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Spectral heat kernel/zeta function regularization procedures are employed in this paper to control the
divergences arising from vacuum fluctuations of Bogomolnyi-Prasad-Sommerfield vortices in the Abelian
Higgs model. Zero modes of vortex fluctuations are the source of difficulties appearing when the standard
Gilkey-de Witt expansion is the tool used in the calculations of one-loop shifts of vortex masses and string
tensions. A modified GdWexpansion is developed to diminish the impact of the infrared divergences due to
the vortex zero modes of fluctuation. With this new technique at our disposal we compute the one-loop
vortex mass shifts in the planar AHM and the quantum corrections to the string tension of the magnetic flux
tubes living in three dimensions. In both cases it is observed that weak repulsive forces surge between these
classically noninteracting topological defects caused by vacuum quantum fluctuations.
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I. INTRODUCTION

Magnetic flux tubes with vortex filaments at their core
were discovered by Abrikosov in the Ginzburg-Landau
theory of type II superconductivity [1]. In that context
these extended string like objects are macroscopic and do
not require an specific treatment in a quantum framework.
Nielsen and Olesen, however, rediscovered identical
extended objects in the relativistic Abelian Higgs model,
see [2], and proposed for them to play a role in hadronic
physics as dual strings. It is thus clear after the Nielsen-
Olesen proposal that in this new framework the vortex
filaments are of quantum nature, and there is the need of
clarifying to what kind of quantum state they correspond.
It was later shown by Bogomolnyi [3,4] that Abrikosov-
Nielsen-Olesen vortices, seen in a two dimensional space,
belong to a special class of topological solitons when the
masses of the scalar and vector particles in the AHM are
equal, or, the correlation lengths of scalar and magnetic
fields correspond to the critical point between type I and
type II phases in Ginzburg-Landau superconductors.
It is thus natural to try the understanding of quantum

Bogomolnyi-Prasad-Sommerfield planar vortices in the
framework of the general quantum theory of solitons.
The first successful attempts in this direction were achieved
by Vassilevich in [5], and Rebhan et al. in [6], by attacking
this problem in the N ¼ 2 supersymmetric AHM. Almost
simultaneously Bordag and Drozdov in [7] computed the
vacuum energy due to purely fermionic fluctuations on a

Nielsen-Olesen vortex. Together with other colleagues we
performed similar calculations in the purely bosonic planar
AHM in Refs. [8] and [9]. We used the spectral heat kernel/
zeta function regularization procedure to control the diver-
gences, both ultraviolet and infrared, arising in the compu-
tation of vacuum energies caused by one-loop fluctuations
of BPS vortices, as well as those associated to tadpole
and self-energy graphs. Invented by Hawking [10] and
Dowker et al. [11] to describe quantum fields in curved
space-times this method was used for the first time in the
analysis of quantum fluctuations of kinks and solitons by
van Nieuwenhuizen et al. in [12] within a N ¼ 2 super-
symmetric framework. We took profit of these ideas to
calculate the quantum corrections to the masses of several
types of topological kinks in scalar field models with
different number of fields in Refs. [13–15].
The vortex Casimir energy is the main ingredient in the

formula giving the vortex mass (2D) or string tension (3D)
quantum corrections. It is formally given by the trace, both
in the matrix and the L2-functional sense, of the square root
of thematrix elliptic partial differential operator that governs
the one-loop vortex fluctuations. This Hessian operator is a
matrix second-order partial differential operator (PDO) of
Schrödinger type. Its square root is defined in the framework
of complex powers of elliptic (pseudo)differential operators,
a well developed and sound mathematical theory. The
formal trace is then the spectral zeta function of the elliptic
PDO exhibiting analytical properties in the complex s-plane
of the exponent. Nevertheless, use of the zeta function with
the purpose of regularizing divergences in QFT requires to
dispose of more detailed information about its description.
The usual strategy developed by the physicist’s community
is to take profit of the more tractable spectral heat function
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to pass to the zeta function via Mellin transform, see e.g.
Refs. [16–18]. In particular it is a common technique in
dealing with quantum fields on curved spaces and/or
extended/solitonic backgrounds to start from the high-
temperature (short time) asymptotic expansion of the heat
equation kernel following the seminal works of deWitt [19]
and Gilkey [20].1 All this machinery is well behaved if the
field fluctuations are strictly L2. In QFT, however, two
characteristics of the spectrum of the PDO at the stake
disturb this naif picture: (1) First, usually there are fluctua-
tions belonging to the continuous spectrum. To cope with
this problem one put the system in a normalization box
and impose periodic boundary conditions on the fields.
Equivalently, a toric variety is taken as space and only at the
end the volume is allowed to go to infinity. (2) Second,much
more dangerous is the existence of massless particles and/or
zeromode fluctuations. These long range fluctuations do not
disappear in the low temperature (long time) regime and
use of the high temperature asymptotics is made dubious.
Barvinsky and Vilkovisky proposed to introduce nonlocal
terms to treat this problem in covariant perturbation theory,
see e.g. Ref. [22], an idea that was put at work by Gusev and
Zelnikov [23] to compute the effective action in dilatonic
two-dimensional gravity. Recall that effective actions are
related to determinants of elliptic PDO, susceptible of being
regularized by means of the derivative of the spectral zeta
function at the origin of the s-complex plane.
E.Weinberg in [24] showed an index theorem in the open

R2-plane for the deformation operator arising from the linear
perturbations of the first-order partial differential equations
satisfied by self-dual/BPS vortices. The theorem, see also
[25], stated that the algebraic kernel of the deformation
operator has dimension 2N whereN is the number of quanta
of magnetic flux (vorticity) carried by the vortex solution.
This means that there exist 2N zero modes of fluctuation
around BPS vortices linearly independent. Our main goal in
this paper is to compute the quantum correction to the BPS
vortex string tension induced by the vortex fluctuations
taking into account the existence of these vortex zeromodes.
Essentially we shall follow an strategy similar to that
developed in [22] and [23] but we shall adapt our treatment
to the heat kernel/zeta function procedure as applied in
quantum theory of solitons. Specifically, our new technique
is tailored in order to incorporate the impact of zeromodes in
the infrared in the Gilkey-deWitt heat kernel expansion.
In fact, in Ref. [26] we proposed and tested the improved
heat kernel expansion, with the impact of zero modes under
control, in scalar one-field theory models in order to
compute one-loop kink mass shifts. Limitations in the use
of the standard GdWprocedure arisewhen zero modes enter
the game because the asymptotic low temperature behavior

of the heat function cannot be reproduced, and we were
forced to restrict the Mellin transform to a finite range near
the high temperature regime. The contributions of the low
energy fluctuations to the spectral zeta function are thus
almost suppressed. In this sense the question about if the
quantum fluctuations induce forces between the BPS
vortices remained unsolved because of the lack of control
on the previously mentioned source of errors.
The idea to repair this difficulty was to include in the heat

kernel expansion a (nonlocal) term that takes care of the
effect of zero modes surviving in the low temperature
range. The new term induced by the zero modes depends of
an arbitrary a priori function of the (fictitious) temperature
which is chosen by demanding two properties: (1) The
known behavior of the heat kernel not only at high but also
at low temperature are reproduced. (2) The solution of the
recurrence relations implied by the asymptotic expansion is
minimally perturbed by the arbitrary function. This modi-
fication allowed a much more precise evaluation of the
Mellin’s transform of the heat trace to obtain the spectral
zeta extending the integration interval to all the temperature
range. By this token we are able to fix not only the zeta
function near the poles but also the entire part. Because in
the kink case many exact evaluations of kink mass quantum
corrections are known we were able to check that the
improved heat kernel expansion offered much closer
approximations to the exact results as compared with
the results obtained by using the standard GdW method.
Moreover, in Ref. [27] we extended the procedure to
many component scalar field theory. In these type of
models there are families of BPS kinks in such a way than
other kink zero modes besides the translational zero mode
arises. The results also were much more precise than
those previously obtained using the standard GdW
expansion, see e.g. [28] and [29]. More interesting, in
this last paper we do not only consider the problem in
(1þ 1)-dimensional space-time but we analyzed the
one-loop fluctuations in a three dimensional perspective
where kinks become domain walls. In Ref. [30] the same
problem was addressed over standard supersymmetric
kink domain walls relying on dimensional regularization
procedures. Our method consequently also works for
extended objects of p-brane type and, in the case of
the model we studied, an interesting phenomenon was
unveiled: within a family of classically degenerate BPS
kinks repulsive forces were induced by the quantum
fluctuations that broke the classical degeneracy. We plan
to address an identical issue in the moduli space of BPS
vortices in the Abelian Higgs model. Jaffe and Taubes
showed in [31] that the vortex moduli space is the set of
N unordered points in R2. As a consequence vortices with
one quantum of magnetic flux move freely without any
interaction. The 2N vortex zero modes obey to this
freedom in the critical point between type II and type I
superconductivity phases, in the first case surge repulsive

1A lucid discussion of the differences between deWitt and
Gilkey approaches may be found in the textbook [21] by Fursaev
and Vassilevich.
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whereas in the second case attractive forces between
vortices. We shall discuss wether or not this classical
picture is maintained at one-loop order after the effect of
vortex fluctuations is accounted for. We shall perform the
pertinent calculations generalizing the improved GdW
heat kernel procedure developed previously for scalar
field theories to Abelian gauge theories with spontaneous
symmetry breaking. The analysis will be first focused in
the planar AHM where the BPS vortices are topological
solitons. After that we shall move to study the same
problem in a three dimensional space, where we find BPS
vortices magnetic tubes or vortex strings. To perform this
task, evaluation of the quantum corrections to BPS
vortices by using the modified GdW expansion we need
a detailed information of the spectrum of the matrix
second-order PDO that governs the vortex fluctuations.
All the information needed about vortex zero modes and
bound states is collected in our recent papers [32] and
[33] where pertinent references can be found.
The organization of the paper is as follows: In Sec. II we

thoroughly address the problem described above in the
planar system. Section II A summarize the well-known
facts about planar BPS fluctuations, in Sec. II B the
modified or improved GdW heat kernel expansion is
generalized to planar Abelian gauge systems with sponta-
neous symmetry breaking by one scalar field, and finally, in
Sec. II C the one-loop mass shifts of rotationally symmetric
planar BPS vortices are computed. The new one-loop mass
vortex shifts performed in this work, although qualitatively
compatible with those obtained in [9], are of much greater
precision because the new technique is able to incorporate
also the effect of zero modes in the spectral zeta function.
Section III is fully devoted to describe the quantum
corrections at one loop order of the BPS vortex string
tensions in the three dimensional Abelian Higgs model.
These results are completely new. Some conclusions about
the new approach developed here and the induction of
repulsive forces between BPS due to their quantum
fluctuations offered in Sec. IV, where further comments
on possible generalizations/extensions of this problem to
other physical scenarios are elaborated.

II. ONE-LOOPMASS SHIFTS OF ROTATIONALLY
SYMMETRIC PLANAR BPS VORTICES

A. Quantum fluctuations of BPS vortices in the
planar Abelian Higgs model

The Abelian Higgs model describes the minimal cou-
pling between an Uð1Þ-gauge field and a complex scalar
field in a phase where the gauge symmetry is spontaneously
broken. In terms of nondimensional variables, xμ → 1

ev x
μ,

and fields, ϕ → vϕ, Aμ → vAμ, where e and v are respec-
tively the gauge coupling and the modulus of the vacuum
expectation value of the scalar field, the action functional
for the AHM in (2þ 1)-dimensions reads

S ¼ v
e

Z
d3x

�
−
1

4
FμνFμν þ 1

2
jDμϕj2 −

κ2

8
ðϕ�ϕ − 1Þ2

�
:

The main ingredients entering this formula are the complex
scalar field ϕ ¼ ϕ1 þ iϕ2, the vector gauge potential A ¼
ðA0; A1; A2Þ, the covariant derivative Dμϕ ¼ ð∂μ − iAμÞϕ
and the field tensor Fμν ¼ ∂μAν − ∂νAμ. We choose a
systems of units where c ¼ 1, but ℏ has dimensions of
length × mass. The metric tensor in the Minkowski space
Rð2;1Þ is chosen as gμν ¼ diagð1;−1;−1Þwith μ, ν ¼ 0, 1, 2.
The parameter κ2 ¼ λ

e2, where λ is the quartic self-coupling
of the scalar field, measures the ratio between the square of
the masses of the Higgs,M2 ¼ λv2, and the vector particles,
m2 ¼ e2v2. Bogomolnyi-Prasad-Sommerfield (self-dual)
vortices arise when the parameter κ2 is set to unity,
κ2 ¼ 1, in the action S. These vortices are solitonic topo-
logical defects (static and spatially localized solutions
of the field equations) for which the static energy density
functional

V ¼ v2
Z

d2x

�
1

4
FijFij þ

1

2
ðDiϕÞ�Diϕþ 1

8
ðϕ�ϕ − 1Þ2

�

is finite. A Bogomolnyi arrangement of V½ϕ; A�

V ¼ v2

2

Z
R2

d2x

��
F12 �

1

2
ðϕ�ϕ − 1Þ

�
2

þ jD1ϕ� iD2ϕj2
�
þ v2

2

����
Z
R2

d2xF12

���� ð1Þ

leads us to conclude that solutions of the first-order PDE
system

D1ϕ� iD2ϕ ¼ 0; F12 �
1

2
ðϕ�ϕ − 1Þ ¼ 0 ð2Þ

complying with the asymptotic boundary conditions

ϕ�ϕjS1∞ ¼ 1≡ ϕjS1∞ ¼ eiNθ ð3Þ

Diϕ ¼ 0≡ AijS1∞ ¼ −iNϕ�∂iϕjS1∞ ; ð4Þ

where θ ¼ arctan x2

x1, S
1
r ¼ fðx1; x2Þ∶x1x1 þ x2x2 ¼ r2g and

S1∞ ¼ limr→þ∞Sr, have a classically quantized magnetic
flux: 1

2π

R
R2 dx1dx2F12ðx1; x2Þ ¼ N ∈ Z.

It is clear from (3) and (4) that the vector field Ai is
asymptotically purely vorticial. Jaffe and Taubes, showed,
see [31], that the solutions are determined from N points
freely located in the R2 plane, around each of which the
vector field Ai is a quantized vortex, the total magnetic
charge being equal to N. It is well-known that these
magnetically charged objects are also solutions of the
second-order static field equations and, because they satisfy
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the PDE system (2), the BPS vortices are absolute minima
of the action in the different topological sectors charac-
terized by N. Therefore, these BPS or self-dual vortices
are stable. The upper signs in (2) refer to the topological
defects with a positive winding number, N > 0, (vortices),
of the map from theR2 boundary circle S1∞ at infinity to the
vacuum circle S11 determined by the asymptotic behavior of
the complex field, see (3) and (4). Solutions of (2) with the
lower signs are topological defects with negative winding
number, N < 0, (antivortices).
Without loss of generality, we shall focus in this

paper on solutions with positive magnetic charge, although
an identical analysis could be easily developed for
antivortices. We shall denote by

ψð~x;NÞ ¼ ψ1ð~x;NÞ þ iψ2ð~x;NÞ;
Vð~x;NÞ ¼ ðV1ð~x;NÞ; V2ð~x;NÞÞ;

the scalar and vector fields of the BPS vortex solutions; the
vorticity number, the magnetic charge, will be specified if
necessary. Perturbations of these vortex classical solutions
in the form

~Aið~x;NÞ ¼ Við~x;NÞ þ ϵaið~xÞ;
~ϕið~x;NÞ ¼ ψ ið~x;NÞ þ ϵφið~xÞ; i ¼ 1; 2

respond to small fluctuations around the topological
defects and open a window to observe the behavior of
these objects in the quantum world up to the semiclassical
or one-loop order.

The analysis of the physics of the BPS vortex small
fluctuations starts by assembling them in a four-component
column which we write as the transpose of the four-
component field vector

ξð~xÞ ¼
�
a1ð~xÞ a2ð~xÞφ1ð~xÞφ2ð~xÞ

�
t
:

In order to avoid spurious pure gauge fluctuations we
impose the background gauge condition

Bðak;φ;ϕÞ ¼
X2
k¼1

∂kak − ðψ1φ2 − ψ2φ1Þ ¼ 0; ð5Þ

which can be generated as a field equation by adding to the
action the following gauge fixing term:

SðGFÞ ¼ 1

2

Z
d3x½Bðak;φ;ψÞ�2:

The expansion of the action up to quadratic order in the
fluctuations plus the gauge fixing term reads

δð2ÞSþSðGFÞ ¼−
v
e

Z
R2;1

d3x

�
ξtðxμÞ

� ∂2

∂ðx0Þ2þHþ
�
ξðxμÞ

�

þoðξ3Þ;

where

Hþ ¼

0
BBBBB@

−Δþ jψ j2 0 −2D1ψ2 2D1ψ1

0 −Δþ jψ j2 −2D2ψ2 2D2ψ1

−2D1ψ2 −2D2ψ2 −Δþ 1
2
ð3jψ j2 − 1Þ þ VkVk −2Vk∂k − ∂kVk

2D1ψ1 2D2ψ1 2Vk∂k þ ∂kVk −Δþ 1
2
ð3jψ j2 − 1Þ þ VkVk

1
CCCCCA

ð6Þ

is the Hessian or second-order fluctuation operator and
terms of third and quartic order in the perturbations are
neglected. In the operator Hþ we denote D1ψ1¼∂1ψ1þ
V1ψ2, D2ψ1 ¼ ∂2ψ1 þ V2ψ2, D1ψ2 ¼ ∂1ψ2 − V1ψ1 and
D2ψ2 ¼ ∂2ψ2 − V2ψ1. In this background gauge the
classical energy up to the quadratic order in the small
fluctuations is now easily derived

Hð2Þ þHðGFÞ ¼ v2

2

Z
R2

d2x

�∂ξt
∂t ·

∂ξ
∂t þ ξtðxμÞHþξðxμÞ

�

þ oðξ3Þ:

We impose finiteness of the norm on the static fluctuations,
equivalently the fixed time perturbations, ξð~xÞ: ∥ξð~xÞ∥2 ¼

R
R2 d2x½ða1ð~xÞÞ2þða2ð~xÞÞ2þðφ1ð~xÞÞ2þðφ2ð~xÞÞ2�< þ∞.
Thus, the four component vectors of real functions ξð~xÞ
belong to the Hilbert space of square integrable vector
functions, ξð~xÞ ∈⊕4

a¼1 L
2
aðR2Þ. A previous step to quantize

this system is to perform the “normal mode” expansion,
i.e., use the eigenvectors of Hþ as a base to expand the
fluctuations

Hþξωð~xÞ ¼ ω2ξωð~xÞ; ω2 ≥ 0;

ξð~x; tÞ ¼
Z

½dω�eiωtatðωÞξωð~xÞ: ð7Þ

It is well-known, see [33] and References quoted therein
to find a summary, that the Hþ operator has a kernel of
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dimension 2N, i.e., there are 2N lineally independent
eigenfunctions of zero eigenvalue in the spectrum of Hþ.
There is also a discrete set of eigenfunctions with positive
eigenvalues but lesser than one: 0 < ω2 < 1. These are
eigenfunctions of Hþ where the positive fluctuations
are trapped in bound states at the vortex core. Finally,
there are eigenfunctions in the continuous spectrum
of Hþ with threshold precisely at ω2 ¼ 1. In formula (7)
the atðωÞ-coefficients describe the four-vector normal modes
of fluctuation and the integration symbol

R ½dω� means that
the expansion encompasses both fluctuations in the pure
point spectrum and those in the continuous spectrum.
It is interesting at this point to summarize a heat function

proof of the Atiyah-Singer-Weinberg index theorem
[24,25]. Weinberg showed the existence of 2N linearly
independent zero modes ξ0ð~xÞ of Hþ (eigenfunctions with
zero eigenvalues). Weinberg’s proof rely on a supersym-
metric structure built on perturbations of solutions of (2)
which are still solutions. In this context the deformation
operator

D ¼

0
BBB@

−∂2 ∂1 ψ1 ψ2

−∂1 −∂2 −ψ2 ψ1

ψ1 −ψ2 −∂2 þ V1 −∂1 − V2

ψ2 ψ1 ∂ þ V2 −∂2 þ V1

1
CCCA ð8Þ

is defined. Perturbing the PDE (2) system of three equations
together with the background gauge one finds that new
solutions arise, complying with the background gauge, if
and only if the perturbations belong to the kernel of the
deformation operatorD:Dξ0ð~xÞ ¼ 0. It is easy to check that
the Hessian Hþ factorizes as the product of the D operator
times its adjoint: Hþ ¼ D†D. Besides of showing that the
four-vector columns ξ0ð~xÞ are zero modes of Hþ, this
factorization hides a supersymmetric quantum mechanical
structure where the Hþ and its partner Hamiltonian are
isospectral operators (although the spectral densities in the
continuous spectra differ and zero modes are not shared).
The explicit form of this SUSY partner follows the block
diagonal matrix partial differential operator

H− ¼ DD† ¼

0
BBB@

−Δþ jψ j2 0 0 0

0 −Δþ jψ j2 0 0

0 0 −Δþ 1
2
ðjψ j2 þ 1Þ þ VkVk −2Vk∂k − ∂kVk

0 0 2Vk∂k þ ∂kVk −Δþ 1
2
ðjψ j2 þ 1Þ þ VkVk

1
CCCA:

Thus, the index of D, regularized by means of the spectral heat functions of H�,

indD ¼ dimKerD − dimKerD†

¼ TrL2e−βH
þ − TrL2e−βH

−
;

where β is a fictitious inverse temperature, is independent of β. It is possible to evaluate the difference between
the functional traces in the β ¼ 0 limit having in mind that the operators H� have the structure of Schrödinger

operators: H� ¼ H0 þ ~Qð~xÞ · ~∇þ U�ð~xÞ, where H0 is the Helmoltz operator times the 4 × 4 unit matrix and the matrix
potentials read

U�ð~xÞ ¼

0
BBBBBBBBB@

jψ j2 − 1 0 −ðD1ψ2 �D1ψ2Þ D1ψ1 �D1ψ1

0 jψ j2 − 1 −ðD2ψ2 �D2ψ2Þ D2ψ1 �D2ψ1

−ðD1ψ2 �D1ψ2Þ −ðD2ψ2 �D2ψ2Þ
�
1� 1

2

�
ðjψ j2 − 1Þ þ VkVk 0

D1ψ1 �D1ψ1 D2ψ1 �D2ψ1 0

�
1� 1

2

�
ðjψ j2 − 1Þ þ VkVk

1
CCCCCCCCCA

ð9Þ

Use of the high-temperature heat trace asymptotic
expansions,

TrL2 expð−βH�Þ≃ e−β

4π

X∞
n¼1

tr½cnðH�Þ�βn−1

leads to estimate the index in the form

indD ¼ lim
β→0

ðTrL2e−βH
þ − TrL2e−βH

−Þ

¼ 1

4π
ðtr½c1ðHþÞ� − tr½c1ðH−Þ�Þ:

Here tr refers to the conventional (4 × 4)-matrix trace and
the divergent tr½c0ðH�Þ� terms have been discarded
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because they cancel each other in the index formula. We
shall see that

tr½c1ðH�Þ� ¼ −tr
Z
R2

d2xU�ð~xÞ; ð10Þ

henceforth

indD ¼ 1

2π

Z
R2

d2xð1 − jψ j2Þ ¼ 2N:

But H− is a positive definite operator such that
dimKerD† ¼ 0, which means thatHþ has 2N zero modes.

B. BPS vortex heat kernel asymptotic expansion:
impact of zero modes

One of the main goals in this paper is to compute one-
loop vortex mass shifts. In Refs. [8,9,34], see also the
reviews [28,29], we performed these calculations by
applying the spectral zeta function regularization procedure
to the second-order small vortex fluctuation operator Hþ
both in the Abelian Higgs model and in Semilocal Abelian
gauge systems. The scheme developed by our group was
based in the standard Gilkey-deWitt heat kernel asymptotic
expansion. An important obstacle found in developing
this program is that the Gilkey-de Witt approach is well
established only for operators with strictly positive spec-
trum, and the operatorHþ exhibits zeromodes. In the papers
[26,27] two of us improved on the Gilkey-deWitt expansion
by showing how to generalize the method to cope with the
existence of zero modes. Application of the generalized
Gilkey-de Witt heat kernel asymptotic expansion to the
computation of one-loop kink mass shifts showed a remark-
ably better precision and unveiled the appearance of forces
between kinks of pure quantum nature.
In this section, having in the back of the mind compu-

tations of BPS vortex mass shifts, we shall generalize the
standard Gilkey-de Witt heat kernel expansion to operators
with zero modes in its spectrum within the class of the BPS
vortex Hessian operator Hþ. The new development is
one of the main novel proposals in this paper. With this
objective in mind, but looking at a larger class of operators
containing Hþ, we consider a general second-order D ×D
matrix PDO of the form

H ¼ −IΔþ u2 þ Uð~xÞ þ ~Qð~xÞ · ~∇; ð11Þ

where I is theD ×D identity matrix,Δ¼ ∂2
∂x2

1

þ ∂2

∂x2
2

is the 2D

Laplacian, u ¼ diagfu1;…; uDg is a constant D ×D
diagonal matrix determined by the asymptotic behavior,
j~xj → ∞, of H and Uð~xÞ¼ðUabð~xÞÞD×D with a; b ¼ 1;
2;…; D, is a D ×D-matrix potential well. Besides
~Qð~xÞ ¼ ðQ1ð~xÞ;Q2ð~xÞÞ is a vector field of matrices such
that the last term in (11) reads

~Qð~xÞ · ~∇ ¼
�X2

i¼1

½Qið~xÞ�ab∂i

�
D×D

:

We assume that

lim
j~xj→þ∞

Uð~xÞ ¼ 0; lim
j~xj→þ∞

Qð~xÞ ¼ 0 ð12Þ

which implies that the operator (11) asymptotically behaves
as the PDO H0 ¼ −IΔþ u2. It is direct to check that the
second-order small vortex fluctuation operator is encom-
passed in formula (11) for D ¼ 4 and the following
assignments of vacuum diagonal matrix and first-order
PDO vector field: v ¼ diagf1; 1; 1; 1g and

Qkð~xÞ ¼

0
BBB@

0 0 0 0

0 0 0 0

0 0 0 −2Vk

0 0 2Vk 0

1
CCCA;

whereas the 4 × 4-matrix potential well is defined in (9).
The Gilkey-de Witt approach aims to construct a

power series expansion of the H-spectral heat trace
hHðβÞ ¼ TrL2e−βH by taking advantage of the fact that
this function can be obtained from integration all over the
plane of the diagonal H-heat equation kernel

hHðβÞ ¼
Z
R2

d2x trKHð~x; ~x; βÞ ð13Þ

i.e., the trace in both the L2-functional and D ×D-matrix
senses of the integral kernel of the H-heat equation

� ∂
∂β þH

�
KHð~x; ~y; βÞ ¼ 0;

KHð~x; ~y; 0Þ ¼ δð2Þð~x − ~yÞID×D: ð14Þ

Completeness of the eigenfunctions of H allows to write
the fundamental solution of Eq. (14) as the expansion

KHð~x; ~y; βÞ ¼
XNzm

l¼1

Ξ0lð~xÞΞ†
0lð~yÞ þ

XNB

n¼1

Ξnð~xÞΞ†
nð~yÞe−βω2

n

þ
Z

½dk1dk2�Ξ~kð~xÞΞ†
~k
ð~yÞe−βω2ðj~kjÞ: ð15Þ

Here Nzm denotes the number of zero modes Ξ0lð~xÞ, Nzm
linearly independent functions belonging to the algebraic
kernel of H, NB is the number of bound states Ξnð~xÞ in
SpecðHÞ, and Ξ~kð~xÞ are the continuous spectrum eigen-
functions of the operator H. They are D-component
functions and form an orthonormal basis in the Hilbert
space ⊕D

a¼1 L
2
aðR2Þ. The β ¼ 0 (infinite temperature)
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condition in (14) is derived from the completeness of the set
of H-eigenfunctions.
The standard Gilkey-de Witt cunning strategy is based in

using the knowledge of the H0 heat kernel. In a normal-
izing square of area L2 it reads

KH0
ð~x; ~y; βÞ ¼ l2

4πβ
e−

∥~x−~y∥2
4β e−βu

2

; ð16Þ

where e−βu
2 ¼ diagfe−βu21 ;…; e−βu

2
Dg, l ¼ mL and there-

fore in this context the H heat kernel is assumed to follow
the factorization:

KHð~x; ~y; βÞ ¼ Að~x; ~y; βÞKH0
ð~x; ~y; βÞ: ð17Þ

Plugging this ansatz into the heat Eq. (14) another equation
forAð~x; ~y; βÞ (usually called transfer equation) arises that is
solved by expanding A as a power series in β.
This procedure is well behaved if the spectrum of the

operator H is strictly positive provided that the infinite
temperature condition Að~x;~y;0Þ¼ID×D is fixed. However,
if the operator exhibits zero modes the factorization (17) is
inconsistent because the left and rightmembers in (17) behave
in different ways at zero temperature, see (15) and (16)

lim
β→þ∞

KHð~x; ~y; βÞ ¼
XNzm

l¼1

Ξ0lð~xÞΞ†
0lð~yÞ;

lim
β→þ∞

KH0
ð~x; ~y; βÞ ¼ 0;

due to the fact that Að~x; ~y; βÞ grows as a power of β when
β → þ∞. In order to amend this discrepancy we replace the
factorization (17) by the following one:

KHð~x; ~y; βÞ ¼ Cð~x; ~y; βÞKH0
ð~x; ~y; βÞ

þ
XNzm

l¼1

e−
∥~x−~y∥2

4β Ξ0lð~xÞΞ†
0lð~yÞGðβÞ: ð18Þ

Good agreement between the zero temperature regime when
zero modes are present, together the usual conditions at
infinity temperature not affected by zero modes, are guaran-
teed provided that the matrix function GðβÞ, and the matrix
density Cð~x; ~y; βÞ satisfy

lim
β→þ∞

GðβÞ ¼ ID×D;

lim
β→0

GðβÞ ¼ 0;

lim
β→0

Cð~x; ~y; βÞ ¼ ID×D: ð19Þ

The matrix density Cð~x; ~y; βÞ, like Að~x; ~y; βÞ in the standard
GdWmethod, relates the positive part of SpecH to SpecH0 in
theH-heat kernel, whereas the second term in the right-hand
side of (18) encodes the contribution of zero modes.
The power series expansion

Cð~x; ~y; βÞ ¼
X∞
n¼0

cnð~x; ~yÞβn ð20Þ

together with the factorization (18) is plugged into the heat
Eq. (14) as in the standard GdW procedure. The PDE (14)
is converted thereafter into the following relations between
the coefficients of the modified GdW expansion and their
derivatives:

−
1

2β
ð~x − ~yÞ · ~Qð~xÞc0ð~x; ~yÞ þ

X∞
n¼0

�
ðnþ 1Þcnþ1ð~x; ~yÞ − Δcnð~x; ~yÞ þ ð~x − ~yÞ · ~∇cnþ1ð~x; ~yÞ þ Uð~xÞcnð~x; ~yÞ

þ ½u2; cnð~x; ~yÞ� þ ~Qð~xÞ · ~∇cnð~x; ~yÞ −
1

2
ð~x − ~yÞ · ~Qð~xÞcnþ1ð~x; ~yÞ

�
βn

þ
XNzm

l¼1

4π

�
Ξ0lð~xÞΞ†

0lð~yÞ
�
β
dG
dβ

ðβÞ þGðβÞ
�
þ ð~x − ~yÞ · ~∇Ξ0lð~xÞΞ†

0lð~yÞGðβÞ

−
1

2
ð~x − ~yÞ · ~Qð~xÞΞ0lð~xÞΞ†

0lð~yÞGðβÞ
�
eβu

2 ¼ 0: ð21Þ

Taking into account that eventually we shall take the limit
~y → ~x we can neglect the contribution of the first term in
this relation. Before of attempting to solve (21) there is the
need of selecting GðβÞ. Restricted by the zero and infinite
temperature behaviors (19) and looking for optimizing the
structure of (21) we choose

GðβÞ ¼ 1 − e−βu
2

: ð22Þ

Substituting this GðβÞ function into (21), expanding the
lower two rows in (21) as a power series in β and equalizing
terms of the same power of β, a recurrence relation for the
matrix densities cnð~x; ~yÞ arises. We obtain

c1ð~x; ~yÞ − Δc0ð~x; ~yÞ þ ð~x − ~yÞ · ~∇c1ð~x; ~yÞ
þ Uð~xÞc0ð~x; ~yÞ ¼ 0 ð23Þ
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for the first coefficient and

ðnþ 1Þcnþ1ð~x; ~yÞ − Δcnð~x; ~yÞ þ ð~x − ~yÞ · ~∇cnþ1ð~x; ~yÞ þ Uð~xÞcnð~x; ~yÞ

þ ½u2; cnð~x; ~yÞ� þ ~Qð~xÞ · ~∇cnð~x; ~yÞ − 1

2
ð~x − ~yÞ · ~Qð~xÞcnþ1ð~x; ~yÞ

þ 4π

��
δn1 þ

1

n!

�XNzm

l¼1

Ξ0lð~xÞΞ†
0lð~yÞ þ

1

n!

XNzm

l¼1

ð~x − ~yÞ · ~∇Ξ0lð~xÞΞ†
0lð~yÞ

−
1

2ðn!Þ ð~x − ~yÞ · ~Qð~xÞ
XNzm

l¼1

Ξ0lð~xÞΞ†
0lð~yÞ

�
u2n ¼ 0 ð24Þ

for the remaining ones. Note that the n ¼ 0 equation has been written separately because, given the choice of GðβÞ, zero
modes do not enter at this order. Thus, the densities cnð~x; ~yÞ for n ¼ 1; 2; 3;… can be identified recursively using (23)
and (24) in terms of the zero order density c0ð~x; ~yÞ, which is fixed by the infinite temperature condition (19) and the
definition (20), to be the constant D ×D identity matrix: c0ð~x; ~yÞ ¼ ID×D.
Evaluation of the H-spectral heat trace (13) requires to take the limit ~y → ~x of the densities before of integrating

them. But sending the densities to the diagonal cnð~x; ~xÞ and solving simultaneously the recurrence relations is a very
subtle maneuver. The reason is that going to the ~y → ~x limit and computing partial derivatives with respect to xi as
required in (23) and (24) are not mutually commuting operations. To handle this situation we introduce the ðα1; α2Þ-
order densities

ðα1;α2ÞCnð~xÞ ¼ lim
~y→~x

∂α1þα2

∂xα11 ∂xα22 ðcnð~x; ~yÞÞ; ð25Þ

where the partial derivatives are calculated first and the limit is taken later. Calculation of the partial derivative of the
relations (23) and (24) of order α1 with respect to x1 and order α2 with respect to x2 and taking consecutively the limit
~y → ~x provide us with the recurrence relations for these diagonal magnitudes ðα1;α2ÞCnð~xÞ. The partial derivatives of the
first Seeley diagonal density ðα1;α2ÞC1ð~xÞ satisfy

ðα1;α2ÞC1ð~xÞ ¼
1

α1 þ α2 þ 1

�
ðα1þ2;α2ÞC0ð~xÞ þ ðα1;α2þ2ÞC0ð~xÞ

−
Xα1
k1¼0

Xα2
k2¼0

�
α1
k1

��
α2
k2

� ∂k1þk2Uð~xÞ
∂xk11 ∂xk22

ðα1−k1;α2−k2ÞC0ð~xÞ − ½u2; ðα1;α2ÞC0ð~xÞ�

−
Xα1
k1¼0

Xα2
k2¼0

�
α1
k1

��
α2
k2

��∂k1þk2Q1ð~xÞ
∂xk11 ∂xk22

ðα1−k1þ1;α2−k2ÞC0ð~xÞ
�
þ

−
Xα1
k1¼0

Xα2
k2¼0

�
α1
k1

��
α2
k2

��∂k1þk2Q2ð~xÞ
∂xk11 ∂xk22

ðα1−k1;α2−k2þ1ÞC0ð~xÞ
�

þ α1
2

Xα1−1
k1¼0

Xα2
k2¼0

�
α1 − 1

k1

��
α2
k2

� ∂k1þk2Q1ð~xÞ
∂xk11 ∂xk22

ðα1−k1−1;α2−k2ÞC1ð~xÞ

þ α2
2

Xα1
k1¼0

Xα2−1
k2¼0

�
α1
k1

��
α2 − 1

k2

� ∂k1þk2Q2ð~xÞ
∂xk11 ∂xk22

ðα1−k1;α2−k2−1ÞC1ð~xÞ
�

ð26Þ

while the subsequent, n > 1, derivatives of the diagonal Seeley densities verify the formula
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ðα1;α2ÞCnþ1ð~xÞ ¼
1

nþ α1 þ α2 þ 1

�
ðα1þ2;α2ÞCnð~xÞ þ ðα1;α2þ2ÞCnð~xÞ

−
Xα1
k1¼0

Xα2
k2¼0

�
α1
k1

��
α2
k2

� ∂k1þk2Uð~xÞ
∂xk11 ∂xk22

ðα1−k1;α2−k2ÞCnð~xÞ − ½u2; ðα1;α2ÞCnð~xÞ�

−
Xα1
k1¼0

Xα2
k2¼0

�
α1
k1

��
α2
k2

��∂k1þk2Q1ð~xÞ
∂xk11 ∂xk22

ðα1−k1þ1;α2−k2ÞCnð~xÞ þ
∂k1þk2Q2ð~xÞ
∂xk11 ∂xk22

ðα1−k1;α2−k2þ1ÞCnð~xÞ
�

þ α1
2

Xα1−1
k1¼0

Xα2
k2¼0

�
α1 − 1

k1

��
α2
k2

� ∂k1þk2Q1ð~xÞ
∂xk11 ∂xk22

ðα1−k1−1;α2−k2ÞCnþ1ð~xÞ

þ α2
2

Xα1
k1¼0

Xα2−1
k2¼0

�
α1
k1

��
α2 − 1

k2

� ∂k1þk2Q2ð~xÞ
∂xk11 ∂xk22

ðα1−k1;α2−k2−1ÞCnþ1ð~xÞ

− 4π

�
δn1 þ

α1 þ α2 þ 1

n!

�XNzm

l¼1

∂α1þα2Ξ0lð~xÞ
∂xα11 ∂xα22 Ξ†

0lð~xÞu2n

þ 2πα1
n!

Xα1−1
k1¼0

Xα2
k2¼0

�
α1 − 1

k1

��
α2
k2

� ∂k1þk2Q1ð~xÞ
∂xk11 ∂xk22

XNzm

l¼1

∂α1þα2−k1−k2−1Ξ0lð~xÞ
∂xα1−k1−11 ∂xα2−k22

Ξ†
0lð~xÞu2n

þ 2πα2
n!

Xα1
k1¼0

Xα2−1
k2¼0

�
α1
k1

��
α2 − 1

k2

� ∂k1þk2Q2ð~xÞ
∂xk11 ∂xk22

XNzm

l¼1

∂α1þα2−k1−k2−1Ξ0lð~xÞ
∂xα1−k11 ∂xα2−k2−12

Ξ†
0lð~xÞu2n

�
: ð27Þ

Again, the choice of Gð~xÞ implies that derivatives of the
first diagonal Seeley density ðα1;α2ÞC1ð~xÞ are not affected by
the presence of the zero modes in the spectrum ofH. These
recurrence relations start from the, constant, zero order
Seeley densities

ðα1;α2ÞC0ð~xÞ ¼ δα10δα20ID×D ð28Þ

which are directly identified from the infinite temperature
condition and the definition (25). From (26) and (27)
together with (28) we easily derive low order diagonal
densities

ð0;0ÞC1ð~xÞ ¼ −Uð~xÞ; ð29Þ

ð0;0ÞC2ð~xÞ ¼ −
1

6
ΔUð~xÞ þ 1

6
ð ~Qð~xÞ · ~∇ÞUð~xÞ

þ 1

12
~Qð~xÞ · ~Qð~xÞUð~xÞ − 1

6
ð ~∇ · ~Qð~xÞÞUð~xÞ

þ 1

2
U2ð~xÞ þ 1

2
½u2;Uð~xÞ�

− 4π
XNzm

l¼1

Ξ0lð~xÞΞ†
0lð~xÞu2; ð30Þ

where we observe that the impact of zero modes start at
second order. In fact, all the new densities are the sum of the

old Seeley densities plus terms induced by the zero modes
proportional to u2n−2. We remark that in this formula the

vectorial notation ~Qð~xÞ · ~Qð~xÞ ¼ Q1ð~xÞ2 þQ2ð~xÞ2 has
been used. In the solution of the recurrence relations
(26) and (27), e.g., up to order n, one needs to compute
all the lower than n densities and their derivatives. For
instance, in order to obtain ð0;0ÞCab

6 ð~xÞ for Hþ there is the
need of knowing the diagonal densities and their derivatives
ðα1;α2ÞCab

5 ð~xÞ for α1; α2 ¼ 0, 1, 2 as data, which in turn
demands the knowledge of ðα1;α2ÞCab

4 ð~xÞ for α1; α2 ¼ 0, 1, 2,
3, 4, etcetera. It can be checked that the estimation of the
Seeley densities ð0;0ÞCab

n ð~xÞ at order n demands the calcu-
lation of 8

3
ðnþ 1Þðnþ 2Þð4nþ 3Þ densities and their

derivatives with lower n of that type, a challenging task
for a Mathematica program.
Formulas (18) and (20) allow us to write the diagonal of

the heat integral kernel in the⊕4
a¼1 L

2
aðR2ÞHilbert space as

an asymptotic series in β

KHð~x; ~x; βÞ ¼ lim
~y→~x

KHð~x; ~y; βÞ

¼ 1

4π

X∞
n¼0

ð0;0ÞCnð~xÞβn−1e−βu2

þ
XNzm

l¼1

Ξ0lð~xÞΞ†
0lð~xÞGðβÞ ð31Þ
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where, of course, ð0;0ÞCnð~xÞ ¼ cnð~x; ~xÞ by definition.
Spatial integration over R2 and taking the matrix trace
of all the summands in (31) offer us the asymptotic high
temperature expansion

hHðβÞ − hH0
ðβÞ ¼ 1

4π

X∞
n¼1

XD
a¼1

½cnðHÞ�aae−βu2aβn−1

þ
XNzm

l¼1

XD
a¼1

½flðHÞ�aað1 − e−βu
2
aÞ ð32Þ

for the difference between the spectral heat traces of the H
and H0 operators. Here, we denote as

½cnðHÞ�aa ¼
Z
R2

d2x½ð0;0ÞCnð~xÞ�aa ¼ h½ð0;0ÞCnð~xÞ�aai;

½flðHÞ�aa ¼
Z
R2

d2xðΞ0lð~xÞÞaðΞ�
0lð~xÞÞa

¼ hðΞ0lð~xÞÞaðΞ�
0lð~xÞÞai;

the diagonal elements in the matrix sense of the Seeley
coefficients, coming from integration of the diagonal
elements in the functional sense of the Seeley densities.
The convention hfðxÞi ¼ R

R2 d2xfð~xÞ will be used in some
expressions later in the paper in order to alleviate the
notation.
Another important spectral function is the generalized

zeta function, formally defined as

ζHðsÞ ¼ TrL2H−s“ ¼ ”
X
n

1

ω2s
n

ð33Þ

which will play an essential role in the computation of the
vortex mass quantum corrections. The spectral zeta func-
tion is a meromorphic function of the complex variable s
defined via analytic continuation following the Riemann
zeta function pattern. Connection between the heat trace
hHðβÞ and the spectral zeta function ζHðsÞ is established
via Mellin transform,

ζHðsÞ ¼
1

Γ½s�
Z

∞

0

dββs−1hHðβÞ:

Application of this transformation to the asymptotic
expansion (32) of the heat trace leads to the formula

ζHðsÞ − ζH0
ðsÞ

¼ 1

4πΓ½s�
X∞
n¼1

XD
a¼1

½cnðHÞ�aaðu2aÞ1−n−sΓ½sþ n − 1�

−
XNzm

l¼1

XD
a¼1

½flðHÞ�aaðu2aÞ−s; ð34Þ

which explicitly shows the meromorphic structure of this
difference of generalized zeta functions with isolated
poles located at the poles of the Euler Gamma function
Γðsþ n − 1Þ and the singularities due to the zero modes
regularized in the last term in (34). The residua at the poles
are also easily identified.

C. Spectral zeta function regularization of
one-loop vortex mass shifts

Standard lore in the semiclassical quantization of sol-
itons tells us that the one-loop vortex mass shift ΔEV in the
AHM is the sum of two terms: (1) First, one computes the
vortex Casimir energy, which is the energy of the state
where all the vortex modes of fluctuation are unoccupied
measured with respect to the energy of the state where
the vacuum fluctuation modes are also unoccupied.2

(2) Second, the contribution of the mass renormalization
counterterms up to one loop order is added in such a way
that the remaining divergence in the Casimir energy, after
subtraction of the zero point vacuum energy, is canceled
out. Identification of the mass renormalization counter-
terms in the Lagrangian is achieved in perturbation theory.
Because we plan to renormalize particle masses we
shall work the Feynman rules in the Feynman-’t Hooft
renormalizable R-gauge. This gauge is the vacuum sector
counterpart of the background gauge for fluctuations
around the vortices. The R-gauge induces a complex ghost
field χð~x; tÞ in the action functional needed to restore the
unitarity lost after adding the gauge fixing term. The ghost
degrees of freedom give rise to its own Casimir energy and
mass renormalization couterterms, which is subtracted—
the ghosts are fermionic particles—to the corresponding
energies coming from the bosonic field fluctuations. This
routine is well established and standardized in the physical
literature, see [8,9,28,29,34]. We shall denote the total
contribution of the Casimir energies to the vortex classical
energy as ΔEC

V , that of the mass renormalization counter-
terms as ΔER

V , while the total vortex mass shift will
be ΔEV ¼ ΔEC

V þ ΔER
V .

The self-dual vortex energies up to one-loop order in the
AHM are the sum of the classical energies plus the energies
of the fluctuations ξ. Choosing the background gauge and
accounting only the fluctuations at one-loop or quadratic
order the vortex energy reads

EV ¼ πjnjv2 þ ℏm
2

Z
d2x½ξTð~xÞHþξð~xÞ� þ oðξ3Þ;

wherem ¼ ev. The energy of ghosts, which is negative due
to the fermionic character of these fictitious particles, is the
sum of one quadratic and one interacting term

2This physical phenomenon is akin to the Casimir effect where
the energy of photons in vacuum is subtracted from the energy of
photons in presence of two conducting plates.
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ΔEghost
V þ Eghost

I ¼ −
ℏm
2

Z
d2~x½χ�ð~xÞHGχð~xÞ�

−
ℏ2e2

2

Z
d2~x½ðψ�ð~xÞφð~xÞ

þ ψð~xÞφ�ð~xÞÞχ�ð~xÞχð~xÞ�:

The PDO operator HG entering in the quadratic ghost
term is

HG ¼ −Δþ jψ j2;

an ordinary Schrödinger operator that governs one-loop
ghost fluctuations around the vortex, in contrast to Hþ
which is the matrix PDO (6).
Thus, ΔEC

V is the sum of the vortex Casimir energies of
the bosonic a1; a2;φ1;φ2 fluctuations minus the Casimir
energy of the fermionic fluctuation χ. In sum, the vortex
Casimir energy is given by the formal formula

ΔEC
V ¼ ℏm

2
½Tr⊕4

a¼1
L2
aðR2ÞðHþÞ12 − Tr⊕4

a¼1
L2
aðR2ÞðH0Þ12

− ½TrL2ðR2ÞðHGÞ12 − TrL2ðR2ÞðHG
0 Þ

1
2��; ð35Þ

where we recall that H0 ¼ −IΔþ diagð1; 1; 1; 1Þ and
HG

0 ¼ −Δþ 1 are the corresponding second-order vacuum
fluctuation operators.
The zeta function regularization procedure takes profit of

the analytical continuation of the divergent quantity ΔEC
V

(35) to the s-complex plane and assigning to the vortex
Casimir energy its finite value at a regular point. This
strategy is justified from the general theory about the
analytical structure of spectral zeta functions of positive
operators, in our problem we shall consider the spectral zeta
functions of the PDOHþ,H0,HG, andHG

0 . Thus, we shall
regularize the vortex Casimir energy in the form

ΔEC
VðsÞ ¼

ℏμ
2

�
μ2

m2

�
s
fζHþðsÞ − ζH0

ðsÞ

− ðζHGðxÞ − ζHG
0
ðsÞÞg; ð36Þ

where μ is a parameter of dimension L−1 needed to keep
correct the physical dimensions of energy away from the
physical value s ¼ − 1

2
: ΔEC

V ¼ lims→−1
2
ΔEC

VðsÞ.
The spectral heat kernel/zeta function control of diver-

gences in QFT is a procedure that encompasses several
different but related aspects.
(1) Ultraviolet divergences arising in fluctuating topo-

logical defects are regularized by using the spectral
zeta function of the Hessian operator. In odd dimen-
sional spaces the zeta function giving the Casimir
energy falls in a pole at s ¼ − 1

2
, and one must go

away from the pole in the s-complex plane to obtain
a regularization of ΔEC, but in even dimensions the

spectral zeta function is directly finite at the value
of s ¼ − 1

2
.

(2) The meromorphic structure of the spectral zeta
function is clarified when it is obtained via Mellin
transform of the heat kernel high temperature ex-
pansion. Poles appear in Euler Gamma functions
Γðsþ n − d

2
Þ, i.e., at negative integers or zero values

of sþ n − d
2
. Also, infrared divergences appear in

the lower Seeley coefficients. Integration of low
densities over the whole space gives rise to diver-
gences proportional to the volume, or, the logarithm
of the volume, etcetera. Regularization of these
divergences requires to restrict the system to a cube
of volume V ¼ ld ¼ ðmLÞd.

(3) After these regularizations were performed some
renormalizations have to be done. In (1þ 1)- or
(2þ 1)-dimensional space-times, where QFT mod-
els are usually super-renormalizable, zero point and
mass renormalization, taming the divergences due to
the tadpoles and self-energy graphs, are enough.

(4) It remains to deal with the delicate question of finite
renormalizations. We shall stick to the heat kernel
renormalization criterion, tantamount to the vanish-
ing of the tadpole graph. In the limit of infinite
particle masses there are no quantum fluctuations,
thus there should be no quantum corrections. This
means that the contribution of all the coefficients
multiplied by non negative powers of mass must be
exactly canceled in the renormalization process. In
one and two spatial dimensions only c0 and c1
survive when the particles become infinitely heavy
and the annihilation of their contribution fixes our
renormalization criterion.

(5) Zero modes, however, respond to rigid motions
which survive in the infinite mass regime and the
above criterion does not apply to their contributions.

The heat kernel/zeta function technology applied in the
computation of (35) requires to write (34) for both the
H ¼ Hþ and H ¼ HG operators arising in the Abelian
Higgs model. The difference between the spectral zeta
functions of the PDO’s Hþ and H0 reads

ζHþðsÞ − ζH0
ðsÞ ¼ 1

4πΓ½s�
X∞
n¼1

X4
a¼1

½cnðHþÞ�aa
u2nþ2s−2 Γ½sþ n − 1�

−
XNzm

l¼1

X4
a¼1

½flðHþÞ�aau−2s

where, although the j~xj → þ∞ asymptotics of the matrix
potential in Hþ is u ¼ diagf1; 1; 1; 1g, we have written
ua ¼ u, a ¼ 1, 2, 3, 4, in order to later analyze the
u → þ∞, infinite particle masses, limit. We remark that
the subtraction of ζH0

ðsÞ corresponds exactly to zero point
renormalization
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lim
s→−1

2

1

4π

X4
a¼1

c0½Hþ�aa
u2s−2

Γ½s − 1� ¼ u3
l2

π
Γ
�
−
3

2

�

¼ ζH0

�
−
1

2

�
:

The lower Seeley coefficients are easily obtained from (29)
and (30)

X4
a¼1

½c1ðHþÞ�aa ¼ h5ð1 − jψ j2Þ − 2VkVki

X4
a¼1

½c2ðHþÞ�aa ¼
	
−
5

6
Δjψ j2 − 1

3
ΔðVkVkÞ þ

1

3
ðVkVkÞ2

þ 4
X2
i;j¼1

ðDiψ jÞ2 þ
13

4
ð1 − jψ j2Þ2

− 2VkVkð1 − jψ j2Þ



− 4π
XNzm

l¼1

X4
a¼1

½flðHþÞ�aau2;

where we observe also that the new Seeley coefficients are
the sum of the old coefficients plus the last term induced by
the zero modes.
Simili modo, the ghost spectral zeta function regularizes

the ghost Casimir energy

ζHGðsÞ − ζHG
0
ðsÞ ¼ 1

4πΓ½s�
X∞
n¼1

cnðHGÞ
u2sþ2n−2 Γ½sþ n − 1�

−
XNG

zm

l¼1

flðHGÞu−2s:

Again, we leave free the asymptotic value of UGð~xÞ to
ponder the heat kernel renormalization criterion, although
we know that UGð~xÞ ¼ jψ j2ð~xÞ≡ u ¼ 1 for the vortex.
NG

zm denotes the zero mode number in the HG-spectrum.
The first and second ghost Seeley coefficients are

c1ðHGÞ¼ h1− jψ j2i;

c2ðHGÞ¼
	
−
1

6
Δjψ j2þ1

2
ðjψ j2−1Þ2



−4π

XNG
zm

l¼1

flðHGÞu2:

Because zero modes Ξ0lð~xÞ are orthogonal to each other
and normalized it is clear that

XNzm

l¼1

X4
a¼1

½flðHþÞ�aa ¼ Nzm and
XNG

zm

l¼1

flðHGÞ ¼ NG
zm:

But the vortex zero mode number is 2N, twice the vorticity,
and 0 for the ghost fluctuation operator HG which is a

positive operator. Thus, Nzm ¼ 2N and NG
zm ¼ 0 and the

total BPS vortex Casimir energy (36) is

lim
s→−1

2

ΔEC
VðsÞ¼ lim

s→−1
2

ℏμ
2

�
μ2

m2

�
s
�

1

4πΓ½s�
X∞
n¼1

�X4
a¼1

½cnðHþÞ�aa
u2sþ2n−2

−
cnðHGÞ
u2nþ2s−2

�
Γ½sþn−1�−2Nu−2s

�
: ð37Þ

Note that the first summand in (37) is proportional to u

ℏm
2

1

4πΓð− 1
2
Þ
�X4

a¼1

c1ðHþÞaa − c1ðHGÞ
�
Γ
�
−
1

2

�
u

¼ ℏm
4π

· h2ð1 − jψ j2Þ − VkVki · u:

Therefore the contribution of this term must be exactly
annihilated in a renormalization procedure adjusted to
suppress it without leaving any finite remnants. The next
term is proportional to 1=u and, thus, is susceptible to be
kept, as well as all the higher order than two terms.
In fact, the only renormalization, after control of the zero

point divergences, remaining in the planar AHM is the
mass renormalization. In Refs. [8] and [28], together with
other collaborators, we identified the energy induced by the
counterterms needed to tame the tadpoles and self-energy
divergent graphs in a minimal renormalization scheme, i.e.,
only subtracting the infinities arising in these graphs. The
divergent mass renormalization energy is

ΔER
V ¼ 2ℏmIðuÞhΣ1ðψ ; VkÞi

where

hΣ1ðψ ; VkÞi ¼
Z
R2

d2x

�
1 − jψ j2 − 1

2
VkVk

�

¼
	
1 − jψ j2 − 1

2
VkVk



;

obviously proportional to
P

4
a¼1 c1ðHþÞaa − c1ðHGÞ, and

IðuÞ is the divergent integral

IðuÞ ¼ 1

2

Z
∞

−∞

d2k
ð2πÞ2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22 þ u2

p

arising in closed loop propagators. The idea is to regularize
also IðuÞ by means of the zeta function procedure

Iðu; sÞ ¼ 1

2

Z
∞

−∞

d2k
ð2πÞ2

1

ðk21 þ k22 þ u2Þsþ1

¼ 1

2
ζ−Δþu2ðsþ 1Þ;

which implies that
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IðuÞ ¼ I

�
u;−

1

2

�
¼ lim

s→−1
2

ζ−Δþu2ðsþ 1Þ ¼ ζ−Δþu2

�
1

2

�
:

Recall that H0 is a 4 × 4 diagonal matrix PDO whose
components are Helmoltz operators: −Δþ u2. Thus,
ζ−Δþu2ð12Þ ¼ 1

4
ζH0

ð1
2
Þ. Moreover, we knew that

ζH0
ðsÞ ¼ 1

π

Γ½s − 1�
Γ½s� u2−2s

ζHG
0
ðsÞ ¼ 1

4π

Γ½s − 1�
Γ½s� u2−2s;

therefore, the regularized mass renormalization energy
reads

ΔER
V ¼ lim

s→−1
2

ΔER
VðsÞ

¼ lim
s→−1

2

ℏμ
4π

�
μ2

m2

�
s Γ½s�
Γ½sþ 1� · u

−2s · hΣ1ðψ ; VkÞi:

The sum of the analytical continuations of the Casimir and
mass renormalization energies ΔEC

VðsÞ þ ΔER
VðsÞ is

ΔEC
VðsÞ þ ΔER

VðsÞ ¼
ℏμ
2

�
μ2

m2

�
s
�

1

4π
h5ð1 − jψ j2Þ − 2VkVkiu−2s −

1

4π
h1 − jψ j2iu−2s − 2Nu−2s

þ 1

4πΓ½s�
X∞
n¼2

X4
a¼1

½cnðHþÞ�aa
u2nþ2s−2 Γ½sþ n − 1� − 1

4πΓ½s�
X∞
n¼2

cnðHGÞ
u2sþ2n−2 Γ½sþ n − 1�

þ 1

2π

1

s

	
1 − jψ j2 − 1

2
VkVk



· u−2s

�

¼ ℏμ
2

�
μ2

m2

�
s
��

1

π
þ 1

2πs

�	
1 − jψ j2 − 1

2
VkVk



· u−2s þ 1

4πΓ½s�
X∞
n¼2

�X4
a¼1

½cnðHþÞ�aa − cnðHGÞ
�

×
Γ½sþ n − 1�
u2sþ2n−2 − 2Nu−2s

�
;

where we have used Γðsþ 1Þ ¼ sΓðsÞ. The key observa-
tion is that, according to the heat kernel renormalization
criterion, the contribution of the first order Seeley coef-
ficients is exactly canceled by the minimal subtraction
scheme chosen in our mass renormalization prescription.
This statement can be easily checked by looking at the first
term in the last equality at the physical value s ¼ − 1

2
.

Therefore, the one-loop BPS vortex mass shift is obtained
in this approach by the asymptotic formula

ΔEV ¼ lim
s→−1

2

½ΔEC
VðsÞ þ ΔER

VðsÞ�;

which provides us with the final response

ΔEV ¼ −ℏmN −
ℏm

16π
3
2

X∞
n¼2

�X4
a¼1

½cnðHþÞ�aa − cnðHGÞ
�

× Γ
�
n −

3

2

�
: ð38Þ

D. One-loop mass shifts of BPS rotationally symmetric
vortices: surge of weak quantum forces

Use of formula (38) guides us towards the computation
of one-loop mass shifts for BPS circularly symmetric
vortices, solutions of the PDE system (2) of the form

ψðr; θÞ ¼ fNðrÞeiNθ;

Vrðr; θÞ ¼ 0; Vθðr; θÞ ¼
N
r
βNðrÞ;

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1x1 þ x2x2

p
and θ ¼ arctan x2

x1 are polar coor-
dinates in the plane. In this case the just mentioned PDE
system becomes the ODE system

f0NðrÞ ¼
N
r
fNðrÞ½1 − βNðrÞ�; ð39Þ

β0NðrÞ ¼
r
2N

½1 − f2NðrÞ�: ð40Þ

The subindex N in fNðrÞ and βNðrÞ reminds us that the
radial profiles depend on the vorticity N, i.e., they are
different in different topological sectors. The well-known
procedure for finding solutions of these ordinary equations
proceed in three steps: (1) Solving the (39) and (40) near
r ¼ 0 one finds fNðrÞ≃r→0 DNrN and βNðrÞ≃r→0 ENr2,
whereDN and EN are integration constants, that are regular
solutions near the origin. (2) The asymptotic conditions (3)
and (4) demand that fNðrÞ → 1 and βNðrÞ → 1 in the
r → ∞ limit. One solves then the (39) and (40) system very
far from the origin. An smooth sewing between the two
regimes requires a precise choice of DN and EN (3). This
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shooting procedure is numerically implemented to build
interpolating solutions to (39) and (40) at intermediate
distances. In this way the circularly symmetric BPS N-
vortex solutions are obtained, and these N-vortex profiles
are basic ingredients in the one-loop BPS vortex mass shift
formula (38).
The remaining ingredients needed in formula (38) are the

2N orthonormal zero mode fluctuations of the circularly
symmetric N-vortices of the form, see [33],

ξ0ð~x; N; kÞ ¼ rN−k−1

0
BBBBBB@

hNðrÞ sin½ðN − k − 1Þθ�
hNðrÞ cos½ðN − k − 1Þθ�

− h0NðrÞ
fNðrÞ cosðkθÞ

− h0NðrÞ
fNðrÞ sinðkθÞ

1
CCCCCCA
;

ξ⊥0 ð~x; N; kÞ ¼ rN−k−1

0
BBBBBB@

hNðrÞ cos½ðN − k − 1Þθ�
−hNðrÞ sin½ðN − k − 1Þθ�

− h0NðrÞ
fNðrÞ sinðkθÞ

h0NðrÞ
fNðrÞ cosðkθÞ

1
CCCCCCA
;

where k ¼ 0; 1; 2;…; N − 1, and the zero mode radial
profile hNðrÞ verifies the ODE

−rh00NðrÞ þ ½1þ 2k − 2NβNðrÞ�h0NðrÞ þ rf2NðrÞhNðrÞ ¼ 0

ð41Þ

with boundary conditions expressed as hNð0Þ ≠ 0 and
limr→∞hNðrÞ ¼ 0. Again a numerical approach applied
to solve (41) with the just prescribed conditions at the

origin and at infinity offer us quite precise knowledge of the
2N zero mode fluctuations of a BPS vortex solution with
vorticity N [33]. All this information allows us to use the
recurrence relations (26) and (27) in order to obtain the
Seeley coefficients

P
4
a¼1½ckðHþÞ�aa and ckðHGÞ entering

in the vortex mass quantum correction formula (38). The
practical use of (38) involves the truncation of the series at a
finite order nT, i.e., replacing the series by the partial sum

ΔEV ¼ −ℏmN −
ℏm

16π
3
2

XnT
n¼2

�X4
a¼1

½cnðHþÞ�aa − cnðHGÞ
�

× Γ
�
n −

3

2

�
: ð42Þ

We estimate the vortex mass quantum correction by apply-
ing (42) with nT ¼ 6. Computation of the lower six Seeley
coefficients requires the calculation of 4043 functional
coefficients ðα;γÞCab

n ð~xÞ. We develop this program by using
the symbolic software platform Mathematica. The code of this
task can be found in the web page http//:campus.usal.es/
mpg/General/MathematicaTools.htm. Estimation of the
matrix and functional traces of these densities provides us
with the previously mentioned Seeley coefficients. The
results are displayed in Tables I and II.
In Table III we display the response of this formula up to

nT ¼ 6. The last row offers the best estimation of the BPS
N-vortex mass quantum correction. In the Fig. 1 we
observe that the mass shift of a circularly symmetric vortex
of vorticity N is greater (less negative) than the mass shift
of N quanta of magnetic flux infinitely apart from each
other. This means that one-loop fluctuations induce (very
weak) repulsive forces between vortices, or, equivalently,

TABLE I. Values of the nth Seeley coefficients for the small N-vortex fluctuation operator Hþ entering in the planar vortex mass
quantum correction (38).

trð½cnðHþÞ�Þ
n N ¼ 1 N ¼ 2 N ¼ 3 N ¼ 4 N ¼ 5

2 5.209907 10.758499 14.599902 17.584508 20.056049
3 0.604578 0.640348 −1.430318 −5.938527 −13.02907
4 0.100552 −0.234275 −1.423682 −3.577702 −6.705447
5 0.026343 −0.112510 −0.508042 −1.202951 −2.211210
6 0.004684 −0.032515 −0.129312 −0.295743 −0.535895

TABLE II. Values of the nth Seeley coefficients for the ghost operatorHG entering in the planar vortex mass quantum correction (38).

trð½cnðHGÞ�Þ
n N ¼ 1 N ¼ 2 N ¼ 3 N ¼ 4 N ¼ 5

2 2.605736 6.809074 11.491491 16.455676 21.556281
3 0.319105 1.341895 2.607141 4.005310 5.484668
4 0.022977 0.204985 0.467767 0.771922 1.102056
5 0.001226 0.023800 0.067358 0.120746 0.180316
6 0.000070 0.002191 0.008005 0.015802 0.024785
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that BPS vortices are pushed by quantum fluctuations
towards a type II superconductivity phase.

III. ONE-LOOP STRING TENSION SHIFTS FOR
CYLINDRICALLY SYMMETRIC BPS VORTEX

FILAMENTS

In this section we shall try to compute one-loop BPS
vortex tension shifts in the (3þ 1)-dimensional AHM. The
BPS planar vortex solutions assuming cylindrical sym-
metry, i.e., infinitely repeated in the new dimension,
become the famous self-dual Abrikosov-Nielsen-Olesen
magnetic filaments or tubes. The AHM action functional in
(3þ 1) Minkowski space-time at the BPS point is

S ¼ 1

e2

Z
d4x

�
−
1

4
FμνFμν þ 1

2
jDμϕj2 −

1

8
ðϕ�ϕ − 1Þ2

�
:

The differences with respect to the planar AHM action are
(1) d4x¼ dx0dx1dx2dx3; (2) ~x¼ x1~e1þx2~e2þx3~e3 where
~ei · ~ej ¼ δij, i, j ¼ 1, 2, 3; (3) gμν ¼ diagð1;−1;−1;−1Þ
with μ, ν ¼ 0, 1, 2, 3; (4) the gauge connection has four
components: Aμ ¼ ðA0; A1; A2; A3Þ and (5) the antisym-

metric EM tensor field Fμν ¼ ∂Aν∂xμ −
∂Aμ

∂xν encompasses six
independent components: three components of the electric
field Eið~xÞ ¼ F0ið~xÞ and three components of the magnetic
field Bið~xÞ ¼ 1

2
εijkFjkð~xÞ.

Static cylindrically symmetric field configurations are
independent of x0 and x3: ϕ ¼ ϕðx1; x2Þ, Aα ¼ Aαðx1; x2Þ.
To make this restriction gauge invariant we choose the
temporal and axial gauges: A0 ¼ A3 ¼ 0. For configura-
tions with these symmetries the first-order PDE (39) and
(40) system still admit BPS vortex solutions. Seen in three
dimensions, the BPS vortices become cylindrical magnetic
tubes with the axis along the third dimension x3 and,
therefore the planar solutions are the cross sections at x3

fixed of these stringy topological defects. Like in the
previous sections, we are interested in studying the one-
loop fluctuations around these infinitely long BPS vortex
filaments. The main novelty here are the fluctuations in the
third dimension, i.e., the fluctuations are functions also of
x3: φðx1; x2; x3Þ. Moreover, although the axial gauge has
been chosen to fix the BPS vortex solutions, perturbations
in the third component of the gauge potential must be taken
into account

ϕð~xÞ ¼ ψðx1; x2Þ þ φð~xÞ;
Aαð~xÞ ¼ Vαðx1; x2Þ þ aαð~xÞ; α ¼ 1; 2;

A3ð~xÞ ¼ a3ð~xÞ:
The vortex filament fluctuations are assembled in a five
component column vector ξð~xÞ that includes also fluctua-
tions in the third component of the vector potential a3ð~xÞ:

ξðx1; x2; x3Þ ¼

0
BBBBBB@

a1ðx1; x2; x3Þ
a2ðx1; x2; x3Þ
a3ðx1; x2; x3Þ
φ1ðx1; x2; x3Þ
φ2ðx1; x2; x3Þ

1
CCCCCCA
:

To exclude spurious pure gage fluctuations we impose the
background gauge

Bðak;φ;ϕÞ ¼
X3
j¼1

∂jajð~xÞ

− ½ψ1ðx1; x2Þφ2ð~xÞ − ψ2ðx1; x2Þφ1ð~xÞ� ¼ 0:

Expanding the classical action plus the gauge fixing term
up to the quadratic order in ξ we unveil the second-order
fluctuation operator

FIG. 1. Graphical representation of the quantum correction to
the N-vortex mass up to vorticity N ¼ 5 using the data in
Table III.

TABLE III. Estimation of the quantum correction to the N-vortex mass up to vorticity N ¼ 5 computed from the 2 ≤ nT ≤ 6 partial
sums of the series (38).

nT ΔEN¼1
V

ℏm
ΔEN¼2

V
ℏm

ΔEN¼3
V

ℏm
ΔEN¼4

V
ℏm

ΔEN¼5
V

ℏm

2 −1.0518 −2.0786 −3.0618 −4.0225 −4.9701
3 −1.0546 −2.0716 −3.0217 −3.9235 −4.7860
4 −1.0558 −2.0650 −2.9935 −3.8586 −4.6695
5 −1.0567 −2.0599 −2.9720 −3.8093 −4.5803
6 −1.0573 −2.0554 −2.9541 −3.7686 −4.5071
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L ¼

0
BBBBBB@

−Δþ jψ j2 0 0 −2D1ψ2 2D1ψ1

0 −Δþ jψ j2 0 −2D2ψ2 2D2ψ1

0 0 −Δþ jψ2j 0 0

−2D1ψ2 −2D2ψ2 0 −Δþ 1
2
ð3jψ j2 − 1Þ þ VkVk −2Vk∂k − ∂kVk

2D1ψ1 2D2ψ1 0 2Vk∂k þ ∂kVk −Δþ 1
2
ð3jψ j2 − 1Þ þ VkVk

1
CCCCCCA
: ð43Þ

We remark that in 3D the three-dimensional Laplacian
enters: Δ ¼ ∂2

∂x2
1

þ ∂2
∂x2

2

þ ∂2
∂x2

3

. The structure of the matrix

PDO (43) shows that the a3-fluctuations are decoupled
and do not mix with the other four fluctuations. Therefore,
one-loop string tension shifts to be extracted from the
spectrum of L-fluctuations come from the spectra of the
two operators

K ¼ −I4×4
∂2

∂x23 þHþ; L3 ¼ −Δþ jψ2j;

accounted for separately. The matrix PDO K is in turn
obtained by adding to the 1D Laplacian along the x3-axis
times the 4 × 4 unit matrix the old Hessian operator (6)
working in the ð2þ 1ÞD AHM, fully analyzed in previous
sections. It is clear that the eigenvalues of the K operator,
KFnð~xÞ ¼ ε2nFnð~xÞ are of the form

ε2n ¼ ω2
n þ k23

where ω2
n are the eigenvalues ofHþ. k3 ∈ R belongs to the

continuous spectrum of the 1D Laplacian and has spectral
density ρðk3Þ ¼ l

2π when particle motion in the third spatial
dimension x3 is confined to an interval of (nondimensional)
length 2l ¼ 2mL, which eventually will go to infinity. The
K-heat function HKðβÞ, after subtraction of the K0-heat
function where K0 is obtained by replacingHþ withH0, is
essentially obtained from hHþðβÞ and hH0

ðβÞ
HKðβÞ −HK0

ðβÞ ¼ TrL2e−βK − TrL2e−βK0

¼
Z

∞

−∞
dk3

l
2π

½hHþðβÞ − hH0
ðβÞ�e−βk23

¼ l
2

ffiffiffi
π

p β−
1
2½hHðβÞ − hH0

ðβÞ�:

The Mellin transform allows us to calculate the difference
between the spectral zeta functions ZKðsÞ − ZK0

ðsÞ of the
K and K0 operators

ZKðsÞ − ZK0
ðsÞ

¼ 1

Γ½s�
Z

∞

0

dββs−1½HKðβÞ −HK0
ðβÞ�

¼ 1

Γ½s�
Z

∞

0

dβ
l

2
ffiffiffi
π

p βs−
3
2½hHðβÞ − hH0

ðβÞ�

¼ 1

Γ½s�
l

2
ffiffiffi
π

p Γ
�
s −

1

2

��
ζH

�
s −

1

2

�
− ζH0

�
s −

1

2

��
:

Following the same pattern as in Sec. II we regularize the
3D vortex Casimir energy ΔEC

V by using the spectral zeta
function at a regular point in the s-complex plane

ΔEC
VðKÞðsÞ ¼ ℏμ

2

�
μ2

m2

�
s
½ZKðsÞ − ZK0

ðsÞ�

¼ ℏμ
2

�
μ2

m2

�
s mL
2

ffiffiffi
π

p Γ½s − 1
2
�

Γ½s�

×

�
ζH

�
s −

1

2

�
− ζH0

�
s −

1

2

��

in such a way that in the limit s → − 1
2
, which is a pole of

ΔEC
VðKÞðsÞ, the physical response is recovered. Moreover,

the contribution of the fermionic ghost particles, encoded in
the spectrum of the PDO,

HG ¼ −Δþ jψ2j ¼ −
∂2

∂x21 −
∂2

∂x22 −
∂2

∂x23 þ jψ2j;

must be subtracted, whereas fluctuations are accounted for,
and must be added, by the spectrum of L3. Thus, the 3D
regularized vortex Casimir energy is the sum of these three
contributions

ΔEC
VðsÞ ¼ ΔEC

VðKÞðsÞ − ΔEC
VðHGÞðsÞ þ ΔEC

VðL3ÞðsÞ

coming from the K, L3 and HG-fluctuations. By regular-
izing also the contributions of the ghost and a3 fluctuations
by means of their spectral zeta functions

ΔEC
VðKGÞðsÞ ¼ ℏμ

2

�
μ2

m2

�
s
½ZKGðsÞ − ZKG

0
ðsÞ�

¼ ℏμ
2

�
μ2

m2

�
s l
2

ffiffiffi
π

p Γ½s − 1
2
�

Γ½s�

×

�
ζHG

0

�
s −

1

2

�
− ζHG

�
s −

1

2

��
;

ΔEC
VðL3ÞðsÞ ¼

ℏμ
2

�
μ2

m2

�
s
½ZL3

ðsÞ − ZL30
ðsÞ�

¼ ℏμ
2

�
μ2

m2

�
s l
2

ffiffiffi
π

p Γ½s − 1
2
�

Γ½s�

×

�
ζL3

�
s −

1

2

�
− ζL30

�
s −

1

2

��
;
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we obtain

ΔEC
VðsÞ ¼

ℏμl
4

ffiffiffi
π

p
�
μ2

m2

�
s Γ½s − 1

2
�

Γ½s�

×

�
ζH

�
s −

1

2

�
− ζH0

�
s −

1

2

��

¼ ℏμl
4

ffiffiffi
π

p
�
μ2

m2

�
s
·
Γ½s − 1

2
�

Γ½s�
�
−2Nu−2sþ1

þ 1

4πΓ½s − 1
2
�
X∞
n¼1

X4
a¼1

½cnðHþÞ�aa
u2sþ2n−3 Γ

�
sþ n −

3

2

��

ð44Þ

because HG and L3 are identical PDO’s and thus the ghost
and the third component vector potential fluctuations
annihilate each other. We recall that N is the vorticity of
the vortex string.
Once we have derived (44), a renormalization process

must be implemented in order to tame the divergences of
ΔEC

VðsÞ at the physical limit s → − 1
2
. Within the zeta

function regularization procedure the more severe diver-
gences appear in the lower three terms of the asymptotic
expansion. To put into practice the renormalization pro-
cedure we distinguish between the contributions to ΔEC

VðsÞ
of divergent and finite terms

ΔEC
VðsÞ ¼ ΔECð1Þ

V ðsÞ þ ΔECð2Þ
V ðsÞ þ ΔEC3

V ðsÞ
þ ΔECZM

V ðsÞ:

Here

ΔECð1Þ
V ðsÞ ¼ ℏμl

16π
ffiffiffi
π

p
�
μ2

m2

�
s
·
Γ½s − 1

2
�

Γ½s�
X4
a¼1

½c1ðHþÞ�aa
u2s−1

;

ΔECð2Þ
V ðsÞ ¼ ℏμl

4
ffiffiffi
π

p
�
μ2

m2

�
s
·
Γ½sþ 1

2
�

4πΓ½s�
X4
a¼1

½c2ðHþÞ�aa
u2sþ1

;

refer respectively to the contribution of the first and second
Seeley coefficients in the asymptotic series formula of the
vortex Casimir energy ΔEC

VðsÞ. Of course, the contribution
of the trc0ðHþÞ would be even more divergent, but it does
not appear in the vortex Casimir energy because it is
canceled by the contribution of the vacuum zeta function
ZðH0Þð−1=2Þ, i.e., by zero point renormalization. The
interesting facts to be pointed out about the divergences of

the 3D vortex string Casimir energy are (1) ΔECð1Þ
V ð−1=2Þ

has a divergence proportional to Γð−1Þ. (2) The divergence
of ΔECð2Þ

V ð−1=2Þ arises as the pole of ΓðsÞ at s ¼ 0.
(3) Factors respectively of u2 and u0 in these lower two
terms of the series tell us that these contributions would
survive in the infinite mass limit. Therefore, the divergen-
ces coming from massive fluctuations, i.e., appearing in

factors of the old Seeley coefficients, must be exactly
canceled according to the heat kernel renormalization
criterion. Moreover, the exponents of u encode in the
spectral zeta function the standard divergences of QFT: for
instance, divergences coming from the c1 coefficients
correspond to quadratic divergences in the Feynman graphs
when a momentum cutoff is used, those appearing in c2
contributions come from QFT logarithmic divergences.3

The remaining summands in the series, however,

ΔEC3

V ðsÞ ¼ ℏμl
16π

ffiffiffi
π

p
�
μ2

m2

�
s 1

Γ½s�
X∞
n¼3

X4
a¼1

½cnðHÞ�aa
u2sþ2n−3

× Γ
�
sþ n −

3

2

�

are finite at s ¼ −1=2 and proportional to negative powers
of u, a fact that tells us that they escape from the need of
renormalization. The zero mode contribution, however,
survives even in the infinite mass limit but it is divergent
at the physical value of the s complex parameter. Indeed,

ΔECZM
V ðsÞ ¼ −

ℏμl
2

ffiffiffi
π

p
�
μ2

m2

�
s
·
Γ½s − 1

2
�

Γ½s� Nu−2sþ1

is divergent at s ¼ −1=2 because Γðs − 1=2Þ has a pole
there. It is of note that this contribution is proportional to
twice the vorticity 2N, a number that counts the zero modes.
In order to fix the renormalizations needed it is con-

venient a closer analysis of the vortex Casimir energy
divergences near the dangerous pole at s ¼ −1=2. A power
expansion of the divergent contributions in the neighbor-
hood of this point shows the just mentioned structure

ΔECð1Þ
V ðsÞ¼ℏμ

�
μ2

m2

�
s mL
16π

ffiffiffi
π

p
�

1

2
ffiffiffi
π

p ðsþ1
2
Þþ

1−γ−ψð−1
2
Þ

2
ffiffiffi
π

p

þo

�
sþ1

2

��X4
a¼1

½c1ðHþÞ�aau2;

ΔECð2Þ
V ðsÞ¼ℏμ

�
μ2

m2

�
s mL
16π

ffiffiffi
π

p
�

−1
2

ffiffiffi
π

p ðsþ1
2
Þþ

γþψð−1
2
Þ

2
ffiffiffi
π

p

þo

�
sþ1

2

��
ðhΣ2ðψ ;VαÞi−8πNu2Þ;

ΔECZM
V ðsÞ¼−ℏμ

�
μ2

m2

�
s mL
2

ffiffiffi
π

p
�

1

2
ffiffiffi
π

p ðsþ1
2
Þ

þ1−γ−ψð−1
2
Þ

2
ffiffiffi
π

p þo

�
sþ1

2

��
Nu2

3The stronger divergences, quartic in 3D, are associated with
vacuum energies, i.e., with c0 coefficients that are proportional to
u4. Note also that in the zeta function regularization procedure
these quartic divergences reappear in the disguise of Γð−2Þ.
Fortunately, these quartic divergences are suppressed by zero
point renormalization.
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where γ is the Euler Gamma constant and ψðsÞ is the
Digamma function. The second Seeley coefficient has been
split into two summands

X4
a¼1

½c2ðHþÞ�aa ¼ hΣ2ðψ ; VαÞi − 8πNu2

distinguishing between the zero mode contribution −8πN
and the contribution of the vortex fields expressed in terms
of the old second Seeley coefficient, that is, derived in the
standard GdW procedure, proportional to hΣ2ðψ ; VαÞi
where Σ2 is

Σ2ðψ ; VαÞ ¼ −
5

6
Δjψ j2 − 1

3
Δ
�X2

α¼1

VαVα

�

þ 4
X2
α;β¼1

ðDαψβÞ2 þ
13

4
ð1 − jψ j2Þ2

− 2
X2
α¼1

VαVαð1 − jψ j2Þ þ 1

3

�X2
α¼1

VαVα

�
2

:

All the singular contributions to the vortex Casimir energy
can be rearranged in the form

ΔECð1Þ
V ðsÞ þ ΔECð2Þ

V ðsÞ þ ΔECZM
V ðsÞ≃s→−1=2

≃s→−1=2

�
ℏμ

�
μ2

m2

�
s mL
16π

ffiffiffi
π

p
�

1

2
ffiffiffi
π

p ðsþ 1
2
Þ

þ 1 − γ − ψð− 1
2
Þ

2
ffiffiffi
π

p þ o

�
sþ 1

2

��X4
a¼1

½c1ðHþÞ�aau2

þ ℏμ

�
μ2

m2

�
s mL
16π

ffiffiffi
π

p
�

−1
2

ffiffiffi
π

p ðsþ 1
2
Þ

þ γ þ ψð− 1
2
Þ

2
ffiffiffi
π

p þ o

�
sþ 1

2

��
hΣ2ðψ ; VαÞi

− ℏμ

�
μ2

m2

�
s mL
2

ffiffiffi
π

p
�

1

2
ffiffiffi
π

p ðsþ 1
2
Þ þ

1 − γ − ψð− 1
2
Þ

2
ffiffiffi
π

p

−
1

2
ffiffiffi
π

p ðsþ 1
2
Þ þ

γ þ ψð− 1
2
Þ

2
ffiffiffi
π

p þ o

�
sþ 1

2

��
Nu2

�
:

There appear three types of singularities that need to be
canceled: (1) In the first line the divergences appear in the
contribution to the vortex Casimir energy of the first Seeley
coefficients. The heat kernel renormalization criterion
demands exact cancellation of this divergent term propor-
tional to u2 by subtracting the appropriate contribution to
the energy of some mass renormalization counterterms. In
particular a minimal renormalization scheme must be
implemented to tame the quadratic divergences of the
Higgs tadpole plus the self-energy graphs of all the scalar
and vector bosons, as well as the fermionic ghosts. Use of
the vacuum spectral zeta function is convenient to

regularize the pertinent divergent graphs. We will not
develop this delicate procedure here, see [8,9,28,29,34]
to see how this renormalization works in the superenor-
malizable, henceforth, easier planar AHM. Simply we shall
take equal to zero the contribution written in the first line
legitimated by the heat kernel renormalization criterion4

(2). The same situation happens with the divergent con-
tributions in the second line coming from the old second
Seeley coefficient because it is proportional to u0 and
survives in the infinite mass limit. The divergences, even
being smoother, are more involved. One must cope now
with the subdominant logarithmic divergences of the
graphs just mentioned plus the logarithmic divergences
of one-loop graphs with three Higgs legs plus all the one-
loop graphs with four external legs of the fields working in
the AHM. This means that we shall use the energies due to
the counterterms arising in the coupling constant and wave
function5 renormalizations adjusted to exactly cancel the
contribution in the second line. (3) In the third line we
observe an exact cancelation between the divergences due
to the zero modes. There is, however, a finite remnant that
must be kept because the heat kernel renormalization
criterion does not apply to massless fluctuations.
Finally the one-loop vortex mass shift per length unit is

obtained by taking the limit s → − 1
2
in the sum of the finite

remnant of the whole zero mode contribution plus the
partial sum up to nT order in the series of finite terms
ΔEC3

V ðsÞ taking of course the physical value u ¼ 1

ΔEC
V

L
¼ −

ℏm2

32π2
XnT
n¼3

X4
a¼1

½cnðHþÞ�aaΓ½n − 2� − ℏm2

4π
N: ð45Þ

This energy per unit length is precisely the one-loop string
tension shift induced in the BPS vortices by quantum
fluctuations.
In Table IV we show the responses obtained from this

formula up to nT ¼ 6 for several values of the vorticity N.

TABLE IV. Estimation of the quantum correction to the N-
vortex filament string tension up to vorticity N ¼ 5 computed
from the 3 ≤ nT ≤ 3 partial sums of the series (45).

nT ΔEN¼1
V

ℏm2L
ΔEN¼2

V

ℏm2L
ΔEN¼3

V

ℏm2L
ΔEN¼4

V

ℏm2L
ΔEN¼5

V

ℏm2L

3 −0.0815 −0.1612 −0.2342 −0.2995 −0.3566
4 −0.0818 −0.1604 −0.2297 −0.2882 −0.3354
5 −0.0820 −0.1597 −0.2265 −0.2806 −0.3214
6 −0.0821 −0.1591 −0.2240 −0.2749 −0.3112

4We remark that trc1ðHþÞ, like trc0ðHþÞ, is infrared diver-
gent, although only as logL2. Mass renormalization takes care
also of this infrared divergence.

5The terms which are field derivatives in Σ2 are exactly
canceled by wave function renormalization of the scalar and
vector massive particles.

A. ALONSO-IZQUIERDO et al. PHYSICAL REVIEW D 94, 045008 (2016)

045008-18



The last row offers the best estimations of the N-vortex
string tension quantum corrections. These final estima-
tions are displayed in Fig. 2, where we can compare
these magnitudes for different vorticities. The necessary
Seeley coefficients were previously displayed in
Table I.

IV. CONCLUSIONS AND FURTHER COMMENTS

From the results in this work we draw two main
conclusions:

(i) The modified Gilkey-de Witt heat kernel expan-
sion designed in Refs. [26] and [27] to control the
impact of zero modes in the calculations of
quantum corrections to kink masses and domain
wall surface tensions due to one-loop fluctuations
in scalar field theory has been successfully
generalized to analyze one-loop fluctuations of
both planar and cylindrical BPS vortices in the
Abelian Higgs model.

(ii) The new estimations are more precise than those
obtained in [8] and [9] by using the standard Gilkey-
deWitt expansion. The archive of new data clearly
suggests that weak repulsive forces between BPS
vortices arise caused by the one-loop vortex fluctu-
ations. In extended N ¼ 2 supersymmetry, however,
the one-loop vortex mass shift and the central charge
are adjusted in such a way that one may say the BPS
bound is preserved at the quantum level, see [6].
Thus, one may conclude that some degree of
extended supersymmetry is needed in order to
preserve the BPS character of topological solitons
in the quantum domain.

We stress that our calculations have been performed over a
dilute gas of vortices with a few number of quanta of

magnetic flux spread over the whole plane. In Ref. [35],
however, a different arrangement of vortices has been
analyzed. The authors addressed the quantization of a
bunch of magnetic flux quanta in a parallelogram, a
normalization square, such that the Bradlow limit was
almost reached. This means that, after imposing quasiperi-
odic boundary conditions on the fluctuations, the magnetic
flux of the vortex configuration is very close to the area of
the equivalent genus one Riemann surface. Exactly at the
Bradlow limit the zero modes form the first Landau level of
the Landau problem posed in this Riemann surface and a
reshaping of the work of Ferreiros et al. from the point of
view proposed in this paper will be probably rewarding.
Although the new technique has been designed to deal with
one-loop fluctuations or vacuum energies of low dimen-
sional topological solitons one may speculate with its
application to other extended objects supporting zero
modes of fluctuation. For instance, it is tempting to try
this quantization method on the BPS magnetic monopoles
of the bosonic sector in the N ¼ 2 SUSY gauge theory of
Seiberg and Witten, see [36], and compare the results
obtained with those achieved in the supersymmetric frame-
work in [37].
We have successfully applied the improved zeta function

procedure in calculations of domain wall surface tension
[27] and in the regularization of tunnel determinants in
quantum mechanics, see [38]. It seems plausible that the
new method may be also effective in the analysis of tunnel
determinants appearing in connection with Yang-Mills and/
or gravitational instantons, see [10,39–42]. Other objects of
the greatest physical interest as black holes may be
understood as solitons, see e.g. [43]. Thus, our method
is of potential interest in dealing with quantum fields in the
background of solitonic black holes. To finish, one might
think about the applicability of the improved Gilkey-deWitt
expansion to more exotic topological solitons as, for
instance, the BPS vortices of two species arising in the
gauged nonlinear CPN [44], or, to compactons appearing
in models with higher-order kinetic terms, see [45] where
one-loop correction to their classical masses have been
computed.
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FIG. 2. Graphical representation of the quantum correction to
the N-vortex mass up to vorticity N ¼ 5 using the data in
Table IV.
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