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Abstract

We introduce a dynamical evolution operator for dealing with unstable
physical process, such as scattering resonances, photon emission, decoher-
ence and particle decay. With that aim, we use the formalism of rigged
Hilbert space and represent the time evolution of quantum observables in
the Heisenberg picture, in such a way that time evolution is non-unitary.
This allows to describe observables that are initially non-commutative,
but become commutative after time evolution. In other words, a non-
abelian algebra of relevant observables becomes abelian at t → ∞. We
finally present some relevant examples.

1 Introduction

In previous papers [1, 2, 3], we considered the quantum-to-classical transition
from the point of view of the algebra of quantum observables. If a quantum
system undergoes a physical process such that its behavior becomes classical,
then its algebra of observables should undergo a transition from a non-Abelian
algebra to an Abelian one. In order to describe this kind of time evolutions, we
have proposed to use the Heisenberg picture, so we can consider the time evolu-
tion of the whole algebra of observables. It is important to remark that, in the
standard formalism of quantum mechanics, a closed system always evolves uni-
tarily. So, even in the Heisenberg picture, if two observables are incompatible at
one time, they will remain incompatible for every time. Therefore, with the aim
of describing the quantum-to-classical transition of the algebra of observables,
it is necessary to go beyond unitary time evolutions.

In this paper, we continue with this approach by studying more general
models. We introduce a dynamical evolution operator for dealing with unstable
physical process (such as scattering resonances, photon emission, decoherence,
relaxations and particle decay). In order to study the time evolution of their al-
gebras of observables, we use the formalism of rigged Hilbert space (RHS), which
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is a natural choice for describing these kind of systems. The RGS description
of quantum mechanics is an alternative formalism to that of von Neumann.
It has several applications, particularly in particle physics and in the study of
scattering processes. It also provides a rigorous description of eigenstates of the
position and momentum operators, in fact, it serves as a rigorous mathematical
basis for the Dirac formulation of quantum mechanics [4, 5, 6, 7, 8, 9].

As mentioned above, the use of the Heisenberg picture allows to study the
classical limit from a different point of view. We show that an initially non-
abelian algebra of relevant observables, becomes an abelian one when times
goes to infinity. We refer to this non-abelian/abelian transition as commutation
process. The study of this process focuses on the dynamics of the algebras
of observables. In this work we provide an explicit representation of the time
evolution operator for an extensive family of models described by the RHS
formalism. We show that, under certain conditions, a commutation process (of
the form described in [1, 2, 3]) is obtained for them. This phenomenon could
be of interest for the study of quantum scattering resonances. It consists in a
scattering process in which the scattered particle ends up in a quasi-stationary
state. As a result of our work, it turns out that the use of non-Hermitian
Hamiltonians of the form H +λV , introduces a natural ground for the study of
the commutation process of algebras.

The paper is organized as follows. In Section 2, we introduce the prob-
lem of the dynamical evolution of algebras and the logical quantum-to-classical
transition. We illustrate our ideas by discussing a simple case: quantum oper-
ations and the quantum damping channel. Next, in Section 3, we discuss the
fundamental aspects of the RHS formalism. In Section 4, we introduce a time
evolution operator for observables in the RHS formalism. This allows us to
describe the commutation process for a family of models of unstable systems in
Section 5.

2 Logical quantum-to-classical transition

The sets of properties of classical and quantum systems have a logical structure,
given by their orthocomplemented lattice structure [10] (see also [11, 12, 13] for
a recent discussion on the subject). The propositional approach to quantum
systems has been used in diverse areas of the foundations of quantum mechanics,
as for example, in the study of quantum histories [14, 15, 16, 17, 18, 19, 20,
21]. Due to this structure, logical operations and logical relations between
properties can be defined, such as disjunction (∨), conjunction (∧), negation (¬)
and implication (≤). All orthocomplemented lattices satisfy certain relations,
called distributive inequalities [22]:

a ∧ (b ∨ c) ≥ (a ∧ b) ∨ (a ∧ c), a ∨ (b ∧ c) ≥ (a ∨ b) ∧ (a ∨ c), (1)

where a, b, and c are arbitrary properties of the system. When the equalities
hold, the lattice is called distributive. An orthocomplemented and distributive
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lattice is called a Boolean lattice. The distributive property is an essential feature
which differentiates classical and quantum lattices.

In classical mechanics a physical system is represented by a phase space
and the properties of the system are represented by measurable subsets of its
phase space. Therefore, the logical structure of classical systems is given by the
algebraic structure of sets [10]. The resulting lattice is not only an orthocom-
plemented lattice, but also a distributive one, i.e., it is a Boolean lattice. This
logical structure is naturally related with classical logic.

The quantum case is very different. In quantum mechanics a physical system
is represented by a Hilbert space, observables are represented by self-adjoint op-
erators on the Hilbert space and physical properties are represented by orthog-
onal projectors [23]. The logical structure of quantum systems is the algebraic
structure of orthogonal projectors, and it is known as quantum logic [24, 25].

Unlike classical logic, quantum logic is a non-distributive orthocomplemented
lattice. While in the classic lattice, all properties satisfy the distributive equali-
ties, in the quantum lattice, only distributive inequalities hold in general [10, 22].
However, for some subsets of quantum properties the equalities hold. When a
subset of properties satisfies the distributive equalities, they are called com-
patible properties. It can be proved that properties associated with different
observables are compatible if the observables commute. If, on the contrary, two
observables do not commute, some of the properties associated with them are
not compatible [10, 25]. Therefore, by extension, commuting observables are
called compatible observables.

The differences between classical and quantum logic are of fundamental im-
portance for describing the quantum-to-classical transition. If a quantum sys-
tem undergoes a physical process and as a consequence of this its behaviour
becomes classic, then the logical structure of its properties should undergo a
transition from quantum logic to classical logic, i.e. its lattice structure should
become distributive. In order to give an adequate description of the logical
structure transition, we have proposed to describe the classical limit in terms
of the Heisenberg picture [1, 2, 3]. This perspective allows to consider the time
evolution of the whole lattice of properties, and to study the transition from
classical to quantum logic.

It is important to remark that, when governed by the Schrödinger equation,
the time evolution of a closed system is always unitary. Even in the Heisenberg
picture, if two observables are incompatible at one time, they will remain incom-
patible at any time [3]. Therefore, for describing the logical quantum-to-classical
transition, it is necessary to consider more general time evolutions.

In order to describe adequately the logical quantum-to-classical transition,
let us consider a quantum system with a general time evolution, and a time-
dependent set of relevant observables, O(t) = {Ôi(t)}i∈I (I an arbitrary set
of indexes). Each set O(t) generates an algebra of observables V(t), and each
algebra has associated an orthocomplemented lattice LV(t). We assume that
initially some observables are incompatible, i.e., there are i, j ∈ I such that[
Ôi(0), Ôj(0)

]
6= 0. Therefore, the lattice LV(0) is a non-distributive lattice.
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For quantum systems with only one characteristic time tc, the quantum-to-
classical transition is given by the following process:[

Ôi(0), Ôj(0)
]
6= 0 −→

[
Ôi(tc), Ôj(tc)

]
= 0, ∀i, j. (2)

The logical classical limit is expressed by the fact that, while LV(0) is a non-
distributive lattice, LV(tc) is a Boolean one, i.e., it is a classical logic. In this
way, we obtain an adequate description of the logical evolution of a quantum
system.

In order to illustrate the general idea of the logical classical limit, we are
going to show the logical transition of a physical with a quantum evolution
given by a quantum channel.

2.1 A simple case: quantum operations

We consider a time evolution given by a quantum operation, and we define the
corresponding Heisenberg representation. Once we have defined the quantum
operations on the space of quantum observables, we study the logical quantum-
to-classical transition of one relevant example: the amplitude damping channel.
We show that, when time goes to infinity, the logical structure of the system
becomes classical.

A quantum operation is a linear and completely positive map from the set
of density operators into itself [26]. For each time t, the quantum operation Et
maps the initial state ρ̂0 to the state at time t, i.e.,

Et(ρ̂0) = ρ̂(t), (3)

In terms of the sum representation, we can express Et as follows [26],

Et(ρ̂0) =
∑
µ

Êµ(t)ρ̂0Ê
†
µ(t), (4)

where Êµ(t) are the Kraus operators [27] associated with the map Et.
Now, we define the Heisenberg representation of a quantum operation Et

as an operator Ẽt which maps each observable Ô to another observable Ô(t) =
Ẽt(Ô). We interpret Ô(t) as the time evolved observable of Ô under the quantum
operation. The map Ẽt must preserve the mean values of all the observables,
i.e.,

Tr
(
ρ̂(t)Ô

)
= Tr

(∑
µ

Êµ(t)ρ̂0Ê
†
µ(t)Ô

)
=

= Tr

(
ρ̂0

∑
µ

Ê†µ(t)ÔÊµ(t)

)
= Tr

(
ρ̂0Ô(t)

)
. (5)

Therefore, the map Ẽt is given by

Ẽt(Ô) = Ô(t) =
∑
µ

Ê†µ(t)ÔÊµ(t). (6)
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It easy to check that, if Ẽt(Ô) is a self-adjoint operator, then Ẽt maps the space
of observables into itself.

Once we have defined quantum operations in the Heisenberg picture, we can
study the logical classical limit of the system. Let us illustrate this process with a
simple example: the amplitude damping channel [26]. The amplitude damping
channel is useful for describing the energy dissipation of a quantum system
due to the effects of an environment. It has many applications in quantum
information processing, because it is appropriate for modelling the effects of
quantum noise. This quantum map can be used to describe the decay of an
excited state of a two-level atom due to the spontaneous emission of a photon.
If the atom is in the ground state there is no photon emission, and the atom
continues in the ground state. But, if the atom is in the excited state, after
an interval of time τ , there is a probability p that the state has decayed to the
ground state and a photon has been emitted [26].

The quantum map which represents the amplitude damping channel can be
expressed in term of two Kraus operators [26],

Eτ (ρ̂0) = Ê0ρ̂0Ê
†
0 + Ê1ρ̂0Ê

†
1, (7)

with the Kraus operators given by

Ê0 =

(
1 0

0
√

(1− p)

)
, Ê1 =

(
0
√
p

0 0

)
. (8)

In the Heisenberg picture, we have an associated quantum map Ẽτ acting on
the space of observables, given by Ẽτ (Ô) = Ê†0ÔÊ0 + Ê†1ÔÊ1. In matrix form,
we have the following expression,

Ẽτ (Ô) =

(
O00

√
1− pO01√

1− pO10 pO00 + (1− p)O11

)
. (9)

If we apply the amplitude damping channel n times, we obtain the quantum
map Ẽnτ (Ô) given by

Ẽnτ (Ô) =

(
O00

√
(1− p)nO01√

(1− p)nO10

∑n−1
i=0 p(1− p)iO00 + (1− p)nO11

)
.

(10)
This can be reduced to

Ẽnτ (Ô) =

(
O00

√
(1− p)nO01√

(1− p)nO10 (1− p)nO11 +O00 [1− (1− p)n]

)
. (11)

Considering the limit n −→∞, we obtain

Ẽ∞(Ô) =

(
O00 0
0 O00

)
. (12)

Thus, when t −→ ∞, all observables become multiples of the identity. This
means that the whole algebra of observables becomes trivially commutative,
and therefore, the associated lattice becomes Boolean.
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The quantum-to-classical transition was extensively studied in the physics
literature from the point of view of the quantum state evolution. However, from
this perspective observables do not evolve on time. In previous papers, we ar-
gued that this kind of descriptions of the classical limit based on the Schrödinger
picture is not adequate for explaining the quantum-to-classical transition of the
logical structure of a system. Instead, the description in terms of the Heisenberg
picture allows to describe how the quantum structure of properties becomes a
Boolean.

3 Unstable systems and rigged Hilbert space

In the previous section we have studied the commutation process for a simple
case. From a more general perspective, this phenomenon can appear when the
evolution of the system is non-unitary [28, 29, 30]. A natural way of describing
this kind of processes has been largely studied in the literature of resonances
and unstable quantum systems [31, 32, 33, 34, 35, 36, 37]. In most of these
models, resonances appear associated with poles of the scattering matrix and
give place to decay times, which can be related with relaxation and decoherence
processes [38, 39, 40, 41, 42]. The formalism of rigged Hilbert space is a natural
choice for describing these kind of physical processes. In what follows, we will
study the commutation process in the context of this formalism.

The study of unstable physical systems usually appeals to a master equation
or a non-Hermitian Hamiltonian, giving place to a non-unitary evolution in the
Hilbert space [36, 37, 43, 44, 45]. In this paper we explore a different approach:
we change the Hilbert space for a rigged Hilbert space, in which we obtain
an evolution that is suitable for describing unstable systems, and we construct
a time evolution operator which is formally Hermitian although not unitary.
This non-unitarity will allow the evolution from a non-commutative algebra of
observables to a commutative one.

Resonance scattering is produced by a Hamiltonian pair {H0, H} with H =
H0 + V . Here, H0 is the so called free Hamiltonian and V is an interaction. If
we consider a three dimensional system, usually H0 = p2/2m and V is given
by a spherically symmetric function of the position r, V (r). For simplicity, we
also assume that V (r) is short range (vanishes at the infinity faster than the
Coulomb interaction) or even of compact support (it is zero outside a finite
region).

Quasi stationary states are produced when an incoming particle enters into
the interacting region, where the potential V is non-zero, and stays in this region
for a much longer period of time than it would have been if the interaction were
absent.

Quasi stationary states are usually identified with resonances [46]. Reso-
nances are conceptually defined in two ways. We may always assume that the
continuous spectrum of both H0 and H is given by R+ ≡ [0,∞). For simplicity,
we also may assume that both Hamiltonians do not have bound states (which
implies a restriction to the continuous subspace), singular spectrum or even
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that the absolutely continuous spectrum is not degenerate (which in the case of
three dimensional spherically symmetric potentials is equivalent to choose the
subspace with ` = 0). Although none of these simplifications is essential, we
will restrict our considerations to Hamiltonians with a non-singular continuous
spectrum.

Definition 1.- For any pure state ψ ∈ H in the Hilbert space H, let us
consider the following pair of complex functions

F0(z) := 〈ψ|(H0 − z)−1|ψ〉, F (z) := 〈ψ|(H − z)−1|ψ〉. (13)

These functions are meromorphic having the positive semi-axis R+ as branch
cut. Then, if for some ψ ∈ H, F (z) has a pole at ZR and F0(z) does not, then
we say that the Hamiltonian pair {H0, H} has a resonance at zR [47].

Definition 2.- Take the S matrix in the momentum representation, so that
S is a function of the modulus, p := |p| of the momentum p, so that S ≡ S(p).
Under some hypothesis related with causality, S(p) is analytically continuable
to the complex plane as a meromorphic function (that may have additionally
branch cuts). The isolated singularities of this extension are poles (never es-
sential singularities). Poles on the imaginary axis are always simple. Poles on
the positive imaginary axis represent bound states, poles on the negative imag-
inary axis are linked to the existence of antibound or virtual states. Finally,
resonances are given by pair of poles on the lower half plane, equidistant with
respect to the imaginary axis. Each of these poles represent a single resonance.
In principle, there is no restriction with respect to the order of resonance poles.

It is customary to represent the S matrix in terms of the energy under
the transformation p =

√
2mE. Since the square root is a multiform function

supported on a two sheeted Riemann surface, the same property is shared by
the function S(E) [48]. On this Riemann surface, resonance poles appear in
complex conjugate pairs and lie on the second sheet.

The equivalence of both definitions has not been thoroughly investigated,
although it goes well for some simple models. In addition, there are some other
definitions based on physical notions, which are only equivalent under additional
assumptions [48, 49]. We may add that, although the first definition we give
here is widely accepted by mathematicians, the second one is more popular
among physicists. We are using this definition in the sequel.

In a high number of previous articles, we have discussed the construction
of Gamow vectors in an abstract setting when the potential satisfies the above
mentioned conditions. Let us summarize the main properties of these Gamow
vectors.

• Let us consider a resonance defined as a pair of complex conjugate poles of
the analytic continuation of the S(E) matrix in the energy representation.
These poles are located at the points zR = ER−iΓ/2 and z∗R = ER+iΓ/2.
Let us assume that these resonance poles are simple, otherwise unnecessary
complications will emerge in the model. The general theory shows that one
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may define two vectors, |ψG〉 and |ψD〉, related to z∗R and zR, respectively,
with some properties that we mention in the sequel.

• Both Gamow vectors, |ψG〉 and |ψD〉, are eigenvectors of the total Hamil-
tonian H with respective eigenvalues given by z∗R and zR, so that

H|ψG〉 = z∗R |ψG〉 , H|ψD〉 = zR |ψD〉. (14)

These relations define both Gamow vectors.

• However, H is a self adjoint Hamiltonian and a self adjoint Hamiltonian
cannot have complex eigenvectors. The situation is saved if we extend H
to the anti-dual space Φ× of a rigged Hilbert space (RHS in the sequel)
Φ ⊂ H ⊂ Φ×. In general, one may construct two RHS Φ± ⊂ H ⊂ Φ×±
such that H|ψG〉 = z∗R |ψG〉 is valid in Φ×− and H|ψD〉 = zR |ψD〉 is valid
in Φ×+.

• The spaces Φ+ and Φ− are unitarily equivalent to spaces of complex an-
alytic functions on the upper and lower half planes, respectively. This
construction permits the use of complex analytic function techniques to
obtain our results. In particular, the use of Hardy functions on a half plane
permits a formulation for time asymmetric quantum mechanics valid for
scattering processes.

• We may extend the evolution operator to the antidual spaces Φ×− and Φ×+,
so that this operator may be applied to the Gamow vectors. The result is
given by the following pair of relations

e−itH |ψG〉 = e−itER etΓ/2 |ψG〉, e−itH |ψD〉 = e−itER e−tΓ/2 |ψD〉. (15)

Note that |ψG〉 grows and |ψD〉 decays as time increases in the positive
direction. Consequently, |ψG〉 and |ψD〉 are named the growing and the
decaying Gamow vector, respectively.

• When the spaces Φ± are constructed using Hardy functions, the first re-
lation in (15) is valid for t ≤ 0 only. Analogously, the second relation in
(15) is valid for t ≥ 0 only. In this formalism, the unitary group of time
evolution splits into two semigroups, one for t ≤ 0 and the other for t ≥ 0.
Thus, these RHS supports a semigroup representation of time evolution.

• Thus, we have two apparently different processes, one for t ≤ 0 and the
other for t ≥ 0. However, the time reversal operator T transforms a process
into the other, so that both are essentially equivalent. In particular,

T |ψG〉 = |ψD〉 , T |ψD〉 = |ψG〉. (16)
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• Nevertheless, the basis for time asymmetric quantum mechanics consists
in giving a completely different interpretation to both processes. Roughly
speaking, the RHS Φ− ⊂ H ⊂ Φ×− contains the system observables, while
Φ− ⊂ H ⊂ Φ×− the states. Then, both are different and, thus, time
asymmetry acquires a sense.

In this s ection we have presented the standard formalism of Rigged Hilbert
spaces. Our aim is to introduce a time evolution operator in order to describe
the evolution of operator algebras in this setting. Thus, we need to write first the
non-Hermitian Hamiltonian in a spectral decomposition-like expression. This is
the subject of the next section.

4 Generalized time evolution operator in the
rigged Hilbert space formalism

In the usual approach to rigged Hilbert space, the dynamical description is
focused on the time evolution of mean values of observables. However, the
expression of a time evolution operator for states (or operators, as seen from
the perspective of the Heisenberg picture) was not present in the literature.
Here we introduce such a time evolution operator. This will allow us to map
non-Abelian algebras into Abelian ones.

4.1 Non-Hermitian Hamiltonian

It was shown that any vector ϕ+ ∈ Φ+ can be expanded as

ϕ+ =
∑
i

αi|ψDi 〉+ |ψB〉, (17)

where the sum extends to all resonances, αi are complex numbers and |ψB〉 is
the background term. This term is added in order to avoid a purely exponential
decay of normalizable vectors in Hilbert space. Since Φ+ ⊂ Φ×+, equation (17)
is valid in Φ×+. Since ϕ+ is normalizable and the Gamow vectors are not, we
conclude that the background term |ψB〉 cannot be normalizable either.

Analogously, for any ϕ− ∈ Φ−, we have the following expansion:

ϕ− =
∑
i

βi|ψGi 〉+ |φB〉. (18)

Correspondingly, in [50], we have shown that there are two possible expan-
sions for the total Hamiltonian H given by the following expressions,

H =
∑
i

zRi |ψDi 〉〈ψGi |+BGR (19)

H† =
∑
i

z∗Ri
|ψGi 〉〈ψDi |+BGR∗ . (20)
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Both expressions are the formal adjoint of each other. This is why we add
the dagger in the second expansion. They act on different spaces:

H ∈ L(Φ−,Φ
×
+), H† ∈ L(Φ+,Φ

×
−), (21)

where L(Φ±,Φ
×
∓) is the space of continuous linear mappings from Φ± to Φ×∓.

Expressions like BGR or BGR∗ denote the projection onto the background
subspace.

In general, the leading term corresponds to the resonance contribution and
the background in (19) is usually small. As a matter of fact, deviations of the
exponential law occur for very small and for very large times and are difficult
to be observed. This is why we may omit the background term for most of
observational times. In consequence, a good approximation for expansions (19)
and (20) is given if we omit the background, so that

H =
∑
i

zRi
|ψDi 〉〈ψGi | , H† =

∑
i

z∗Ri
|ψGi 〉〈ψDi |. (22)

Let us insist that the distinction between H and H† is purely conventional so
that we could have called H or H† to any of them.

Now, we have the mathematical tools to analyze decoherence produced by
resonances. We show that the above described time evolution gives place to a
commutation process.

4.2 Time evolution operator

In order to avoid possible convergence problems, we may assume that the num-
ber of resonances is finite. From the purely mathematical point of view, this
assumption is not fulfilled for most quantum models, but it is still valid in some
useful toy models, such as Friedrichs’s one. It is nevertheless true that res-
onances with large imaginary terms are not observable, as the inverse of the
imaginary part is related with the mean life. Also, in the context of a non rel-
ativistic theory, large values for the resonance energy ER are meaningless. In
this way, the approximation having a finite number of resonances is a reasonable
one.

In [50], we have defined a pseudometrics for Gamow vectors. The idea of
using pseudometrics was discussed heuristically in previous articles [51, 52].
As mentioned before, let us assume that the number of resonance poles is fi-
nite {z1, z

∗
1 , z2, z

∗
2 , . . . , zN , z

∗
N}. Let us consider the 2N dimensional space, HG,

spanned by the Gamow vectors corresponding to these resonances,

{|ψD1 〉, |ψG1 〉, |ψD2 〉, |ψG2 〉, . . . , |ψDN 〉, |ψGN 〉}. (23)

Notice that HG ⊂ Φ×∓. We define a pseudometrics in HG by appealing to a
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matrix:

A :=



0 1 . . . . . . . . . . . . . . .
1 0 . . . . . . . . . . . . . . .
. . . . . . 0 1 . . . . . . . . .
. . . . . . 1 0 . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 0 1
. . . . . . . . . . . . . . . 1 0


. (24)

All entries of A which are not explicitly given are zero. Then, the pseudoscalar
product of two vectors |ψ〉, |ϕ〉 ∈ HG, (ψ|ϕ), is (ψ|ϕ) = 〈ψ|A|ϕ〉. For the basis
(23), the pseudoscalar products are given by

(ψDi |ψDj ) = (ψGi |ψGj ) = 0, (ψDi |ψGj ) = (ψGi |ψDj ) = δij , (25)

where δij is the Kronecker delta.
In order to define a sort of time evolution on the space HG, we need to use

this pseudometrics. First, let us replace the Hamiltonian (22) by

H =

N∑
i=1

zi |ψDi )(ψGi |. (26)

More details are discussed in the Appendix. Using the pseudometrics, the square
of H should be

H2 =

N∑
i=1

zi |ψDi )(ψGi |
N∑
j=1

zj |ψDj )(ψGj | =
N∑
i=1

N∑
j=1

zi zj |ψDi )(ψGi |ψDj )(ψGj |

=

N∑
i=1

N∑
j=1

zi zj |ψDi )δij(ψ
G
j | =

N∑
i=1

z2
i |ψDi )(ψGi |, (27)

so that

Hn =

N∑
i=1

zni |ψDi )(ψGi |. (28)

This allows us to define an expression of the type e−itH as follows

U := e−itH =

N∑
j=1

e−itzj |ψDj )(ψGj |. (29)

The above expression can be used as time evolution operator on the space of
Gamow vectors. Notice that, in principle, the expression is valid for any value
of t. Furthermore, we have e−itH ∈ L(Φ−,Φ

×
+).
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5 Commutators

In this section, we finally deal with the Fort́ın, Holik, Vanni approach for the
decoherence of observables [2]. In the first term, we discuss the simplest case
in which a single resonance is present, like in the basic Friedrichs model. We
show that the difference between the existence of one or more resonances goes
beyond the actual complication on the notation.

We recall that we are studying a resonance scattering process in which the
background term is neglected. Then, our construction is restricted to the space
spanned by the Gamow vectors. In addition, we use the approximation of having
a finite number of resonances (this approximation was motivated in the previous
sections). In this way, the observables under our consideration are operators
acting on the finite dimensional space spanned by the Gamow vectors.

5.1 One resonance

Let O be an observable on the space of Gamow states. Assume that O evolves
with time. In this case, we have to define what we understand by time evolution
of an observable. In the case of having just one resonance, we propose to use
the “complete” Hermitian Hamiltonian defined as

H = zR|ψD)(ψG|+ z∗R|ψG)(ψD|. (30)

With the aid of the pseudo-metrics (25), we obtain the following expressions

Hn = znR|ψD)(ψG|+ (z∗R)n|ψG)(ψD| (31)

and
U(t) := e−itH = e−itzR |ψD)(ψG|+ e−itz

∗
R |ψG)(ψD|. (32)

To find the formal inverse of e−itH , we need to know an expression for the
identity. Since {|ψD), |ψG)} is a basis in HG, let us write

I := |ψD)(ψG|+ |ψG)(ψD|. (33)

This is the identity on HG. Indeed,

I|ψD) = |ψD)(ψG|ψD) + |ψG)(ψD|ψD) = |ψD). (34)

Analogously, I|ψG) = |ψG). Then, the linearity of I shows that this is indeed
the identity on HG. Then, the inverse of U(t) is

U(t)−1 = eitzR |ψD)(ψG|+ eitz
∗
R |ψG)(ψD| = U(−t), (35)

since, using the pseudometric relations (25), we have that U(t) = U(−t) = I.
Next, the time evolution of the operator, which at time t = 0 is O is now

O(t) = U(t)OU(−t). (36)
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We have just one resonance with resonance pole at zR = ER− iΓ/2, so that
the above equation reads

O(t) =
[
e−itzR |ψD)(ψG|+ e−itz

∗
R |ψG)(ψD|

]
O
[
eitzR |ψD)(ψG|+ eitz

∗
R |ψG)(ψD|

]
=

= |ψD)(ψG|O|ψD)(ψG|+ e−tΓ|ψD)(ψG|O|ψG)(ψD|+
+ etΓ|ψG)(ψD|O|ψD)(ψG|+ |ψG)(ψD|O|ψG)(ψD|, (37)

where the “averages” (ψG|O|ψG), etc are in principle well defined, since we work
on a finite dimensional space. In fact, the dimension is 2 in this case.

This provides undesirable terms in etΓ with t > 0, so that we have to give
up the condition U(t)U(−t) = I. A second choice for the time evolution of the
observables will include the following ingredients:

U(t) = e−itzR |ψD)(ψG|+ eitz
∗
R |ψG)(ψD|. (38)

The point is that this operator is formally Hermitic. Clearly, its square is not
the identity, instead

U(t)U†(t) = U2(t) = e−tΓI. (39)

This choice provides more desirable results. The standard definition of the
time evolution for an observable states that the value of the observable O after
a time t is given by O(t) := U†(t)OU(t). In our case, U†(t) = U(t). Note that
the commutator

[O1(t), O2(t)] = U(t)O1U(t)U(t)O2U(t)− U(t)O2U(t)U(t)O1U(t) =

= e−tΓ[U(t)O1O2U(t)− U(t)O2O1U(t)] =

= e−tΓU(t)[O1, O2]U(t). (40)

Using the above machinery, we may calculate U(t)[O1, O2]U(t). It is a sum
of four terms:

e−2iER e−tΓ |ψD)(ψG|[O1, O2]|ψD)(ψG|,
e2iER e−tΓ |ψG)(ψD|[O1, O2]|ψG)(ψD|,
e−tΓ |ψD)(ψG|[O1, O2]|ψD)(ψG|,
e−tΓ |ψG)(ψD|[O1, O2]|ψG)(ψD|.

The terms of the form (ψG|[O1, O2]|ψD) and (ψD|[O1, O2]|ψG) should be well
defined as they are “averages” of linear operators on finite dimensional spaces.
We realize that (40) is of the form:

[O1(t), O2(t)] = e−2tΓ {α(t)|ψD)(ψG|+ β(t)|ψG)(ψD|}, (41)

where α(t) and β(t) are constants for which the dependence on t is just a phase
of the form e±2itER with ER real. We have obtained the result given in [2].
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5.2 More than one resonance

Here, the procedure is the same, although calculations are more cumbersome.
In general, one should obtain

[O1(t), O2(t)] =

N∑
j=1

e−2tΓj {αj(t)|ψDj )(ψGj |+ βj(t)|ψGj )(ψDj |}, (42)

where the resonance poles are located at the points zj = Ej − iΓj/2, j =
1, 2, . . . , N .

5.3 Compatibility with TAQM

It is important to remark that the formalism presented in this work can be
applied to a wide family of physical models of interest. As an example, we
show in this section the compatibility with the TAQM formalism [53, 54], which
finds applications in scattering resonances and more recently in classical and
quantum optics [55, 56].

Let us go to (38) and observe the coefficients e−itzR for |ψG)(ψD| and eitz
∗
R

for |ψD)(ψG|. Also note that, in the standard formulation of TAQM using RHS
of Hardy functions on a half plane, we have the following evolution rules:

e−itH |ψD) = e−itzR |ψD) , t ≥ 0, (43)

and
e−itH |ψG) = e−itz

∗
R |ψG) = ei(−t)z

∗
R |ψG) , t ≤ 0. (44)

If we want to have a forward time evolution, we use the conversion −t 7−→ t
in (44). Thus, for t ≥ 0, the expression eitzR |ψG) has full sense. Contrary, for
t ≤ 0 time evolution for these Gamow vectors does not exist in the context of
TAQM. Therefore, equations (43,44) are valid for t ≥ 0 only from this point of
view.

6 Conclusions

In previous works [1, 2, 3], we have studied the quantum-to-classical transition
from the point of view of the algebra of observables of the system. If a quantum
system undergoes a physical process such that its behavior becomes classical,
then its algebra of observables should undergo a process from a non-Abelian
algebra to an Abelian one.

In this paper, we continue this approach. We introduce a dynamical evo-
lution operator for dealing with unstable physical process (such as scattering
resonances, photon emission, decoherence and particle decay). In order to do
this, we use the formalism of rigged Hilbert space and we represent the time evo-
lution of quantum observables in the Heisenberg picture, in such a way that time
evolution is non-unitary. This allows us to describe observables that are initially
non-commutative, but become commutative after time evolution. Therefore, we
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show that the quantum-to-classical transition based in dynamical algebras, oc-
curs in a rich family of models of unstable systems.

Appendix

The replacement of (22) by (26) is the change of H given by (22) by BHB,
where B is a square root of A. As a matter of fact, this means the use of a new
operator H of the form:

H =

N∑
i=1

ziB|ψDj 〉〈ψGj |B, (45)

where B is not uniquely defined. We may choose the following definition for B:
replace the 2× 2 dimensional nonvanishing boxes in A by

(−i)1/2

 i
√

2/2
√

2/2

√
2/2 i

√
2/2

 . (46)

Note that B|ψDi 〉 = |ψDi ) and 〈ψGi |B = (ψGi |. The square of H as in (45) is
given by

H2 =

N∑
i=1

N∑
j=1

zizjB|ψDi 〉〈ψGi |BB|ψDj 〉〈ψGj |B =

=

N∑
i=1

N∑
j=1

zizjB|ψDi 〉〈ψGi |A|ψDj 〉〈ψGj |B =

=

N∑
i=1

N∑
j=1

zizjB|ψDi 〉 δij 〈ψGj |B = B

[
N∑
i=1

z2
i |ψDi 〉〈ψGj |

]
B. (47)

Thus,

e−itH = B

 N∑
i=j

e−itzj |ψDj 〉〈ψGj |

B. (48)

In relation with the formal adjoint H†, it seems convenient to use another
square root of A, that we call C. Formally, C is the adjoint of B, C := B†. It
is a square root of A since B†B† = (BB)† = A† = A. Then, the new H† would
be

H† = C

[
N∑
i=1

z∗i |ψGi 〉〈ψDi |

]
C =

N∑
i=1

z∗i |ψGi )(ψDi |. (49)

Then, |ψGi ) = C|ψGi 〉 and (ψDi |C = 〈ψDi |.
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This choice has an interest by its own. In fact, note that the following
expression is formally Hermitian:

H =

N∑
i=1

zi|ψDi 〉〈ψGi |+
N∑
j=1

z∗j |ψGj 〉〈ψDj |. (50)

Then, the formal hermiticity of

H =

N∑
i=1

zi|ψDi )(ψGi |+
N∑
j=1

z∗j |ψGj )(ψDj | (51)

requires that (51) be equal to

H = B

[
N∑
i=1

zi|ψDi 〉〈ψGi |

]
B + C

 N∑
j=1

z∗j |ψGj 〉〈ψDj |

C. (52)
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