Section 6 close the work.

2 Preliminaries. Admissible vectors

Let G be a locally compact group (lc group for brevity). The identity of G will
be denoted by e and elements of G by x, y, . . . From now on we consider a fixed
left Haar measure dx on G (left Haar measures on G are proportional), that
is, a Radon measure on G such that

d(xy) = dy, x ∈ G .

In what follows δG : G → R
+ = (0,∞) shall denote the modular function, a

continuous homomorphism from G to the multiplicative group R+,

δG(x) > 0, δG(e) = 1, δG(xy) = δG(x)δG(y) ,

independent of the choice of dx and satisfying the following relations:

d(yx) = δG(x) dy , (1)

d(y−1) = δG(y
−1) dy . (2)

The group G is called unimodular if δG = 1. In particular, abelian, discrete and
compact groups are unimodular. See e.g. [21, Chapter 2] for details.

As usual,
C(G), C0(G), Cc(G)

denote, respectively, the spaces of continuous, continuous vanishing at infinity
and continuous with compact support, complex-valued functions on G. For
1 ≤ p ≤ ∞, for the Lp-spaces associated to the measure dx on G we will write
Lp(G) : Lp(G, dx) and for the scalar product in L2(G),

(f |g) :=

∫

G

f(x)g(x) dx, f, g ∈ L2(G) ,
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where overline denotes complex-conjugate.
By a (continuous) unitary representation of G we mean a homomor-

phism π from G into the group U(Hπ) of unitary operators on some nonzero
Hilbert space Hπ that is continuous with respect to the strong (weak) operator
topology. The most basic examples are the left regular representation λ of G on
L2(G) defined by

[λ(x)f ](y) := f(x−1y), x ∈ G, f ∈ L2(G) , (3)

and the right regular representation ρ of G on L2(G) given by

[ρ(x)f ](y) := δ
1/2
G (x)f(yx), x ∈ G, f ∈ L2(G) . (4)

If π1 and π2 are unitary representations of G, an intertwining operator for
π1 and π2 is a bounded linear map T : Hπ1

→ Hπ2
such that

Tπ1(x) = π2(x)T, x ∈ G .

The set of all such operators is denoted by C(π1, π2). We shall write C(π) for
C(π, π); it is called the commutant or centralizer of π. C(π) is a von Neumann
algebra.

Two unitary representations π1 and π2 of G are said (unitarily) equivalent
if there exists a unitary operator U ∈ C(π1, π2).

A closed subspace M ⊂ Hπ is called an invariant subspace for the unitary
representation π of G if πM ⊂M . A closed subspace M is invariant under π if
and only if the orthogonal projection PM from Hπ onto M belongs to C(π). In
such case, the restriction of π to M defines a representation of G on M called
a subrepresentation of π and denoted by π|M . If M is invariant under π, then

so is the orthogonal complement M⊥ and π is the direct sum of π|M and πM⊥ .
If π admits an invariant subspace that is nontrivial (i.e., different from {0} and
Hπ), then π is called reducible, otherwise π is irreducible.

In what follows, for any subset R of a Hilbert space H,

〈R〉

denotes the closed subspace of H spanned by R.
Clearly, given f ∈ Hπ, the closed linear span 〈π(G)f〉 of {π(x)f : x ∈

G} is invariant under π. 〈π(G)f〉 is called the cyclic subspace generated by
f . If 〈π(G)f〉 = Hπ, f is called a cyclic vector for π. π is called a cyclic
representation if it has a cyclic vector. Every unitary representation is a direct
sum of cyclic representations. See e.g. [21, Chapter 3] for details.

Definition 1 Let G be a lc group and let π be a unitary representation of G
on a Hilbert space Hπ (we will write {π,Hπ} for brevity). A vector η ∈ Hπ is
called an admissible vector for {π,Hπ} if the operator

Lη : Hπ → L2(G), [Lηψ](x) = (ψ|π(x)η) ,

is a bounded map and L∗
ηLη = IHπ , where IHπ denotes the identity operator on

Hπ.
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The following facts are well-known.

Proposition 2 Let G be a lc group and let {π,Hπ} be a unitary representation
of G. The following are equivalent:

(i) η is an admissible vector for {π,Hπ}.

(ii) Lη is an isometry from Hπ into L2(G).

(iii) For every ψ, φ ∈ Hπ,

∫

G

(ψ|π(x)η)(π(x)η|φ) dx = (ψ|φ) . (5)

(iv) The range LηHπ of Lη is a closed invariant subspace of L2(G) for the
left regular representation λ of G, π is equivalent to the subrepresentation
λ|LηHπ

and Lηη is an admissible vector for λ|LηHπ
.

Proof: Since the conditions (1) L∗
ηLη = IHπ , (2) (L

∗
ηLηψ|φ) = (ψ, φ) for all

ψ, φ ∈ Hπ , (3) (L
∗
ηLηψ|ψ) = (ψ, ψ) for all ψ ∈ Hπ, (4) ||Lηψ||2 = ||ψ||2 for all

ψ ∈ Hπ are mutually equivalent (the equivalence between (2) and (3) follows
by polarization), η is admissible if and only if Lη is an isometry. In such case,
the range LηHπ of Lη is a closed subspace of L2(G) and LηL

∗
η = PLηHπ , the

orthogonal projection onto LηHπ . Condition (2) above is just (iii).
Now, by the definition of Lη, for ψ ∈ Hπ and x, y ∈ G,

[λ(x)Lηψ](y) = [Lηψ](x
−1y) = (ψ|π(x−1y)η) =

= (π(x)ψ|π(y)η) = [Lηπ(x)ψ](y) ,

so that
λ(x)Lη = Lηπ(x), x ∈ G . (6)

Taking adjoints,
L∗
ηλ(x) = π(x)L∗

η, x ∈ G .

Thus,
PLηHπλ(x) = λ(x)PLηHπ , x ∈ G .

This means that the range LηHπ is a closed invariant subspace of the left regular
representation λ and, moreover, since Lη : Hπ → LηHπ is unitary, one has the
equivalence between (i) and (iv). �

Corollary 3 An admissible vector η is a cyclic vector for {π,Hπ}.

Proof: Suppose that η is not a cyclic vector. Then, there exists 0 6= ψ ∈
〈π(G)η〉⊥, so that (ψ|π(x)η) = 0 for all x ∈ G and (5) cannot be satisfied. �
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Remark 4 (a) Equation (5) also leads to an expression for L∗
η (the “partial

inverse” of Lη): since every f ∈ LηHπ ⊂ L2(G) is of the form f(x) =
(ψ|π(x)η) for some ψ ∈ Hπ,

L∗
η(f) =







∫

G

f(x)π(x)η dx, if f ∈ LηHπ ,

0, if f ∈ (LηHπ)
⊥ ,

where the integral must be interpreted in weak sense.

(b) From (5) with φ = ψ = η,

||η||Hπ =

∫

G

|(η|π(x)η)|2 dx .

In particular,
∫

G
|(η|π(x)η)|2 dx < ∞. This is the original condition in the

definition of an admissible vector given by Grossmann, Morlet and Paul in
[3]. Moreover, the crucial constants cη leading to the Duflo-Moore operator
C in [3, Th.3.1], are here

cη =
1

||η||Hπ

∫

G

|(η|π(x)η)|2 dx = 1 .

(c) Rieffel [11, Th.4.6] proves that a unitary representation {π,Hπ} of G with
a cyclic vector η such that (η|π(x)η) ∈ L2(G) is a subrepresentation of the
left regular representation λ.

(d) Duflo and Moore [22, Th.2] show that, if {π,Hπ} is an irreducible unitary
representation of G, then π is equivalent to a subrepresentation of the left
regular representation λ if and only if it has a nonzero square integrable
coefficient, i.e., there exist φ, ψ ∈ Hπ such that (φ|π(x)ψ) ∈ L2(G).

3 Convolution Hilbert algebras

In this section we translate the concept of admissible vector to the context of
the convolution Hilbert algebras associated to the lc group G. The terminology
and (partially) the notation are borrowed from Takesaki [18].

Definition 5 An involutive algebra U over C with involution f ∈ U 7→ f ♯ ∈ U
(resp. f 7→ f ♭) is called a left (resp. right) Hilbert algebra if U admits an
inner product satisfying the following postulates:

a) Each fixed f ∈ U gives rise to a bounded operator

πl(f) : g ∈ U 7→ fg ∈ U , (resp. πr(f) : g ∈ U 7→ gf ∈ U )

by multiplying from the left (resp. right);

b) (fg|h) = (g|f ♯h) (resp. ((fg|h) = (f |hg♭));
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c) The involution f ∈ U 7→ f ♯ ∈ U (resp. f 7→ f ♭) is preclosed;

d) The subalgebra, denoted U2, spanned linearly by all possible products fg,
f, g ∈ U , is dense in U with respect to the inner product.

If the involution of a left Hilbert algebra U is an isometry, then it is also a right
Hilbert algebra. In this case, we say that U is a (unimodular) Hilbert algebra
and the involution of U is denoted by f ∈ U 7→ f∗ ∈ U .

If G is a lc group, the space Cc(G) with the convolution product f ∗ g and
involution f 7→ f ♯ (resp. f 7→ f ♭) is a left Hilbert algebra (resp. right Hilbert
algebra) for the usual inner product (·|·) of L2(G), where

[fg](x) = [f ∗ g](x) :=

∫

G

f(y)g(y−1x) dy, x ∈ G ,

f ♯(x) := δG(x
−1) f(x−1), x ∈ G ,

f ♭(x) := f(x−1), x ∈ G .

The von Neumann algebra generated by {πl(f) : f ∈ Cc(G)} coincides with
that one generated by {λ(x) : x ∈ G}. It is called the left von Neumann
algebra of G and denoted by LG, i.e.,

LG := {πl(f) : f ∈ Cc(G)}
′′ = {λ(x) : x ∈ G}′′ (7)

(double commutant). In a similar way, the von Neumann algebra

RG := {πr(g) : g ∈ Cc(G)}
′′ = {ρ(x) : x ∈ G}′′ (8)

is called the right von Neumann algebra of G. One has

L′
G = RG .

See e.g. [18, VII.3.1].
The involutions f 7→ f ♯ and f 7→ f ♭ can be extended to the following

domains of definition:

D♯ :=
{

f ∈ L2(G) :
∫

G
δG(x)||f(x)||2 dx <∞

}

,

D♭ :=
{

f ∈ L2(G) :
∫

G
δ−1
G (x)||f(x)||2 dx <∞

}

.
(9)

The corresponding extensions are closed densely defined operators on L2(G)
and bijective involutions on their own domains [18, VI.1.5]. It is usual to denote
these extensions by S and F , i.e.,

S : D♯ → D♯ : f 7→ f ♯, F : D♭ → D♭ : g 7→ g♭ , (10)

One has S = S−1 on D♯ and F = F−1 on D♭.
First of all we explicit an elementary relation which is the basis of the main

results in this section.
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Lemma 6 For f, g ∈ L2(G),

(f |λ(x)g) = f ∗ g♭(x), x ∈ G ,

g belonging to D♭ or not.

Proof: For x ∈ G, one has

(f |λ(x)gη) =

∫

G

f(y)gη(x−1y) dy =

=

∫

G

f(y)g♭η(y
−1x) dy = f ∗ g♭η(x) .

�

Let us come back to the context of Definition 1. In what follows, for an
admissible vector η for {π,Hπ} we will write

gη := Lηη, Hη := LηHπ . (11)

The following result is written in terms of the involution F and the convolution
product.

Proposition 7 Let η be an admissible vector for {π,Hπ}. Then:

(i) Hη ⊂ C(G) ∩ L2(G).

(ii) Let f ∈ L2(G). Then, f ∈ Hη if and only if

f(x) = f ∗ g♭η(x), x ∈ G .

If f ∈ H⊥
η , then f ∗ g♭η = 0.

(iii) gη = gη ∗ g♭η = g♭η.

Proof: (i) Each f ∈ Hη ⊂ L2(G) is of the form f(x) = Lηψ = (ψ|π(x)η),
x ∈ G, for some ψ ∈ Hπ. Since the representation π is strong (weak) continuous,
Hη ⊂ C(G)

(ii) Let f ∈ Hη. Using the intertwining relation (6) and Lemma 6 one gets,
for x ∈ G,

f(x) = (ψ|π(x)η) = (ψ|L∗
ηLηπ(x)η) =

= (Lηψ|Lηπ(x)η) = (Lηψ|λ(x)Lηη) =

= (f |λ(x)gη) = f ∗ g♭η(x) .

(12)

If f ∈ H⊥
η , since Hη = 〈λ(x)gη : x ∈ G〉, again by Lemma 6,

f ∗ g♭η(x) = (f |λ(x)gη) = 0, x ∈ G .

10



Thus, for f ∈ L2(G) with f /∈ Hη,

f ∗ g♭η(x) = (f |λ(x)gη) = (PHηf |λ(x)gη) = PHηf(x)

and the last expression must be different from f(x) for some x ∈ G, since
PHηf 6= f .

(iii) The first equality in (iii) is just (ii) with f = gη; the second equality
follows from

f ∗ g♭η(x) =

∫

G

f(y)g♭η(y
−1x) dy =

=

∫

G

f(y)gη(x−1y) dy =

=

∫

G

f(xy)gη(y) dy =

=

∫

G

f ♭(y−1x−1)gη(y) dy =

= gη ∗ f ♭(x−1) = [gη ∗ f
♭]♭(x)

(13)

with f = gη. �

Remark 8 (a) Proposition 7.(iii) proves implicitly that gη ∈ D♭. Although
we use the symbol g♭η in (ii), it is not assumed there, neither in (13), that

gη ∈ D♭.

(b) By Proposition 7.(iii),

gη ∈ P(G) ∩ L2(G) ⊂ A(G) ,

where P(G) denotes the set of all continuous functions of positive type on
G (see e.g. Godement [8]), and A(G) is the usual Fourier algebra of G
introduced by Eymard [23]. Recall that A(G) is identified with the predual
[LG]∗ of LG [23, Th.3.10]. Se also [18, Section VII.3] and [24, Chapter 3].

(c) Proposition 7 implies that gη is a convolution square root of the matrix
element (η|π(x)η), the characteristic function of the cyclic representation
{π,Hπ}. The existence of a square-integrable root of positive type for a con-
tinuous square-integrable function of positive type on a lc group is proved
by Godement [8, Th.17]. See also Dixmier [15, Th.13.8.6]. Moreover, ac-
cording to Godement’s terminology [8, Sect.29], gη is a unit of G, i.e., a
square-integrable function of positive type such that gη ∗ gη = gη.

(d) Proposition 7.(ii) says that the range Hη is a reproducing kernel Hilbert
space [19] with kernel

kη(x, y) := gη(x
−1y) .

Obviously, Hη is invariant under the left regular representation λ of G.

11



Now, we include some definitions in order to characterize the admissible
vectors in Theorem 9.

A vector g ∈ L2(G) is said to be right bounded if

sup{||f ∗ g|| : f ∈ Cc(G), ||f || ≤ 1} <∞

The set of all right bounded vectors is denoted by B′. A vector g ∈ H is right
bounded if and only if πr(g) ∈ L(L2(G)), the space of bounded operators on
L2(G). Moreover, B′ is invariant under RG,

nr := πr(B
′)

is a left ideal of RG and πr(Ag) = Aπr(g), for A ∈ RG and g ∈ B′. Let us
define

U ′ := B′ ∩ D♭ . (14)

U ′ is a (full) right Hilbert algebra, πr(U ′) = nr ∩ n∗r and the von Neumann
algebra generated by U ′ coincides with RG [18, VI.1.9-15].

The full convolution right Hilbert algebra U ′ permit us to identify the ad-
missible vectors. The result is a straightforward consequence of Proposition
7.

Theorem 9 The following are equivalent:

(i) η is an admissible vector for {π,Hπ}.

(ii) gη ∈ U ′ and πr(gη) = PHη , where PHη denotes the orthogonal projection
from L2(G) onto Hη.

Proof: (i)⇒(ii): If η be an admissible vector for {π,Hπ}, according to
Proposition 7.(iii), gη = g♭η, so that gη ∈ D♭. Moreover, by Proposition 7.(ii),

g♭η ∈ B′ and the orthogonal projection PHη coincides with

πr(g
♭
η) = πr(gη)

∗ = πr(gη) = πr(gη ∗ g
♭
η) = πr(gη)

2.

(ii)⇒(i): If gη ∈ U ′ and πr(gη) = PHη , then πr(gη) = πr(gη)
∗ = πr(g

♭
η) and

πr(g
♭
η)f = f for f ∈ Lηη. Since

[πr(g
♭
η)f ](x) = [f ∗ g♭η](x) = (f |λ(x)gη), x ∈ G, f ∈ Hη ,

we have that gη is an admissible vector for {λ|Hη
,Hη}. The equivalence (i)⇔(iv)

of Proposition 2 leads to the result. �

The next result is included explicitly to complete the picture.

Corollary 10 Let η be an admissible vector for {π,Hπ}. Then Hη is an in-
variant subspace of L2(G) for the left regular representation λ and gη is a cyclic
vector for the subrepresentation {λ|Hη

,Hη}.
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Proof: The result follows from Corollary 3 and the equivalence (i)⇔(iv) of
Proposition 2. �

Remark 11 (a) For a unimodular lc group G, the orthogonal projections in
L2(G) of the form πr(g), g ∈ L2(G), are called finite projections by Segal
[10]. The set of finite projections forms a sub-lattice of the lattice of all
projections in RG and every projection in RG is the least upper bound of
the finite projections it bounds [10, Th.2]. Thanks to these results, Segal
[10, Th.3] establishes a generalization of the Plancherel formula for sepa-
rable unimodular lc groups. The Plancherel formula is written in terms of
the central decomposition of RG (in fact Segal works with πl(g) and LG).
An equivalent approach is given by Ambrose [9] dealing with the so-called
L2-systems and H-systems, precursors of the concept of Hilbert algebra. A
generalization to Hilbert algebras of the theory of square-integrable repre-
sentations of unimodular lc groups can be found in Rieffel [11], where self-
adjoint idempotents in Hilbert algebras are treated along the lines developed
by Ambrose [9]. Following Rieffel’s work [11], a theory of square-integrable
representations which works for arbitrary full left Hilbert algebras (and,
hence, for arbitrary lc groups) is given by Phillips [13]. The emphasis in
[11, 13] is put on an extension to Hilbert algebras of Godement’s theorem
[8, Th.17] on the existence of convolution square roots; see Remark 8.c.
Stetkaer [17] expands the study of square-integrable representations to rep-
resentations induced from a character of a closed subgroup, mainly for G
unimodular. We will enter into some details of these approaches in Section
4.

(b) For a unimodular lc group G, Carey [25, Lemma 2.5] proves that if H ⊂
L2(G) is a reproducing kernel Hilbert space which is invariant under the
left regular representation λ of G, then there exists g ∈ L2(G) such that
πr(g) = PH. See Remark 8.d. For separable and type I unimodular lc
groups, Carey [25] uses the natural traces on L+

G and R+
G (the positive

elements of LG and RG) and the Plancherel theorem given by Dixmier [15]
to study the Plancherel measure with the aid of the work of Segal [10].

We can dualize the above discussion entirely starting from the right Hilbert
algebra U ′. For it, we shall say that a vector f ∈ L2(G) is left bounded if

sup{||πr(g)f || : g ∈ U ′, ||g|| ≤ 1} <∞

The set of all left bounded vectors is denoted by B. Clearly, B contains Cc(G)
and to each f ∈ B there corresponds a bounded operator πl(f) on L

2(G) deter-
mined by

πl(f)g = πr(g)f = f ∗ g, g ∈ U ′ .

B is invariant under LG,
nl := πl(B)
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is a left ideal of LG and πl(Af) = Aπl(f), for A ∈ LG and f ∈ B. As before,
we further extend products of vectors of L2(G) as follows:

f ∗ g = πl(f)g, f ∈ B, g ∈ L2(G) .

We then set
U ′′ := B ∩ D♯ . (15)

U ′′ is a (full) left Hilbert algebra, Cc(G) ⊂ U ′′ and the von Neumann algebra
generated by U ′′ coincides with LG. As before, πl(U ′′) = nl ∩ n∗l .

Two operators play a fundamental role in the theory of convolution Hilbert
algebras. They are the modular operator ∆ defined by

∆ : D∆ → L2(G), [∆f ](x) := δG(x)f(x) ,

D∆ =
{

f ∈ L2(G) :

∫

G

δ2G(x)||f(x)||
2 dx <∞

}

,







(16)

and the modular conjugation J given by

J : L2(G) → L2(G), [Jf ](x) := δ
−1/2
G (x)f(x−1) . (17)

For the sake of completeness, some of their properties are collected in the fol-
lowing result [18, VI.1.5 and VI.1.19]. Recall the definition of the involutions S
and F and their domains given in (9) and (10).

Lemma 12 (Tomita-Takesaki) (i) ∆ = FS is a linear positive non-singular
self-adjoint operator such that D(∆1/2) = D♯ and D(∆−1/2) = D♭.

(ii) J is an antilinear isometry of L2(G) onto itself such that

a) (Jf |Jg) = (g|f), for f, g ∈ H,

b) J = J−1 or, equivalently, J2 = I,

c) J∆J = ∆−1,

d) S = J∆1/2 = ∆−1/2J ,

e) F = J∆−1/2 = ∆1/2J .

(iii) J maps U ′′ (resp. U ′) onto U ′ (resp. U ′′) anti-isomorphically in the sense
that

πr(Jf) = Jπl(f)J, f ∈ U ′′ ,

πl(Jg) = Jπr(g)J, g ∈ U ′ ,

J(f ∗ g) = (Jg) ∗ (Jf), f, g ∈ U ′′ .

Moreover, L(U ′′) := {πl(U ′′)}′′ = LG, R(U ′) := {πr(U ′)}′′ = RG and,

JLGJ = RG , JRGJ = LG .
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The left regular representation λ and the right regular representation ρ of a
lc group G, defined in (3) and (4), are related as follows:

Lemma 13 Let G be a lc group. Then, for x ∈ G,

Jρ(x)J = λ(x), Jλ(x)J = ρ(x) .

Proof: For f ∈ L2(G) and x, y ∈ G,

[Jρ(x)Jf ](y) = Jρ(x)[δ
−1/2
G (y)f(y−1)] =

= J [δ1/2(x)δ
−1/2
G (yx)f(y−1x)] =

= δ
−1/2
G (y)δ

−1/2
G (y−1)f(x−1y) =

= [λ(x)f ](y) .

Now, use J2 = I to prove the second equality. �

The next results are the dual versions of Proposition 7, Theorem 9 and
Corollary 10.

Proposition 14 Let η be an admissible vector for {π,Hπ}. Then:

(i) πl(Jgη) = Jπr(gη)J = JPHηJ is an orthogonal projection. Let us put

H̃η := JPHηJL
2(G) .

(ii) J is an antiunitary operator from Hη onto H̃η.

(iii) Jgη ∈ D♯ and [Jgη]
♯ = SJgη = Jgη.

(iv) For f ∈ Hη and x ∈ G,

Jf(x) = δ
1/2
G (x−1)(Jf |ρ(x−1)Jgη) = [Jgη ∗ Jf ](x) .

(v) Jgη = [Jgη]
♯ ∗ [Jgη] = [Jgη] ∗ [Jgη]♯ = [Jgη]

♯.

Proof: (i) Since JJ = I, one has

[JPHηJ ]
2 = JPHηJJPHηJ = JPHηJ .

Moreover, for f, g ∈ L2(G),

(JPHηJf |g) = (Jg|PHηJf) = (PHηJg|Jf) = (f |JPHηJg) ,

that is, [JPHηJ ]
∗ = JPHηJ .

(ii) For f ∈ Hη one has PHηf = f and

Jf = JPHηf = JPHηJJf = PH̃η
Jf .
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Now interchange the roles of Hη and H̃η.
(iii) Since S = ∆−1/2J , F = ∆1/2J and Fgη = gη,

SJgη = ∆−1/2gη = ∆−1/2Fgη = Jgη .

(iv) By Lemma 13 and Proposition 7.(ii), for f ∈ Hη and x ∈ G,

δ
1/2
G (x−1)(Jf |ρ(x−1)Jgη) = δ

−1/2
G (x)(Jρ(x−1)Jgη|f) =

= δ
−1/2
G (x)(λ(x−1)gη|f) =

= δ
−1/2
G (x)(λ(x−1)gη|f) =

= δ
−1/2
G (x)f(x−1) = Jf(x) .

On the other hand, using (1), (2) and Proposition 7.(iii), for f ∈ Hη and x ∈ G,

δ
1/2
G (x−1)(Jf |ρ(x−1)Jgη) = δ

−1/2
G (x)

∫

G

Jf(y)ρ(x−1)Jgη(y) dy =

= δ
−1/2
G (x)

∫

G

Jf(y)δ1/2(x−1)Jgη(yx−1) dy =

=

∫

G

Jf(y)Jgη(yx−1) d(yx−1) =

∫

G

Jf(yx)Jgη(y) d(y) =

=

∫

G

Jf(yx)SJgη(y) d(y) =

∫

G

Jf(yx)δG(y
−1)Jgη(y

−1) d(y) =

=

∫

G

Jf(yx)Jgη(y
−1) d(y−1) =

∫

G

Jf(y−1x)Jgη(y) d(y) =

= [Jgη ∗ Jf ](x) .

(v) The result follows from items (iii) and (iv). �

Theorem 15 The following are equivalent:

(i) η is an admissible vector for {π,Hπ}.

(ii) Jgη ∈ U ′′ and πl(Jgη) = PJHη , where PJHη denotes the orthogonal pro-
jection from L2(G) onto JHη.

Proof: The result is a direct consequence of Theorem 9 and the Tomita-
Takesaki formulas in Lemma 12.(iii). It can also be proved using items (ii) and
(iv) of Proposition 14. �

Corollary 16 Let η be an admissible vector for {π,Hπ}. Then JHη is an
invariant subspace of L2(G) for the right regular representation ρ and Jgη is a
cyclic vector for the subrepresentation {ρ|JHη

, JHη}.
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Proof: By Lemma 13, one has

ρ(x)Jf(y) = JJρ(x)Jf(y) = Jλ(x)f(y), f ∈ Hη, x ∈ G .

Thus, the invariance under λ of Hη implies the invariance under ρ of JHη. Now,
that Jgη is a cyclic vector for the subrepresentation {ρ|JHη

, JHη} follows from
the equality

Jf(x) = δ
1/2
G (x−1)(Jf |ρ(x−1)Jgη), f ∈ Hη, x ∈ G ,

in Proposition 14.(iv). �

Remark 17 Proposition 14.(iv) implies that JHη is a reproducing kernel Hilbert
space [19] with kernel

k̃η(x, y) := δ−1
G (x)Jgη(yx

−1) .

See Remarks 8.d and 11.b.

4 Square roots and idempotents

Let U be a left Hilbert algebra as in Definition 5, with associated Hilbert space
H and full right and left Hilbert algebras U ′ and U ′′ defined as in (14) and (15).
Let R(U ′) and L(U ′′) denote the von Neumann algebras generated, respectively,
by πr(U ′) and πl(U ′′).

Given g ∈ H, let us consider the well-defined operators πr(g) and πl(g) on
the respective dense domains U ′′ and U ′ of H given by

πr(g) : U
′′ → H : f 7→ fg , πl(g) : U

′ → H : f 7→ gf

Following Perdrizet [12], we introduce the following subsets of H:

F ♭ :=
{

g ∈ H : πr(g) is closable on H
}

,

P♭ :=
{

g ∈ F ♭ : π̄r(g) is positive
}

,

P♭
a :=

{

g ∈ F ♭ : π̄r(g) is positive and essentially self-adjoint
}

,

[U ′]
+

:=
{

g ∈ U ′ : πr(g) is positive
}

,

where π̄r(g) denotes the closed extension of πr(g). Using πl(·) instead of πr(·),
one can also define the corresponding subsets F ♯, P♯, P♯

a and [U ′′]+, and

P♭ :=
{

gg♭ : g ∈ U ′
}

, P♯ :=
{

gg♯ : g ∈ U ′′
}

.

One has
P♭ ⊆ [U ′]

+
⊆ P♭

a ⊆ P♭ ⊆ F ♭ ⊆ H ,

P♯ ⊆ [U ′′]
+
⊆ P♯

a ⊆ P♯ ⊆ F ♯ ⊆ H .
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Remark 18 The following results are due to Perdrizet [12]:

(1) Let g ∈ H. The following conditions are equivalent [12, Prop.2.8]:

(i) g ∈ F ♭.

(ii) There is a partial isometry V ∈ R(U ′) such that1

V ∗g ∈ P♭
a, V V ∗g = g .

(iii) There is a unique h ∈ P♭
a such that the normal positive forms ωg

and ωh coincide on L(U ′′), where ωg(A) := (Ag|g) for A ∈ L(U ′′).
(Obviously, h = V ∗g.)

(2) For g ∈ F ♭, the operator π̄r(g) is affiliated to R(U ′) [12, Lem.2.2].

(3) Let g ∈ H. Then, g ∈ P♭ if and only if g ∈ D♭, g = g♭ and π̄r(g) is positive
[12, Prop.2.5].

(4) The subspace D♭ is linearly generated by P♭ [12, Prop.2.6].

(5) Results similar to (1)-(4) are satisfied for F ♯, P♯ and D♯.

(6) P♭ and P♯ are mutually dual pointed convex cones2 in H and

P♭ = P♭−, P♯ = P♯− ,

where the bar denotes the closure [12, Prop.2.5].

The elements of P♭ (resp. P♯) are known as the right positive elements
(resp. left positive elements) of H. According to Remark 18.6, an element g ∈ H
belongs to P♭ if and only if

(g|ff ♯) ≥ 0, f ∈ U ′′ .

Remark 19 Let G be a lc group. The following concept is usual in the liter-
ature: A complex function g defined on G is said to be of positive type if, for
every f ∈ Cc(G),

∫

G

g(x)[f ♯ ∗ f ](x) dx =

∫

G

∫

G

g(y−1x)f(y)f(x) dy dx ≥ 0.

When g is continuous, this is equivalent to the usual definition of a positive
definite function [15, Prop.13.4.4]. For g ∈ L2(G), one has that g is of positive
type if and only if g ∈ P♭ [13, p.392].

1 V is the partial isometry appearing in the polar decomposition of π̄r(g), i.e., π̄r(g) =
V |π̄r(g)|, where |π̄r(g)| = [π̄r(g)∗π̄r(g)]1/2, the initial space of V is the closure of the range
of |π̄r(g)| and the final space of V is the closure of the range of π̄r(g); see e.g. [26, Th.6.1.11].
Perdrizet [12] uses the Friedrichs’s extension of |π̄r(g)|; see e.g. [27, pp.329–334].

2 Recall that for a convex cone P in L2(G), the dual cone P◦ is defined by P◦ :=
{

g ∈

L2(G) : (f |g) ≥ 0 for f ∈ P
}

. If P = P◦, then P is called self-dual.
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An element e ∈ U ′ (resp. e ∈ U ′′) is called right self-adjoint idempotent
(resp. left self-adjoint idempotent) if e = e♭ = e2 (resp. e = e♯ = e2). Denote by
E ′ (resp. E ′′) the set of nonzero right (resp. left) self-adjoint idempotents of U ′

(resp. U ′′). Obviously, E ′ ⊂ P♭ and E ′′ ⊂ P♯. Moreover, since πr(g)
∗ = πr(g

♭)
for g ∈ U ′, one has that e ∈ E ′ if and only if πr(e) is an orthogonal projection
on H. In a similar way, e ∈ E ′′ if and only if πl(e) is an orthogonal projection
on H.

Theorem 9 can be rewritten in terms of right self-adjoint idempotents:

Theorem 20 The following are equivalent:

(i) η is an admissible vector for {π,Hπ}.

(ii) gη is a right self-adjoint idempotent element of L2(G) such that πr(gη) =
PHη .

An element g ∈ P♭ is said to be (right) integrable if and only if

sup
e∈E′′

(g|e) <∞ .

Let g, h ∈ P♭. Then h is called a (right) square root of g if

(f |g) = (πl(f)h|h), f ∈ U ′′ .

Remark 21 The following results can be found in Phillips [13]:

(1) U ′ (resp. U ′′) contains a net {eα}α∈A of elements of E ′ (resp. E ′′) such that
πr(eα) (resp. πl(eα)) converges to the identity operator of H in the strong
operator topology [13, Prop.1.7].

(2) Let g ∈ P♭. Then g is integrable if and only if g has a square root h ∈ P♭.
If g ∈ U ′, then so is h and in this case h2 = g. See [13, Th.1.10]. This result
may be considered an extension to full left Hilbert algebras of Godement’s
theorem [8, Th.17] and its Rieffel’s version for Hilbert algebras [11, Th.3.9].

(3) Godement’s Theorem: Let G be a lc group and let g ∈ L2(G) be positive-
definite. If g is essentially bounded in some neighbourhood of the identity
of G, then there exists a positive-definite function h ∈ L2(G) such that
g = h ∗ h a.e. [13, Cor.1.11].

According to Phillips [13], by a representation π of a left Hilbert algebra U
is meant a ♯-representation π of U on a Hilbert spaceHπ such that there is a self-
adjoint net {gα}α∈A ⊂ U with the property that πl(gα) converges strongly to the
identity on H and π(gα) converges strongly to the identity on Hπ. Obviously, an
example is the left regular representation {πl,H} of U ′′ (see Remark 21.1).
For each ξ, η ∈ Hπ, the linear functional cξ,η on U defined by

cξ,η(f) := (π(f)ξ|η), f ∈ U ,
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is called a coordinate functional of π. A pair of vectors ξ, η ∈ Hπ is called
a square-integrable pair for π if the coordinate functional cξ,η is continuous
on U in its pre-Hilbert space norm. In this case there is an element gξ,η ∈ H
such that

cξ,η(f) = (f |gξ,η), f ∈ U .

If η ∈ Hπ and the pair (η, η) is square-integrable, we say that η is a square-
integrable vector and write gη for gη,η. A cyclic representation of U will be
called a square-integrable representation if it has a cyclic vector which is
square-integrable.

Remark 22 We recall here some results by Phillips [13]:

(1) Let {π,Hπ} be a representation of U ′′. If η ∈ Hπ is a square-integrable
vector, then the coordinate element gη ∈ H is integrable and positive [13,
Prop.3.3].

(2) If {π,Hπ} is a square-integrable representation of U ′′, then there is an ele-
ment g ∈ P♭ such that π is unitarily equivalent to the left regular representa-
tion πl of U ′′ on 〈πl(U ′′)g〉. Conversely, if H0 = 〈πl(U ′′)h〉 for some h ∈ D♭,
then the left regular representation πl of U ′′ on H0 is square-integrable with
a positive cyclic vector g ∈ U ′. See [13, Th.3.5].

Now, let G be a lc group. Recall that unitary representations π of G and
nondegenerate ♯-representations of the group algebra L1(G), on the same Hilbert
space Hπ and still denoted by π, are in correspondence through the relation

π(f) :=

∫

G

f(x)π(x) dx, f ∈ L1(G) , (18)

where the operator-valued integral is interpreted in the weak sense. Nondegen-
erate means that for ξ 6= 0 in Hπ there exists f ∈ L1(G) such that π(f)ξ 6= 0.
The von Neumann algebras generated by π(G) and π(L1(G)) coincide and also
the sets of intertwining operators and invariant subspaces for both representa-
tions, and the same assertions are true if one considers, instead of L1(G), the
dense modular algebra Cc(G) or the full left Hilbert algebra U ′′. In particular,
for the left regular representation λ of G, λ(f) = πl(f). See e.g. [21, Sect.3.2]
and [13, 14].

Remark 23 If {π,Hπ} is a unitary representation of a lc group G, for each
ξ, η ∈ Hπ, the coordinate functional cξ,η is defined as the function on G given
by

cξ,η(x) := (π(x)ξ|η), x ∈ G ,

and the pair of vectors (ξ, η) is called a square-integrable pair for π if cξ,η ∈
L2(G). Since

cξ,η(f) =

∫

G

f(x)(π(x)ξ|η) dx =

∫

G

f(x)cξ,η(x) dx, f ∈ Cc(G) ,
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Schwarz inequality and Riesz theorem imply that (ξ, η) is a square-integrable
pair for the unitary representation π of G if and only if it is a square-integrable
pair for the corresponding representation of Cc(G) or U ′′. Furthermore, in such
case, gξ,η = cξ,η as elements of L2(G).

As Rieffel [16, p.37] comments, “the most common definitions of square-
integrability for unitary representations {π,Hπ} of a lc group G just involve
the condition that cξ,η ∈ L2(G) for some ξ, η ∈ Hπ (and cξ,η 6= 0)”. Duflo
and Moore [22] or Grossmann, Morlet and Paul [3] add irreducibility into the
definition (in [3] admissible vectors are just square-integrable vectors). For other
definitions, see e.g. Rieffel [16, Def.7.8] and comments around.

Similar arguments to those used in the proofs of Takesaki [28, Lem.3.3] and
Phillips [13, Th.3.5] lead to the following result. Recall the polar decomposition
of a closed operator introduced in footnote 1.

Theorem 24 Let {π,Hπ} be a unitary representation of a lc group G. The
following assertions are equivalent:

(i) {π,Hπ} has an admissible vector.

(ii) {π,Hπ} is equivalent to a subrepresentation of λ, {λ|H0
,H0}, with a cyclic

vector g ∈ U ′ such that 0 does not belong to the spectrum σ(|πr(g)|) of
|πr(g)| or 0 is an isolated point of σ(|πr(g)|).

In such case, {π,Hπ} is square-integrable and πr(g)|πr(g)|−2g♭ is an admissi-
ble vector for {λ|H0

,H0}, where |πr(g)|
−1 is the partial inverse of |πr(g)| from

rang(|πr(g)|) = rang(|πr(g)|) onto L2(G).

Proof: (i)⇒(ii): This implication follows from Theorem 20. Indeed, put
g = gη and H0 = Hη. Since πr(g) = |πr(g)| = PH0

, one has σ(|πr(g)|) = {1} or
σ(|πr(g)|) = {0, 1}, and, since g ∈ H0,

πr(g)|πr(g)|
−2g♭ = πr(g)

−1g = P−1
H0
g = g .

Moreover, for f ∈ U ′′,

cg(f) = (πl(f)g|g) = (πr(g)f |g) = (f |πr(g)g) = (f |g ∗ g) = (f |g) .

(ii)⇒(i): Put A := πr(g) and consider its polar decomposition

A = VH = KV ;

see footnote 1. Then H andK are positive and affiliated with R(U ′) = [L(U ′′)]′.
Let φ be a bounded positive measurable function of a real variable with compact
support. Since H2φ(H) is a bounded everywhere defined operator, one can
consider

gφ := Aφ(H)g♭ .

Then, gφ ∈ rang(πr(g)) = 〈πr(g)U
′′〉 = 〈πl(U

′′)g〉. Moreover, gφ ∈ U ′ and

g♭φ = gφ, πr(gφ) = K2φ(K) = K2φ(K)V V ∗ .
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See the proof of Lemma 3.3 in Takesaki [28] for details. See also [18, VI.1.12].
In particular, if φ is such that t2φ(t) = χα(t), the characteristic function of a
measurable compact set α ⊂ (0,∞) such that σ(πr(g))\{0} ⊆ α, then gφ =
g♭φ = g2φ, i.e., gφ ∈ E ′, and πr(gφ) = PHφ

, where Hφ is a closed subspace of

〈πl(U
′′)g〉. That Hφ = 〈πl(U

′′)g〉 = H0 follows from the fact that {K2φ(K)}
coincides with the range projection of K, which is also the range projection of
A = π̄r(g). Thus,

gφ = AH−2g♭ = πr(g)|πr(g)|
−2g♭

is a right self-adjoint idempotent element of L2(G) such that πr(gφ) = PH0
and,

then, gφ is a cyclic vector for {λ|H0
,H0} and cgφ,gφ(f) = (f |gφ) for f ∈ U ′′.

Now, apply Theorem 20. �

Next Lemma explicits a fact already implicit in the proofs of Takesaki [28,
Lem.3.3] and Phillips [13, Th.3.5 and Prop.4.2].

Lemma 25 Let G be a lc group and {λ|H0
,H0} a subrepresentation of the left

regular representation λ of G. If H0 ∩ D♭ 6= {0}, then H0 ∩ E ′ 6= ∅. If, in
addition, {λ|H0

,H0} is irreducible, then H0 ∩ E ′ = {e}.

Proof: Let 0 6= g ∈ H0 ∩ D♭. By Remark 18.4, g ∈ F ♭ and we can
consider the closure A := π̄r(g). As before, let A = V H = KV be the polar
decomposition of A. Let α ⊂ (0,∞) be a measurable compact set such that
α∩σ(H) 6= ∅ and consider the function φ(t) = χα(t)/t

2, t ∈ R. Then, according
to the proof of [28, Lem.3.3], the vector gφ := Aφ(H)g♭ is well-defined and
belongs to 〈πl(U ′′)g〉 ⊆ H0 and also to U ′. Furthermore, by spectral theory,
πr(gφ) is the orthogonal projection onto 〈πl(U ′′)gφ〉 ⊆ H0 and gφ ∈ E ′.

Now, assume in addition that {λ|H0
,H0} is irreducible. If there exist e1 6=

e2 in H0 ∩ E ′, then, by [12, Lem.2.2], the projections πr(e1) and πr(e2) do
not coincide, neither the subspaces πr(e1)(L

2(G)) and πr(e2)(L
2(G)). Since

πr(ei)(L
2(G)) = 〈πl(U ′′)ei〉, i = 1, 2, are invariant subspaces of H0 for the left

regular representation λ, this contradicts the fact that {λ|H0
,H0} is irreducible.

Thus, H0 ∩ E ′ = {e}. �

For irreducible representations we have the following result:

Corollary 26 Let {π,Hπ} be an irreducible unitary representation of a lc group
G. The following assertions are equivalent:

(i) {π,Hπ} has an admissible vector.

(ii) {π,Hπ} is equivalent to an irreducible subrepresentation of λ, {λ|H0
,H0},

such that H0 ∩D♭ 6= ∅

In such case, H0 ∩ E ′ = {e} and e is an admissible vector for {λ|H0
,H0}.

Proof: By Lemma 25, one has H0∩E ′ = {e}. Since {λ|H0
,H0} is irreducible

and πr(e)(L
2(G)) = 〈πl(U

′′)e〉 is an invariant subspace of H0 for λ, one must
have H0 = 〈πl(U ′′)e〉 and, then, e is a right self-adjoint idempotent of L2(G),
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which is cyclic for {λ|H0
,H0}. Thus, e is an admissible vector for {λ|H0

,H0}.
Now, apply Theorem 20. �

Remark 27 (a) If e1, e2 ∈ E ′, then one writes e1 ≤ e2 if πr(e1)πr(e2) =
πr(e2)πr(e1) = πr(e1). An element e ∈ E ′ is said to be minimal if whenever
e1 ∈ E ′ and e1 ≤ e, then e1 = e.

(b) In Corollary 26, being {λ|H0
,H0} irreducible, the admissible vector e must

be minimal.

(c) Phillips [14] proves that any irreducible square-integrable representation
{π,Hπ} of a full left Hilbert algebra U ′′ is equivalent to the left regular
representation of U ′′ on a subspace H0 of H of the form H0 = πr(e)H =
[U ′e]−, where e ∈ E ′ is minimal. In such case, F ♭ ∩ H0 = D♭ ∩ H0 = U ′e
and a pair f, g ∈ H0, with f 6= 0, is square-integrable if and only if g ∈ U ′e.

(d) In his work on integrable and proper actions on C∗-algebras, Rieffel [16,
Prop.8.7] observes that, for square-integrable irreducible representations
{π,Hπ} of a lc group G and normalized π-bounded vectors g, right con-
volution by the coordinate functional cg is a projection of L2(G) onto a
closed subspace H0 consisting entirely of continuous functions, on which λ
is unitarily equivalent to π. Obviously, cg is what we call here an admissible
vector for {λ|H0

,H0}.

5 Standard form and weights

Let G be a lc group and let ∆ and J be the modular operator and modular
conjugation defined, respectively, by (16) and (17). Let {π,Hπ} be a unitary
representation of G, let η be an admissible vector for {π,Hπ} and, as in Section
3, Eq.(11), let us put gη := Lηη and Hη := LηHπ.

Since Hη is invariant under λ and JHη is invariant under ρ, one has for the
corresponding projections that

PHη ∈ RG, PJHη ∈ LG ,

where LG and RG are the left and right von Neumann algebras of G given in
(7) and (8). Let us consider the reduced von Neumann algebras3 generated,
respectively, by λ on Hη and by ρ on JHη:

Lη :=
{

λ(x)|Hη
: x ∈ G

}′′
, Rη :=

{

ρ(x)|JHη
: x ∈ G

}′′
.

Obviously,
JLηJ = Rη, JRηJ = Lη

3 Let M be a von Neumann algebra acting on a Hilbert space H. If P is a projection in
H, belonging to M, the reduced von Neumann algebra MP is the set of all A ∈ M such
that PA = AP = A, and is a von Neumann algebra on the Hilbert space PH; its commutant
will be the induced von Neumann algebra [M′]P , whose elements are all the restrictions to
PH of elements of M′.
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and
Hη = 〈Lηgη〉 = 〈LGgη〉, JHη = 〈RηJgη〉 = 〈RGJgη〉 .

Now, as in Section 4, let us consider the mutually dual pointed convex cones
in L2(G)

P♭ :=
{

gg♭ : g ∈ U ′
}−
, P♯ :=

{

gg♯ : g ∈ U ′′
}−

,

where the bar means the closure; see Remark 18.6. Then,

P := (∆−1/4P♭)− = (∆1/4P♯)− (19)

is a self-dual closed convex cone of L2(G); see footnote 2 for a definition of self-
duality. Moreover, every element of L2(G) is represented as a linear combination
of four vectors of P and, to each ω ∈ [LG]

+
∗ , there corresponds a unique g ∈ P

with ω = ωg, i.e.,

ω(A) = ωg(A) := (Ag|g), A ∈ LG .

See [18, IX.1.2].
Taking into account the modular conjugation J defined in (17), the quadru-

ple
{

LG, L
2(G), J,P

}

is a standard form of the von Neumann algebra LG,
that is, the following requirements are satisfied:

(i) JLGJ = L′
G = RG,

(ii) JAJ = A∗, for A ∈ LG ∩RG,

(iii) Jg = g, for g ∈ P,

(iv) AJAJP ⊂ P, for A ∈ LG.

Remark 28 Standard forms are introduced by Haagerup [20]. Every von Neu-
mann algebraM can be represented on a Hilbert spaceH in which it is standard.
In such a standard form, for all ω in the predual M∗, there exist ξ, η ∈ H such
that ω = ωξ,η, i.e.,

ω(A) = ωξ,η(A) := (Aξ|η)H, A ∈ M ;

furthermore, every automorphism α of M is implemented by a unique unitary
operator U of L(H), that is,

α(A) = UAU∗, A ∈ M ,

such that UJ = JU and UP ⊂ P. See also [18, Sect.IX.1].

Lemma 29 Let η be an admissible vector for {π,Hπ}. Then:

(i) gη ∈ P♭ and Jgη ∈ P♯.

(ii) gη ∈ D(∆−1/4), Jgη ∈ D(∆1/4) and

∆−1/4gη = ∆1/4Jgη = J∆−1/4gη . (20)
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(iii) 〈LG∆
−1/4gη〉 = 〈RG∆

1/4Jgη〉 = 〈RG∆
−1/4gη〉.

Proof: (i) follows from Proposition 7.(iii) and Proposition 14.(v).
(ii) Since gη ∈ D♭ = D(∆−1/2) and D(∆−1/2) is a core for ∆−1/4 (see e.g.

[29, 2.7.7]), then gη ∈ D(∆−1/4). In a similar way, Jgη ∈ D♯ = D(∆1/2) implies
Jgη ∈ D(∆1/4). Now, since gη = g♭η = Fgη (Proposition 7.iii) and F = ∆1/2J
(Lemma 12.ii.e),

∆−1/4gη = ∆−1/4Fgη = ∆−1/4∆1/2Jgη = ∆1/4Jgη ,

[J∆−1/4gη](y) = δ
−1/2
G (y)δ

−1/4
G (y−1)gη(y−1) = [∆−1/4gη](y) .

(iii) Since J is an (antilinear) isometry and J2 = I (Lemma 12.ii), one has,
by Lemma 13 and (20),

J〈LG∆
−1/4gη〉 = J〈{λ(x)∆−1/4gη : x ∈ G}〉 =

= 〈{Jλ(x)JJ∆−1/4gη : x ∈ G}〉 =

= 〈{ρ(x)J∆−1/4gη : x ∈ G}〉 =

= 〈{ρ(x)∆−1/4gη : x ∈ G}〉 =

= 〈{ρ(x)∆1/4Jgη : x ∈ G}〉 ,

that is,
J〈LG∆

−1/4gη〉 = 〈RG∆
1/4Jgη〉 = 〈RG∆

−1/4gη〉 . (21)

On the other hand, by (ii), gη ∈ D(∆−1/4) and, thus, for x ∈ G, the function

y ∈ G 7→ δ
−1/4
G (x−1y)gη(x

−1y) is in L2(G). But

δ
−1/4
G (x−1y)gη(x

−1y) = δ
1/4
G (x)δ

−1/4
G (y)gη(x

−1y) =

= δ
1/4
G (x)[∆−1/4λ(x)gη](y)

and this implies that λ(x)gη ∈ D(∆−1/4) and

λ(x)∆−1/4gη = δ
1/4
G (x)∆−1/4λ(x)gη , x ∈ G .

Thus,

〈LG∆
−1/4gη〉 = 〈{λ(x)∆−1/4gη : x ∈ G}〉 =

= 〈{∆−1/4λ(x)gη : x ∈ G}〉 = ∆−1/4Hη

and, then, using again that gη = g♭η,

J〈LG∆
−1/4gη〉 = 〈{J∆−1/4λ(x)gη : x ∈ G}〉 =

= 〈{∆−1/2∆1/4λ(x)gη : x ∈ G}〉 =

= 〈{∆−1/4λ(x)gη : x ∈ G}〉 =

= 〈LG∆
−1/4gη〉 .
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This equality, together with (21), lead to the result. �

Thus, if η is an admissible vector for {π,Hπ}, according to Lemma 29.iii, we
can consider the closed subspace Ĥη of L2(G) defined by

Ĥη := 〈LG∆
−1/4gη〉 = 〈RG∆

−1/4gη〉 . (22)

Obviously, the corresponding orthogonal projection PĤη
from L2(G) onto Ĥη

belongs to the center LG ∩RG and the elements of the reduced von Neumann
algebras L̂η and R̂η of LG andRG to Ĥη (see footnote 3) are just the restrictions

to Ĥη of elements of LG and RG, i.e.,

L̂η :=
{

λ(x)|Ĥη
: x ∈ G

}′′
= [LG]P

Ĥη
= LGPĤη

,

R̂η :=
{

ρ(x)|Ĥη
: x ∈ G

}′′
= [RG]P

Ĥη
= RGPĤη

.
(23)

Both (reduced) von Neumann algebras L̂η and R̂η act on Ĥη and, by definition,

[L̂η]
′ = R̂η.

Moreover, the definition of Ĥη also implies that ∆−1/4gη is a cyclic vector

for both L̂η and R̂η. Recall that, given a von Neumann algebra M acting on
a Hilbert space H, an element ξ ∈ H is called a separating vector for M if,
for any A ∈ M, Aξ = 0 implies A = 0. It is well-known that ξ is a separating
vector for M if and only if ξ is a cyclic vector for M′; see e.g. [30, Prop.2.5.3].
Thus, ∆−1/4gη is a cyclic and separating vector of Ĥη for both L̂η and R̂η.

These results and additional ones are included in the next theorem.

Theorem 30 Let η be an admissible vector for {π,Hπ}. Let Ĥη be the closed

subspace of L2(G) defined by (22) and let L̂η and R̂η be the reduced von Neu-

mann algebras of LG and RG to Ĥη given in (23). Then:

(i) PĤη
∈ LG ∩RG.

(ii) [L̂η]
′ = R̂η.

(iii) ∆−1/4gη is a cyclic and separating vector of Ĥη for both L̂η and R̂η.

(iv) [πr(∆
−1/4gη)]|Ĥη

= I|Ĥη
. If, in addition, [∆−1/4gη]

♭ = ∆1/4gη belongs to

Ĥη, then πr(∆
−1/4gη) = PĤη

.

(v) Let J be the modular conjugation in L2(G) defined by (17). Then J and
PĤη

commute. Let us consider

Ĵη := J|Ĥη
.

Then Ĵη is an antilinear isometry of Ĥη onto itself such that Ĵ2
η = I|Ĥη

.
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(vi) Let P be the self-dual closed convex cone of L2(G) given by (19). Let us
define

P̂η := P ∩ Ĥη .

Then P̂η is a self-dual closed convex cone of Ĥη and

P̂η =
{

[R+gη −P] ∩P
}−

.

(vii)
{

L̂η, Ĥη, Ĵη, P̂η

}

is a standard form of the von Neumann algebra L̂η.

Proof: (i), (ii) and (iii) have been proved in the preceding comments.
(iv) Since πr(gη) = PHη , one has, for x, z ∈ G,

[λ(z)∆−1/4gη] ∗ [∆
−1/4gη](x) =

=

∫

G

[λ(z)∆−1/4gη](y)[∆
−1/4gη](y

−1x) dy =

=

∫

G

δ
−1/4
G (z−1y)gη(z

−1y)δ
−1/4
G (y−1x)gη(y

−1x) dy =

= δ
−1/4
G (z−1x)[λ(z)gη] ∗ gη(x) =

= δ
−1/4
G (z−1x)[λ(z)gη ](x) = [λ(z)∆−1/4gη](x) .

Thus, [πr(∆
−1/4gη)]|Ĥη

= I|Ĥη
.

Since gη = g♭η, a simple calculation leads to [∆−1/4gη]
♭ = ∆1/4gη. If, in

addition, [∆−1/4gη]
♭ ∈ Ĥη, then πr(∆

−1/4gη) = PĤη
. Indeed, in such case, for

f ∈ Ĥ⊥
η and x ∈ G,

f ∗ [∆−1/4gη](x) =

∫

G

f(y)[∆−1/4gη](y
−1x) dy =

=

∫

G

f(y)δ
−1/4
G (y−1x)gη(y

−1x) dy =

=

∫

G

f(y)δ
1/4
G (x−1y)g♭η(x

−1y)dy =

=

∫

G

f(xy)δ
1/4
G (y)g♭η(y) dy =

∫

G

f(xy)[∆−1/4gη]♭(y) dy =

= (λ(x−1)f |[∆−1/4gη]
♭) = (f |λ(x)[∆−1/4gη]

♭) = 0 .

(v) By Lemma 12.ii.b, Lemma 13 and (20), for x ∈ G,

Jλ(x)∆−1/4gη = Jλ(x)JJ∆−1/4gη = ρ(x)J∆−1/4gη = ρ(x)∆−1/4gη ,

so that J and PĤη
commute and Ĵη = J|Ĥη

is an antilinear isometry of Ĥη onto

itself such that Ĵ2
η = I|Ĥη

.

Finally, (vi) and (vii) follow from [18, IX.1.8] and [18, IX.1.11]. �
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Let M be a von Neumann algebra of operators acting on a Hilbert space
H. Recall that M is said to be σ-finite if all collections of mutually orthogonal
projections in M have at most a countable cardinality. It is well-known [30,
Prop.2.5.6] that M admits a cyclic and separating vector if and only if M is
σ-finite. Thus, Theorem 30.iii implies the following result.

Corollary 31 Let η be an admissible vector for {π,Hπ}. Then the reduced von
Neumann algebras L̂η and R̂η are both σ-finite.

Now, let us recall the notion of weight on a von Neumann algebra.

Definition 32 A weight on a von Neumann algebra M is a map ϕ : M+ →
[0,∞], the extended positive real numbers, satisfying the following conditions:

ϕ(A+B) = ϕ(A) + ϕ(B), A,B ∈ M+ ,

ϕ(sA) = sϕ(A), A ∈ M+, s ≥ 0 ,

where we use the convention 0(+∞) = 0. It is said to be semi-finite if

Pϕ := {A ∈ M+ : ϕ(A) <∞}

generates M; faithful if ϕ(A) 6= 0 for every non-zero A ∈ M+; normal if
ϕ(supAi) = supϕ(Ai) for every bounded increasing net {Ai} in M+.

Given a weight ϕ on M, Pϕ is a convex cone of M+,

nϕ := {A ∈ M : A∗A ∈ Pϕ}

is a left ideal of M and

mϕ :=
{

n
∑

i=1

B∗
iAi : Ai, Bi ∈ nϕ, 1 ≤ i ≤ n

}

is an ∗-subalgebra such that mϕ ∩ M+ = Pϕ and every element of mϕ is a
linear combination of four elements of Pϕ. The ∗-subalgebra mϕ is called the
definition domain of the weight ϕ or the definition subalgebra of ϕ. See e.g. [18,
VII.1.2].

There is one to one correspondence between full right and left Hilbert al-
gebras and faithful semi-finite normal weights [18, Sect.VII.2]. Here we pay
attention to the full convolution right and left Hilbert algebras U ′ and U ′′ of a
lc group G defined in (14) and (15). Recall that

πr(U
′) = nr ∩ n∗r , πl(U

′′) = nl ∩ n∗l .

Set

mr := n∗rnr =
{

n
∑

i=1

B∗
iAi : Ai, Bi ∈ nr, 1 ≤ i ≤ n

}

,

ml := n∗l nl =
{

n
∑

i=1

B∗
i Ai : Ai, Bi ∈ nl, 1 ≤ i ≤ n

}

.
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We define an extended positive real valued function ϕr on R+
G as follows:

ϕr(A) :=

{

||g||, if A1/2 = πr(g), g ∈ U ′ ,
+∞, otherwise ,

(24)

Similarly, we define ϕl on L+
G:

ϕl(A) :=

{

||g||, if A1/2 = πl(g), g ∈ U ′′ ,
+∞, otherwise .

(25)

Then the formulas (24) and (25) give opposite faithful semifinite normal weights
ϕr on RG and ϕl on LG such that

mϕr = mr, nϕr = nr, mϕl
= ml, nϕl

= nl

and
ϕr(πr(g)

∗πr(f)) = (f |g), f, g ∈ B′ ,
ϕl(πl(g)

∗πl(f)) = (f |g), f, g ∈ B .

See e.g. [18, VII.2.5]. The weight ϕl on LG is called the Plancherel weight;
see e.g. [31, 32], [18, Sect.VII.3], [24, Chapter 3].4

The associated modular operator ∆ and modular conjugation J are defined,
respectively, in (16) and (17). The modular operator ∆ induces a one parameter
unitary group {∆it : t ∈ R} acting on U ′′ and U ′ as automorphisms, i.e.,

πr(∆
itg) = ∆itπr(g)∆

−it, g ∈ U ′ ,

πl(∆
itg) = ∆itπl(g)∆

−it, g ∈ U ′′ .

Since the modular conjugation J maps U ′′ (resp. U ′) onto U ′ (resp. U ′′) anti-
isomorphically (Lemma 12.iii),

πr(J∆
itg) = J∆itπl(g)∆

−itJ, g ∈ U ′′ ,

πl(J∆
itg) = J∆itπr(g)∆

−itJ, g ∈ U ′ .

See [18, VI.1.19]. Thus, ∆ gives rise to a (unique) one parameter automorphism
group {σϕl

t }t∈R of LG given by

σϕl

t (A) := ∆itA∆−it, A ∈ LG ,

which satisfies the modular condition for ϕl:

(i) ϕl = ϕl ◦ σ
ϕl
t , for t ∈ R;

(ii) For every pair A,B ∈ πl(U ′′), there exists a bounded continuous function
FA,B on the closed horizontal strip D bounded by R and R + i which is
holomorphic on the open strip D such that5

FA,B(t) = ϕl(σ
ϕl
t (A)B), FA,B(t+ i) = ϕl(Bσ

ϕl
t (A)), t ∈ R.

4Really, one should say that ϕl on LG (resp. ϕr on RG) is the left (resp. right) Plancherel
weight.

5For the weight ϕr on RG and the one parameter automorphism group {σϕr
t }t∈R of RG

given by σ
ϕr
t (A) := ∆itA∆−it, A ∈ RG, one must consider the closed horizontal strip

bounded by R and R− i.
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See [18, VIII.1.2]. {σϕl
t }t∈R is called the modular automorphism group

associated with ϕl.

Now, let η be an admissible vector for {π,Hπ}. Since ∆−1/4gη is a cyclic and

separating vector of Ĥη for both L̂η and R̂η (Theorem 30.iii), the expression

ω̂η(A) := ω∆−1/4gη (A) = (A∆−1/4gη|∆
−1/4gη), A ∈ L̂η , (26)

defines a faithful finite normal weight ω̂η on L̂η. The next result determines

the associated modular operator ∆̂η, modular conjugation Ĵη and involutions

F̂η and Ŝη in Ĥη.

Proposition 33 Let η be an admissible vector for {π,Hπ} and let ω̂η be the

faithful finite normal weight on L̂η defined by (26). Then:

(i) The modular conjugation is Ĵη = J|Ĥη
.

(ii) The involutions F̂η and Ŝη in Ĥη are determined by

F̂η[ρ(x)∆
−1/4gη] = ρ(x−1)∆−1/4gη, x ∈ G ,

Ŝη[λ(x)∆
−1/4gη] = λ(x−1)∆−1/4gη, x ∈ G .

(iii) The modular operator ∆̂η satisfies

∆̂η[λ(x)∆
−1/4gη] = ρ(x)∆−1/4gη, x ∈ G .

Proof: (i) The result is already proved in Theorem 30.v.
(ii) This is the standard definition for the involutions F̂η and Ŝη when

∆−1/4gη is a cyclic and separating vector of Ĥη for L̂η and R̂η; see e.g. [30,
Sect.2.5.2].

(iii) The modular operator ∆̂η := F̂ηŜη satisfies, for x ∈ G,

∆̂η[λ(x)∆
−1/4gη] = F̂ηŜη[λ(x)∆

−1/4gη] = F̂η[λ(x
−1)∆−1/4gη] =

= F̂η[JJλ(x
−1)JJ∆−1/4gη] = F̂η[Jρ(x

−1)J∆−1/4gη] =

= F̂η[Jρ(x
−1)∆−1/4gη] = F̂η[ρ(x

−1)∆−1/4gη] = ρ(x)∆−1/4gη ,

since, for x, y ∈ G,

[Jρ(x−1)∆−1/4gη](y) = Jδ
1/2
G (x−1)δ

−1/4
G (yx−1)gη(yx

−1) =

= δ
−1/4
G (x)Jδ

−1/4
G (y)gη(yx

−1) = δ
−1/4
G (x)δ

−1/4
G (y)gη(yx

−1) =

= δ
1/2
G (x−1)δ

−1/4
G (yx−1)gη(yx

−1) = [ρ(x−1)∆−1/4gη](y) ,

where we use Ĵη = J|Ĥη
, Ĵ2

η = I|Ĥη
, Lemma 13, (20) and gη = g♭η. �
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As before, the modular operator ∆̂η leads to a one parameter automorphism

group {σ
ω̂η

t }t∈R of L̂η given by

σ
ω̂η

t (A) := ∆̂it
ηA∆̂

−it
η , A ∈ L̂η ,

which satisfies the modular condition for ω̂η.
The weights ϕl and ω̂η and the corresponding one parameter automorphism

groups {σϕl
t } and {σ

ω̂η

t } are related by the so-called cocycle derivative, a one
parameter family {Ut} of partial isometries on L2(G) with initial and final space
Ĥη in this case.

Theorem 34 Let ϕl be the Plancherel weight on LG. Let η be an admissible
vector for {π,Hπ} and let ω̂η be the faithful finite normal weight on L̂η defined by
(26). Then there exists a unique one parameter family {Ut} of partial isometries
such that

(i) t ∈ R 7→ Ut ∈ LG is σ-strong∗ continuous.

(ii) Us+t = Usσ
ϕl
s (Ut), s, t ∈ R.

(iii) UtU
∗
t = U∗

t Ut = PĤη
, t ∈ R.

(iv) Utσ
ϕl
t (n∗ω̂η

∩ nϕl
) ⊂ n∗ω̂η

∩ nϕl
, t ∈ R.

(v) For each A ∈ nω̂η ∩ n∗ϕl
and B ∈ nϕl

∩ n∗ω̂η
, there exists there exists a

bounded continuous function F on the closed horizontal strip D bounded
by R and R + i which is holomorphic on the open strip D such that, for
t ∈ R,

F (t) = ω̂η(Utσ
ϕl
t (B)A), F (t+ i) = ϕl(AUtσ

ϕl
t (B)) .

(vi) σ
ω̂η

t (A) = Utσ
ϕl
t (A)U∗

t , A ∈ L̂η, t ∈ R.

Furthermore, the above property (v) of {Ut} determines the cocycle uniquely.

Proof: Since PĤη
belongs to the center LG ∩RG, by [18, VI.1.23], one has

σϕl
t (PĤη

) = PĤη
, t ∈ R. The rest of the Theorem adapts [18, VIII.3.19] to this

context. �

The one parameter family {Ut} of the above theorem is called the cocycle
derivative of ω̂η relative to ϕl and denoted by (Dω̂η : Dϕl)t, t ∈ R.

Finally, we include a sort of orthogonality relations in this context.

Theorem 35 Let η1 and η2 be admissible vectors for {π,Hπ}. The following
conditions are equivalent:

(i) ∆−1/4gη1
⊥ ∆−1/4gη2

.

(ii) P̂η1
⊥ P̂η2

.
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(iii) Ĥη1
⊥ Ĥη2

.

Proof: See [18, IX.1.12]. �

Remark 36 Phillips [14] studies orthogonality relations for irreducible square-
integrable representations of left Hilbert algebras similar to those given by Duflo
and Moore [22] for irreducible unitary representations of nonunimodular groups.
See, in particular, [14, Th.2.4] and [14, Cor.2.5]. See also Grossmann, Morlet
and Paul [3]. See also the reproducing kernel Hilbert space approach given by
Carey [33]. Additional comments on orthogonality relations can be found in
Rieffel [16, Sect.8].

6 Final remarks

Some final remarks for further development:

1. The unimodular case deserves particular attention to exploit the very special
character of traces and the measurable structure around them [18, Sect.IX.2].
This study must connect with the work of Barbieri, Hernández and Parcet
[7] on Riesz and frame systems and generalized Zak transforms. The integral
and L1-norm introduced by Phillips [13, Sect.2] in the general case should
be taken into account too.

2. The subspaces Hη and JHη are reproducing kernel Hilbert spaces. See Re-
marks 8.d, 11.b and 17. We do not use this property here, but it deserves
attention. See Carey [33, 34, 25]. Reproducing kernel Hilbert spaces are
closely related to the theory of coherent states, see e.g. Perelomov [35].

3. An analysis of the subspace Ĥη could be done in the light of Rieffel and van
Daele’s approach to Tomita-Takesaki theory [36].

4. A lc group gives rise to two dual structures: one is associated with the
Haar measure and multiplication operators and the other is related with the
Plancherel weight and convolution operators. It is clear that, as presented
here, the theory of admissible vectors is developed in the second structure.
Deep understanding of this duality involves crossed products [31, 32] and Kac
algebras [24].

5. Examples of application shall be given elsewhere.
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