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M. A. González León
1
, J. Mateos Guilarte

2 and M. de la Torre Mayado
2
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Abstract – The quantum problem of an electron moving in a plane under the field created
by two Coulombian centers admits simple analytical solutions for some particular intercenter
distances. These elementary eigenfunctions, akin to those found by Demkov for the analogous
three-dimensional problem, are calculated using the framework of quasi-exact solvability of a pair
of entangled ODE’s descendants from the Heun equation. A different but interesting situation
arises when the two centers have the same strength. In this case completely elementary solutions
do not exist.

Copyright c© EPLA, 2016

Introduction. – The quantum spectral problem of a
charged particle moving in the field created by two fixed
Coulomb centers appears in a natural way in the study
of diatomic molecular ions, in the Born-Oppenheimer ap-
proximation. Although the three-dimensional case has
been profusely studied from different points of view: com-
putational, see, e.g., [1], analytical, see [2,3], as far as we
know the search for elementary solutions has been reduced
to the work of Demkov [4] in the two-center problem in
three dimensions.

In this letter, the existence of elementary solutions for
the planar problem is studied. The underlying idea is sim-
ilar to the Demkov approach [4] to the three-dimensional
case, and thus we search for the eigenfunctions of the
system that can be written essentially as polynomials.
Unlike the three-dimensional problem, the planar system
admits elementary solutions not only of hydrogenoid type,
i.e., eigenfunctions with energy coinciding with the en-
ergy levels of an hydrogenoid atom, but also of a new type
that we shall term as “quasi”-hydrogenoid. These new
type of elementary solutions does not arise in the three-
dimensional problem, its existence in the plane is rem-
iniscent of the particular topology subjacent to the 2D
problem.

The Schrödinger equation for the planar problem is sep-
arable in Euler elliptic coordinates. After the separation
process the PDE wave equation reduces to two ODE’s,
namely a Razavy and a Whittaker-Hill equation, linked by
the two invariants of the system. In his original article [5]
Razavy showed that, for certain values of parameters,

a finite part of the spectrum was calculable in closed form.
Later, in [6,7], it was proved that these exact computable
eigenfunctions for Razavy equation could be obtained in
terms of four polynomial sets. Finkel et al. [8] showed
that the Schrödinger equation associated to the Razavy
potential is quasi-exactly solvable (QES), the mentioned
sets of polynomials was nothing but instances of the as-
sociated weakly orthogonal polynomial family [9], which
allow to find these special eigenfunctions. Finally, these
results were also extended to the Whittaker-Hill equation
in [8].

In this work we will follow a slightly different approach
treating the two equations as particular descendants of the
Confluent Heun equation (CHEq), and, thus, considering
that it is possible to obtain polynomial solutions when
the parameters of the problem render these two versions
of CHEq simultaneously QES [10].

The separability properties and the study of the gen-
eral potentials that admit exact and quasi-exact solvabil-
ity for a broad family of physical problems associated to
the 3D two-center problem have been recently analyzed
thoroughly in ref. [11].

When the two centers are of equal strength, con-
trary to expectations, the problem is more involved. The
Whittaker-Hill equation descends to the Mathieu equa-
tion which is never QES. Thus, there are not completely
elementary eigenfunctions in this situation, although
interesting wave functions may be derived for cer-
tain intercenter distances determined from the Mathieu
characteristic values.
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The planar quantum problem posed by two
Coulombian centers. – The stationary Schrödinger
equation governing the quantum dynamics of a charged
particle moving in the potential of two fixed Coulombian
centers (nuclei, ions, etc) in the plane reads:(

−1
2
Δ − Z1

r1
− Z2

r2

)
Ψ = EΨ, (1)

where Δ = ∂2

∂x2
1

+ ∂2

∂x2
2
, and atomic units are used: � =

me = e = a0 = 1, a0 being the Bohr radius. Z1 and Z2
are the atomic numbers of the two nuclei, and r1 and r2
are the distances from the electron to the nuclei:

r1 =

√(
x1 − R

2

)2

+ x2
2, r2 =

√(
x1 +

R

2

)2

+ x2
2,

while R is the internuclear distance. Equation (1) admits
separation of variables using Euler elliptic coordinates
(ξ, η), ξ = (r1 + r2)/R ∈ (1, +∞) and η = (r2 − r1)/R ∈
(−1, 1). Search for separated wave functions Ψ(ξ, η) =
F (ξ)G(η) converts eq. (1) into two ODEs: one

(ξ2 − 1)
d2F (ξ)

dξ2 + ξ
dF (ξ)

dξ

+
(

ER2

2
ξ2 + R(Z1 + Z2)ξ + λ

)
F (ξ) = 0 (2)

in the “radial” coordinate ξ ∈ (1, ∞), the other

(1 − η2)
d2G(η)

dη2 − η
dG(η)

dη

−
(

ER2

2
η2 + R(−Z1 + Z2)η + λ

)
G(η) = 0 (3)

in the “angular” η ∈ (−1, 1) coordinate. λ is the separa-
tion constant.

Equations (2) and (3) are nothing but the algebraic form
of Razavy and Whittaker-Hill equations, respectively, see,
e.g., [12]. The wave functions of our problem are given by
the product of solutions of (2) and (3) for identical values
of the energy E and the separation constant λ.

The connection with the Confluent Heun equation.
Both (2) and (3) are reduced to CHEq [13,14]:

(
z2 − 1

)
u′′(z) +

(
ε

2
(z2 − 1) + γ(z − 1)

+ δ(z + 1)
)

u′(z) +
(α

2
(z + 1) − q

)
u(z) = 0, (4)

via the changes of variable:

F (ξ) = (ξ + 1)
2γ−1

4 (ξ − 1)
2δ−1

4 e
εξ
4 u(ξ), (5)

G(η) = (1 + η)
2γ−1

4 (1 − η)
2δ−1

4 e
εη
4 u(η), (6)

that are compatible with the form of Razavy and
Whittaker-Hill equations only in the four following cases:

a) δ = γ = 1/2, b) δ = γ = 3/2, c) δ = 1/2, γ = 3/2,
and d) δ = 3/2, γ = 1/2. The rest of CHEq constants are
related to the physical parameters of eqs. (2) and (3) by
the identities: ε2 = −8ER2, and

λ =
ε2

16
+

ε(γ − δ)
4

− (γ + δ)(γ + δ − 2)
4

+
2α − 1

4
− q

together with

α

2
− ε

4
(δ + γ) = R(Z1 + Z2)

in the radial equation, and

α

2
− ε

4
(δ + γ) = R(Z2 − Z1)

in the angular one.
If we interpret CHEq as a spectral problem Du(z) =

qu(z), it is not difficult to show, see [10], that the
differential operator D can be written as a quadratic
combination of the generators of the Lie algebra sl(2, R)
if and only if α = −nε, being n a non-negative integer,
and consequently CHEq represents a quasi-exactly solv-
able spectral problem [15–17] for this special combina-
tion of parameters. In this situation it is possible to find
an invariant module of polynomial solutions of (4) associ-
ated with each arbitrary value of n. Following the stan-
dard procedure [9,18] we search for Frobenius solutions of
the form:

u(z) =
∞∑

k=0

(−1)kPk(q)
2kk!(γ)k

(z + 1)k, (7)

where (γ)k = γ(γ +1) . . . (γ +k−1) and P0(q) = 1, which
leads to the following three-term recurrence between the
polynomials Pk(q) for k ≥ 1:

Pk+1(q) = (q − k(δ + γ − ε + k − 1))Pk(q)
− kε(n − k + 1)(γ + k − 1)Pk−1(q). (8)

Thus, given a concrete value of n, and fixing q as one of the
n + 1 roots of Pn+1(q), qj , j = 1, . . . , n + 1, solutions (7)
truncate to polynomials of degree n,

un,j(z) =
n∑

k=0

(−1)kPk(qj)
2kk!(γ)k

(z + 1)k (9)

and consequently a (n+1)-dimensional module of polyno-
mial eigenfunctions of (4) can be determined algebraically.
The polynomials Pk(q) constitute the weakly orthogonal
polynomial family [9] associated to the QES property for
CHEq [10]. It is interesting to remark that the particu-
larization of this family to the Razavy and Whittaker-Hill
parameters corresponds with the first polynomial family
found in [8] for these equations.
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Elementary solutions of Razavy equation. –
Translating the QES condition of (4) to the Razavy equa-
tion (2): α = −nrε, nr ∈ N, a quantization condition in
the expression of ε appears,

α

2
− ε

4
(γ +δ) = R(Z1 +Z2) =⇒ ε = − 4R(Z1 + Z2)

(2nr + γ + δ)
(10)

and, consequently, in the energy eigenvalues,

E = − ε2

8R2 =⇒ Enr = − 2(Z1 + Z2)2

(2nr + γ + δ)2
. (11)

Meanwhile, the separation constant is characterized by nr

but also by j = 1, . . . , nr + 1, because the explicit depen-
dence in the qj parameter:

λnr ,j =
R2(Z1 + Z2)2

(2nr + γ + δ)2
+

(2nr − γ + δ)R(Z1 + Z2)
(2nr + γ + δ)

− (γ + δ)(γ + δ − 2)
4

− 1
4

− qj . (12)

As was mentioned above, the compatibility between
Razavy and CHEq is only possible in four concrete choices
of constants δ and γ. Thus we find the following expres-
sions for energies, separation constants and eigenfunctions:

Type a). δ = γ = 1
2 .

Enr = −2(Z1 + Z2)2

(2nr + 1)2
,

λnr ,j = −R2Enr

2
+

2nrR(Z1 + Z2)
2nr + 1

− qj ,

Fnr ,j(ξ) = e− R(Z1+Z2)
2nr+1 ξunr,j(ξ).

Type b). δ = γ = 3
2 .

Enr = −2(Z1 + Z2)2

(2nr + 3)2
,

λnr ,j = −R2Enr

2
+

2nrR(Z1 + Z2)
2nr + 3

− qj − 1,

Fnr ,j(ξ) =
√

ξ2 − 1 e− R(Z1+Z2)
2nr+3 ξunr,j(ξ).

In these two cases a) and b) the energies are the cor-
responding to planar hydrogenlike atoms with nuclear
charge Z1 + Z2.

Type c). δ = 1
2 , γ = 3

2 .

Enr = −2(Z1 + Z2)2

(2nr + 2)2
,

λnr ,j = −R2Enr

2
+

(2nr − 1)R(Z1 + Z2)
2nr + 2

− qj − 1
4
,

Fnr ,j(ξ) =
√

ξ + 1 e− R(Z1+Z2)
2nr+2 ξunr,j(ξ).

Type d). δ = 3
2 , γ = 1

2 .

Enr = −2(Z1 + Z2)2

(2nr + 2)2
,

λnr ,j = −R2Enr

2
+

(2nr + 1)R(Z1 + Z2)
2nr + 2

− qj − 1
4
,

Fnr ,j(ξ) =
√

ξ − 1 e− R(Z1+Z2)
2nr+2 ξunr,j(ξ).

In the cases c) and d) the energies do not correspond to
the planar hydrogenoid atoms, because the even character
of the denominator, 2nr + 2. Recall that the spectrum of
the planar hydrogen problem [12] is E = −2

(2n+1)2 . Nev-
ertheless, there exist interesting elementary solutions of
Types c) and d) which are reminiscent of the lemniscatic
orbits of the classical problem and we shall refer to as
“quasi”-hydrogenoid.

Elementary solutions of Whittaker-Hill equa-
tion. – An equivalent analysis can be performed for the
angular equation (3) simply changing the relative sign of
the charge Z1 and the range of variation for the angular
coordinate. Thus, the condition: α = −naε, na ∈ N, leads
to the following structure of solutions:

Type a). δ = γ = 1
2 .

Ena = −2(−Z1 + Z2)2

(2na + 1)2
,

λna,j = −R2Ena

2
+

2naR(−Z1 + Z2)
2na + 1

− qj ,

Gna,j(η) = e− R(−Z1+Z2)
2na+1 ηuna,j(η).

Type b). δ = γ = 3
2 .

Ena = −2(−Z1 + Z2)2

(2na + 3)2
,

λna,j = −R2Ena

2
+

2nrR(−Z1 + Z2)
2na + 3

− qj − 1,

Gna,j(η) =
√

1 − η2 e− R(−Z1+Z2)
2na+3 ηuna,j(η).

Type c). δ = 1
2 , γ = 3

2 .

Ena = −2(−Z1 + Z2)2

(2na + 2)2
,

λna,j = −R2Ena

2
+

(2na − 1)R(−Z1 + Z2)
2na + 2

− qj − 1
4
,

Gna,j(η) =
√

1 + η e− R(−Z1+Z2)
2nr+2 ηuna,j(η).

Type d). δ = 3
2 , γ = 1

2 .

Ena = −2(−Z1 + Z2)2

(2na + 2)2
,

λna,j = −R2Ena

2
+

(2na + 1)R(−Z1 + Z2)
2na + 2

− qj − 1
4
,

Gna,j(η) =
√

1 − η e− R(−Z1+Z2)
2na+2 ηuna,j(η).

Elementary solutions of the Schrödinger equa-
tion. – The simultaneous existence of elementary solu-
tions in both radial and angular equations, for fixed values
of Z1 and Z2, is obviously possible only if the parameters
E and λ determined in the resolution process are the same
for both equations.

Thus, there exist elementary solutions of the
Schrödinger equation only for those values of n1 ∈ N and
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Fig. 1: (Colour online) Graphical representation of the prob-
ability density ρ(x1, x2) = |Ψ|2 for the normalized eigenfunc-
tion (14), and several level curves of ρ(x1, x2).

n2 ∈ N that solve the diophantine equation:

(Z1 + Z2)2

n2
1

=
(−Z1 + Z2)2

n2
2

, (13)

where n1 can be equal to 2nr + 1, 2nr + 3 or 2nr + 2,
whereas n2 is: 2na + 1, 2na + 3 or 2na + 2. Moreover,
the value of the separation constant λ in (2) and (3) must
be the same and because of the dependence of λ on R,
the equality will only be satisfied for certain values of the
internuclear distance.

As illustrative examples, we present several elementary
solutions for two pairs of charges: Z1 = 5, Z2 = 1, and
Z1 = 2, Z2 = 1.
Charges Z1 = 5, Z2 = 1: The elementary eigenfunction of
minimum energy corresponds to the n1 = 3 and n2 = 2
solution of (13): E = −8. This solution appears consider-
ing Type b) in Razavy equation with nr = 0 and Type d)
in Whittaker-Hill equation with na = 0. The compatible
value of λ is −7/16 that is obtained for R = 3/8. Thus,
we have the eigenfunction (see fig. 1):

Ψ(ξ, η) =
√

ξ2 − 1
√

1 − ηe− 3
4 (ξ−η). (14)

The next energy level where elementary solutions are
found is E = −2. These solutions are obtained for n1 = 6
and n2 = 4 in (13), in four different combinations of
Types c) and d):

– Type d) in both equations. The values of the con-
stants are: λ = −583/256 and R = 3/16 and the
wave function reads (fig. 2)

Ψ(ξ, η) =
√

ξ − 1
√

1 − η

(
η +

1
3

)

× (
ξ2 − 10ξ − 7

)
e− 3

16 (ξ−η). (15)

Fig. 2: (Colour online) Graphical representation of ρ(x1, x2)
for the normalized eigenfunction (15) and several level curves
of ρ(x1, x2).

– Type d) in Razavy equation and Type c) in
Whittaker-Hill equation. λ = −2.247, R = 0.435,

Ψ(ξ, η) =
√

ξ − 1
√

1 + η(η − 0.713)

× (
ξ2 − 3.889ξ − 3.538

)
e−0.435(ξ−η).

– Type c) and d), respectively. λ = −3.111, R = 1.643,

Ψ(ξ, η) =
√

ξ + 1
√

1 − η(η − 0.583)

× (
ξ2 − 0.634ξ − 0.881

)
e−1.643(ξ−η).

– Type c) and d) again. λ = −0.587, R = 0.292,

Ψ(ξ, η) =
√

ξ + 1
√

1 − η(η + 3.203)

× (
ξ2 − 10.055ξ + 16.819

)
e−0.292(ξ−η).

Charges Z1 = 2, Z2 = 1: In this case we present the three
elementary eigenfunctions that appear for E = −1/2. The
corresponding solution of (13) is n1 = 6 and n2 = 2:

– λ = 1
36 (59 − 4

√
19), R = 2

3 (1 +
√

19),

Ψ(ξ, η) =
√

ξ − 1
√

1 − ηe− 1
3 (1+

√
19)(ξ−η)

×
(

ξ2 +
1
2

(
3 − √

19
)

ξ +
1
4

(
3 − 2

√
19

))
.

– λ = − 31
64 , R = 3

4 ,

Ψ(ξ, η) =
√

ξ + 1
√

1 − η(ξ2 − 8ξ + 11)e− 3
8 (ξ−η)

– λ = 1
36 (59 + 4

√
19), R = 2

3 (−1 +
√

19),

Ψ(ξ, η) =
√

ξ + 1
√

1 + ηe− 1
3 (−1+

√
19)(ξ−η)

×
(

ξ2 − 1
2

(
3 +

√
19

)
ξ +

1
4

(
3 + 2

√
19

))
.
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Fig. 3: (Colour online) Graphical representation of ρ(x1, x2)
for (20) and several level curves of ρ(x1, x2).

In order to facilitate the presentation we have written
some of the numbers rounded to three significant decimal
digits, although all these elementary eigenfunctions have
been obtained using exact analytic expressions. There
exist also elementary solutions containing polynomials of
higher orders, that have to be calculated using numerical
approximations because the determination of the roots of
Pn+1(q) in (8) with n ≥ 4 is involved.

Two-equal centers. – It is very interesting to ana-
lyze the symmetric case, i.e., when Z1 = Z2 = Z. The
radial equation (2) is still a Razavy equation, but the an-
gular one (3) reduces to the algebraic version of Mathieu
equation:

(1−η2)
d2G(η)

dη2 −η
dG(η)

dη
−

(
ER2

2
η2 + λ

)
G(η) = 0. (16)

The standard form of Mathieu equation [19,20] is obtained
by the change of variable: η = cos ν, where ν varies in
the interval ν ∈ [−π, π] in such a way that the x2 > 0
half-plane is described in the range ν ∈ (0, π) whereas
ν ∈ (−π, 0) corresponds to the x2 < 0 half-plane, i.e., the
original change of coordinates:

x1 =
R

2
ξη, x2 = ±R

2

√
ξ2 − 1

√
1 − η2

is redefined in a one-to-one version:

x1 =
R

2
ξ cos ν, x2 =

R

2

√
ξ2 − 1 sin ν.

Thus, eq. (16) reduces to standard form

d2G(ν)
dν2 + (a − 2p cos 2ν)G(ν) = 0, (17)

where a = −λ − ER2

8 and p = ER2

8 .

Fig. 4: (Colour online) Graphical representation of ρ(x1, x2)
for (21) and several level curves of ρ(x1, x2).

Mathieu equation (17) does not admit polynomial so-
lutions [20], this fact can be easily checked because the
quasi-exact solvability condition for CHEq is not com-
patible with the form of Mathieu equation (16). Com-
plete elementary solutions, products of two polynomials,
for the planar two-center problem in the symmetric case
do not exist.

Nevertheless, it is possible to consider elementary so-
lutions only for Razavy equation and to determine the
solutions of Mathieu equation corresponding to the values
of Enr and λnr ,j , (11), (12). Each elementary Razavy so-
lution is associated with a Mathieu equation (17) with the
parameters:

anr,j = −λnr,j − EnrR2

4
, pnr =

EnrR2

8
.

There exist solutions of Mathieu equation (17) with
different periodicity or quasi-periodicity properties, and
they are applicable to a physical problem depending on
its special characteristics, see for instance [21]. In the
two-center problem, the physically admissible eigenfunc-
tions of the Schrödinger equation must be univalued and
thus it is necessary to consider only the 2π-periodic so-
lutions of (17), the proper Mathieu functions: Cen(p, z)
and Sen(p, z) [19,20]. The Mathieu cosine Cen(p, z),
n = 0, 1, . . . , and sine Sen(p, z), n = 1, 2, . . . , are solu-
tions of (17) only if the parameter a takes the Mathieu
characteristic values an(p) and bn(p), respectively.

An elementary Razavy solution determined by Enr and
λnr ,j is compatible only with values of R such that the
Mathieu parameter anr ,j coincides with a characteristic
value of the Mathieu cosine or sine functions, i.e.

−λnr ,j − EnrR2

4
= an

(
EnrR2

8

)
(18)
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M. A. González León et al.

for some n = 0, 1, 2, . . . , or

−λnr,j − EnrR2

4
= bn

(
EnrR2

8

)
(19)

for some n = 1, 2, . . . .
As examples, several eigenfunctions of this type are

presented:
Charges Z1 = Z2 = 3: We illustrate the process with the
simplest example: Choosing the energy E = −8, obtained
for nr = 1 in the Type a) of Razavy equation, there are two
allowable values for the separation constant: λ1,1 and λ12.

The associated Mathieu equations have parameters:
a1,1 and a1,2, respectively, and p1 = −R2. There exists
only one possibility for R that leads a1,1 and/or a1,2 to be a
characteristic value of the Mathieu equation: if R = 1.335,
then a1,2 = b1(p1) = 2.298, λ1,2 = 1.268. For these val-
ues, the trascendent equation (19) is satisfied. Thus, the
eigenfunction is (fig. 3)

Ψ(ξ, ν) = e−2.671ξ(ξ + 0.911)Se1(−1.783, ν). (20)

Other examples are

– E = −18, λ = −0.264, R = 0.329, a1(p0) = 0.750,

Ψ(ξ, ν) = e−0.986ξ
√

ξ + 1Ce1(−0.243, ν), see fig. 4;
(21)

– E = − 9
2 , λ = −3.133, R = 0.870, b2(p1) = 3.985,

Ψ(ξ, ν) = e−1.305ξ
√

ξ + 1(ξ + 0.491)Se2(−0.426, ν);

– E = − 72
25 , λ = 6.412, R = 4.491, a2(p2) = 8.111,

Ψ(ξ, ν) = e−5.389ξ
(
ξ2 + 1.729ξ + 0.735

)
× Ce2(−7.262, ν).

For aesthetic reasons, the characteristic values and the
other quantities involved in (20), (21) and the rest of the
equations, are presented using only three significant deci-
mal digits, although obviously an arbitrary precision can
be obtained.

It is possible to find a plethora of solutions of this mixed
type with specific values of R physically meaningful in the
atomic/molecular range.
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