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Abstract

We address the construction of analytically integrable complex-valued potentials
by linear superpositions of fundamental bright and dark optical solitons that solve
cubic nonlinear Schrödinger equations. The real part of the potentials coincides
with the bright soliton intensity. The imaginary part results from the convolution
of the bright soliton with its concomitant, a localized dark excitation that arises
from repulsive nonlinearities in the media. In general, the method leads to the
Gross-Pitaevskii nonlinear differential equation, so the above results correspond
to the absence of external interactions. The potentials presented here may find
applications in the study of self-focussing signals that propagate in nonlinear media
with balanced gain and loss since they are parity-time symmetrical.

1 Introduction

Optical solitons are localized pulses that do not change shape as they propagate in non-
linear media [1–3]. Dispersion and nonlinearity conspire to cancel the spatial dependence
in the dynamics, which is usually described by nonlinear differential equations [4, 5], so
the solitons are not only shape invariant, they are also very stable when their area is a
constant of motion. This last defines the so-called bright solitons and shows how practi-
cal is their presence in optics [2]. Being bound states of the cubic nonlinear Schrödinger
equation, bright optical solitons exist because attractive nonlinearities are originated in
the media by the Kerr effect [6, 7]. Solutions for repulsive nonlinearities, known as dark
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optical solitons, are also available and useful [6,7]. An interesting application of the opti-
cal soliton properties concerns the recent practical validation of the parity-time symmetry
in optics [8]. Such a symmetry means invariance under parity and time-reversal transfor-
mations in quantum mechanics [9], and expresses that self-adjointness is not a necessary
condition to have physical observables with real spectrum. The experimental proof pro-
portioned in [8] is based on the formal equivalence between some dynamical equations in
optics and the Schrödinger equation in quantum mechanics. A complex refractive–index
n(x) = nR(x)+inI(x) serves as an ‘optical potential’ that can be realized in the laboratory.
The gain and loss regions of the material are associated with the imaginary distribution
nI(x), which may be chosen odd nI(−x) = n(x) to balance the gain–loss rates. An even
distribution nR(−x) = nR(x) would guide the signal along the propagation direction that
is transversal to x. The above provides a balanced gain-loss optical potential that can
be used to propagate self-focussing electromagnetic signals if, in addition, the media is
nonlinear [1–3,6, 7].

Quite recently, we have developed a formalism that permits the construction of analyt-
ically solvable complex-valued potentials with real spectrum [10–13]. The model is based
on the properties of the Riccati equation in the complex domain [14,15], and the Darboux
method [16]. The transformation theory introduced by Darboux in 1882 is useful to in-
tertwine the energies of two different spectral problems in contemporary physics [17], and
find immediate applications in soliton theory [18] as well as in supersymmetric quantum
mechanics [17,19]. The present work is motivated by the usefulness of the complex-valued
function V = u2 + iux as the seed of solutions u for nonlinear equations like the modified
Korteweg–de Vries, sine–Gordon and cubic nonlinear Schrödinger ones [4]. The judicious
selection of u may provide a parity-time symmetric potential V addressed to generate
the nonlinearities that are necessary to control the propagation of light in optical media.
Indeed, we find that combining the model introduced in [10] with the above expression
of V leads automatically to the Gross–Pitaevskii nonlinear equation [20,21], which offers
a natural arena to study Bose-Einstein condensates [22, 23] and is reduced to the cubic
nonlinear Schrödinger equation in the absence of external interactions [6, 7]. The latter
is exactly solvable by using the inverse scattering method [5, 24] but the former is very
restrictive in the search for integrable models.

The organization of the paper is as follows. In Section 2 we revisit the main ideas and
results introduced in [10]. Then, conditions are imposed to obtain a balanced gain–loss
optical potential and the Gross–Pitaevskii equation is derived in Section 2.1. We specialize
the model to the free-particle potential and show that the nonlinear Schrödinger equation
defines the profile of u in V = u2 + iux. Then, we find that u2 coincides with the intensity
of a bright optical soliton while ux is defined by the convolution of two optical solitons,
one obeying attractive nonlinearities and the other responding to repulsive nonlinear
interactions. That is, potential V is generated from the linear superposition of bright and
dark optical solitons, both of them in either the stationary regime or in a flat configuration.
Finally, in Section 3 we give some conclusions of our work.

2



2 Model and results

Using the Darboux approach [16], stationary one-dimensional Schrödinger equations,

− ψxx + V ψ = k2ψ (1)

and
− ϕxx + V0ϕ = k2ϕ, (2)

can be intertwined through the relationship

V = V0 + 2βx, ψ = ϕx + βϕ, (3)

with β a solution of the nonlinear Riccati equation

− βx + β2 = V0 − ε. (4)

Assuming that V0 is a real-valued measurable function such that Eq. (2) is integrable in
DomV0 = (a1, a2) ⊆ R, with the real eigenvalues E = k2, one can construct a complex-
valued function V such that Eq. (1) is integrable with the same energies E = k2 plus
an additional real eigenvalue ε [10]. Indeed, for any ε ∈ R, a complex-valued solution
β = βR + iβI of (4) must satisfy the coupled system

− βRx + β2
R − β2

I + ε− V0 = 0, (5)

− βIx + 2βIβR = 0. (6)

Once the solutions of (5)-(6) have been supplied, the real and imaginary parts of the
complex-valued potential V are

VR = V0 + 2βRx, VI = 2βIx. (7)

Given a bound state ψn of such potential, the conventional notions of probability density
ρn = |ψn|2 and probability current Jn = i(ψn ψ

∗
nx−ψnxψ∗n) apply [11], the asterisk stands

for complex conjugation, and they are such that the condition of zero total area [12],∫
DomV0

ImVλ(x)dx = 2βI(x)|a2a1 = 0, (8)

ensures conservation of total probability.

The new potential V may feature the parity-time (PT) symmetry, defined as the
invariance under parity (P) and time-reversal (T) transformations. In quantum mechanics
the former corresponds to spatial reflection p→ −p, x→ −x, and the latter to p→ −p,
x→ x, together with complex conjugation i→ −i [9]. Thus, a necessary condition for PT-
symmetry is that the complex-valued potential V (x) should satisfy V (x) = V ∗(−x). In
our case this last requires initial potentials represented by even functions V0(x) = V0(−x)
in DomV0. Then, it is sufficient to take βR even and βI odd in DomV0 to get parity-time
symmetric potentials V .
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The straightforward calculation shows that β is parameterized by a real number λ as
follows

β = −αx
α

+ i
λ

α2
, (9)

where the function
α(x) =

[
av2(x) + bv(x)u(x) + cu2(x)

]1/2
(10)

is real-valued and free of zeros in DomV0 when the parameters {a, b, c} are real and satisfy
4ac− b2 = 4(λ/ω0)

2 [10]. Here u and v are two linearly independent solutions of Eq. (2)
for k2 = ε, and w0 = W (u, v) is their Wronskian.

Of particular interest, the complex-valued potentials (7) may be constructed with the
profile

V = −(ϑ2 + iϑx), (11)

where the function ϑ is (at least) twice differentiable with respect to x and should contain
a parameter, say z, so that ϑ = ϑ(x; z). Potentials satisfying (11) are very important
in soliton theory since ϑ can be used to solve the three nonlinear evolution equations
known as the modified Korteweg–de Vries equation, the sine–Gordon equation, and the
cubic nonlinear Schrödinger equation, all of them defining the propagation of waves in
dispersive media [4].

In the following we show that complex-valued potentials (7) and (11) are compatible
for the appropriate solutions of the system (5)-(6). Such relationship supplies a meaning
for the real and imaginary parts of the β-function that generates potential (7) via the
Darboux transformation (3).

2.1 The Gross–Pitaevskii equation

From (7) and (11) we obtain the system

V0 + 2βRx = −ϑ2, 2βIx = −ϑx. (12)

After integrating, the last of the above equations leads to

ϑ = −2βI + ϑ0, (13)

with ϑ0 an integration constant. The combination of (13) with (6) produces

ϑx = 2(ϑ− ϑ0)βR. (14)

Then, the real and imaginary parts of β are respectively given by

βR =
ϑx

2(ϑ− ϑ0)
, βI = −

(
ϑ− ϑ0

2

)
. (15)

Using these results in (9) yields the expression

ϑ = −2
λ

α2
+ ϑ0, (16)
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where the constant arising from the integration of βR has been fixed as −2λ, for consis-
tency. Now, to find a mechanism to determine ϑ, let us introduce (13) into the equation
for βR in (12). After using Eq. (5) we obtain

2(β2
R + β2

I + ε)− V0 = ϑ0(4βI − ϑ0). (17)

Without loss of generality we make ϑ0 = 0. Then, the above equation is reduced to the
constraint

|β|2 = 1
2
V0 − ε. (18)

As |β| ≥ 0 we immediately have V0 ≥ 2ε. Besides, from (15) we realize that (18) produces
the nonlinear differential equation

ϑ2
x + (4ε− 2V0)ϑ

2 + ϑ4 = 0, (19)

which defines the analytic form of ϑ.

The next step is to determine whether or not the function ϑ features a soliton profile.
With this aim notice that the derivative of (14), after using (12) and condition (18), gives

− ϑxx + (V0 − 2ϑ2)ϑ = 4εϑ. (20)

Now, we introduce a real parameter z via the equation

iϑz = 4εϑ, (21)

with solution
ϑ(x; z) = ϑ(x) exp(−i4εz + ξ0), (22)

where ξ0 is an integration constant. Considering this new form of ϑ, to avoid dependence
on arg(ϑ) = −i4εz+ ξ0, let us change ϑ3 by |ϑ|2ϑ in (20). We obtain the spectral problem

− ϑxx +
(
V0 − 2|ϑ|2

)
ϑ = 4εϑ, (23)

which is named after Gross [20] and Pitaevskii [21], and currently known as the time-
independent Gross-Pitaevskii (GP) equation. Of course, (20) and (23) coincide for real
ϑ. Combining (21) and (23) one has

− ϑxx +
(
V0 − 2|ϑ|2

)
ϑ = iϑz. (24)

The latter is called time-dependent GP equation (or simply GPE), mainly when the prop-
agation parameter z is treated as the evolution variable. In analogy with the Schrödinger
equation, V0 is an external potential and the nonlinear term −2|ϑ|2 represents an attrac-
tive interaction that is proportional to the local density |ϑ|2. The GPE is a powerful tool
to study Bose-Einstein condensates (BEC) in the mean-field approximation [23], where
the nonlinearity represents an effective potential to which is subjected each atom because
its interaction with all other particles, and |ϑ|2 stands for the atomic density. In such ap-
proach the external potential V0 produces the BEC confinement and may adopt different
forms. The trapping in 3D models can be either magnetic or optical, the latter with the
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advantage that optical traps are extremely flexible and controllable in shape [22]. Lower
dimensional BECs are possible at temperatures close to zero when phase fluctuations are
negligible. For instance, magnetic traps include external harmonic potentials that can be
produced with highly anisotropic profiles. If the longitudinal frequency ωz is such that
ωz << ω⊥ ≡ ωx = ωy, then the fully 3D GPE can be reduced to an effectively 1D model
described by the GPE (24), where V0 is an oscillator of frequency ωz [22].

In general, the GPE (24) cannot be solved analytically for arbitrary V0. Particular
examples include periodic potentials V0(x+L) = V0(x) with period L for which the Bloch
theory [25] gives rise to discrete solitons [26]. However, the simplest exactly solvable case
is given by the free–particle potential V0 = 0, which reduces (24) to the cubic nonlinear
Schrödinger equation (NLSE),

− ϑxx − 2|ϑ|2ϑ = iϑz. (25)

Eq. (25) is useful to describe the dynamics of complex field envelopes in nonlinear dis-
persive media [7], as well as the paraxial approximation of the light propagation in Kerr
media [3]. In the last case, the propagation parameter z refers to the distance along the
beam and the variable x stands for the direction transverse to the propagation. Therefore,
ϑ is the normalized amplitude of the electric field envelope describing the pulse. The non-
linearity −2|ϑ|2 is due to the Kerr effect and represents the refractive index, its effect on
the light rays increases with the light intensity |ϑ|2 and leads to the self-focussing of the
beam [2], Ch.1 (see also [3] and [7]). In counterposition to the GPE (24), the NLSE (25)
is exactly integrable in the inverse scattering approach [24] for the boundary condition
|ϑ| → 0 at x → ±∞. It possesses localized solutions representing ‘bright’ solitons while
its counterpart, constructed with repulsive nonlinearity +2|ϑ|2, includes localized ‘dark’
pulses [6].

Some remarks are necessary. First, constraint (18) delimitates the class of real-valued
functions V0 that are useful to construct complex-valued potentials V featuring the special
form (11). Usually βR and βI are finite in DomV0 and go to zero as x → a1,2. Thus,
the above approach applies specially for functions V0 that are finite in their respective
domains and vanish asymptotically. As we are going to see, the free–particle potential is
an immediate example. The family of transparent potentials produced via supersymmetry
[19,27,28] and shape invariance [19] can be useful as well. Second, the phase of the polar
form (22) cannot be included in the identification (15) since it produces complex-valued
functions βI . Although arg(ϑ) allows the propagation of ϑ along z, as it is determined
by the linear derivative iϑz in either (24) or (25), the relationship between β = βR + iβI
and ϑ is clearly valid at the stationary case (z = 0). Third, potentials V0 fulfilling (18)
provide a Darboux profile (16) for βI = −1

2
ϑ that can be applied in the systematic search

for analytically solvable GPEs (23).

On the other hand, for the sake of completeness, we may remove βI from (5) by using
(18). The result is the nonlinear Riccati equation

− βRx + 2β2
R − 3

2
V0 + 2ε = 0, (26)

which is reduced to (19) after using (15).
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2.2 Optical soliton engineering

Consider the free–particle potential V0 = 0, then DomV0 = R. To find an expression for
ϑ let us divide the nonlinear equation (19) by ϑ4. After introducing y = −ϑ−1 we have

y2x + 4εy2 + 1 = 0. (27)

From (18) we know that this case requires ε ≤ 0. Making k = iκ
2

with κ ≥ 0, the eigenvalue
ε = −κ2/4 gives the negative coefficient −κ2 for y2 in (27). Then y = κ−1 cosh[κ(x+x0)],
with x0 an integration constant, and

ϑ(x; z) = − κe(iκ
2z+ξ0)

cosh [κ(x+ x0)]
, (28)

where we have used (22). Without loss of generality we make x0 = ξ0 = 0 to reduce (28)
to the conventional form of the fundamental bright soliton

ϑ(x; z) = − κeiκ
2z

cosh(κx)
, (29)

which does not change shape as it propagates along the z-axis. The latter because the
two left–terms of (25) conspire to cancel the dependence on x, as it is expected from the
balanced relationship between nonlinearity and dispersion in soliton profiles [4]. Indeed,
the area Ab =

∫
R ϑ(x)dx = π does not depend on κ, so it is a constant of motion for the

bright soliton [2], Ch.2. In Fig. 1(b) we show the behavior of ϑ(x; z) at z = 0.

(a) 4|βR(x)|2 (b) 4|βI(x)|2 (c) V (x)

Figure 1: (Color online) Excitations of the nonlinear Schrödinger equation (25) used to construct a
complex-valued potential (7) with balanced gain and loss. (a) Stationary dark soliton (31) associated
with (25) for the repulsive nonlinearity +2|ϑ|2. (b) Stationary bright soliton (30) associated to the NLSE
(25). In both cases κ = 1. (c) Potential (33) with VR and VI even and odd, respectively. VR is defined
by the bright soliton intensity profile and VI by the product of the bright and dark solitons described
above. In all cases |ϑ|2, ϑ and VI are in black-solid, blue-dashed and red-dotted lines respectively.

The imaginary part of β can be now expressed in terms of the stationary profile of the
above bright soliton solution

2βI(x) = − ϑ(x; z)|z=0 =
κ

cosh(κx)
. (30)
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In turn, the real part of β can be obtained from either (15), no matter the phase eiκ
2z, or

the constraint (18), by avoiding such phase. The latter produces

2βR(x) = ±κ
[
1− 1

cosh2(κx)

]1/2
= ±κ tanh(κx). (31)

For consistency with (15) we shall preserve the minus sign. Thus, writing 2βR(x) = −θ(x),
we immediately recognize θ(x) = κ tanh(κx) as the fundamental dark soliton solution of
(25), where the attractive nonlinearity −2|ϑ|2 is replaced by the repulsive one +2|ϑ|2.
Including the z-dependence we have

θ(x; z) = κeiκ
2z tanh(κx). (32)

In contrast with the bright soliton (29), the area defined by θ(x) is not finite. Besides,
although the area Ad = 2κπ described by the ‘hole’ κ2− θ2 is finite, this is not a constant
of motion since it depends on κ. Fig. 1(a) illustrates the ‘hole’ pulse described by the
density profile of the dark soliton (32).

Using the stationary versions of the optical solitons (29) and (32), potential (11)
becomes

V (x) = −ϑ2(x)− iϑ(x)θ(x). (33)

That is, VR is defined by the bright soliton intensity while VI results from the convolution
of the bright and dark solitons, both cases in the stationary regime, see Fig. 1. However,
to elucidate the meaning of expressions (29) and (32) in our model, let us rewrite (33) in
a more convenient form

V (x) = −|ϑ(x; z)|2 − iϑ(x; z)θ∗(x; z). (34)

Notice that V (x) does not depend on the propagation parameter z, despite it is explicitly
included in the soliton solutions. The situation changes for the β-function since it becomes
the following linear superposition of bright and dark solitons

β0(x; z) = −1
2

[θ(x; z) + iϑ(x; z)] = β(x)eiκ
2z. (35)

The constraint (18) is not affected by the z-dependence since |β0(x; z)|2 = |β(x)|2 = κ2

4
.

Then, the superposition (35) does not change shape as it propagates along the z-axis.
Nevertheless, a striking expression for V (x) and β(x) is still available. Considering that
only the stationary version of θ(x; z) is involved in the definition of β, while the phase of
ϑ(x; z) is permitted, we would write

V (x) = −|ϑ(x; z)|2 − iϑ(x)θ(x). (36)

Therefore

β1(x; z) = −1
2

[
θ(x) + ieiκ

2zϑ(x)
]

= −1
2

[
θ(x)− sin(κ2z)ϑ(x) + i cos(κ2z)ϑ(x)

]
, (37)

and the pulse
|β1(x; z)|2 = κ2

4
− 1

2
sin(κ2z)θ(x)ϑ(x) (38)
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oscillates with period 2π
κ2

as it propagates along z. Clearly, constraint (18) is satisfied at
±zn = ±

(
π
κ2

)
n, with n = 0, 1, . . . In Fig. 2 we can appreciate that excitation (38) is

indeed a pair ‘hole–hill’ that borns shyly at z = 0, maturates up to a robust configuration
at z = π

2κ2
, and decays slowly up to its annihilation at z1 = π

κ2
. Then the configuration

twirls to provide a pair ‘hill–hole’, and the process initiates again to finish at z2 = 2π
κ2

. The
entire cycle z0 → z2 is repeated over and over as z grows up. The annihilation positions
zn define a flat configuration of the excitation that serves to construct potential (36).

(a) (b)

Figure 2: Pulse (38) generated by the linear superposition (37) that includes the bright soliton ϑ(x; z)
and the stationary dark soliton θ(x), Eqs. (29) and (31) respectively. The excitation oscillates as z
increases and constraint |β1(x; z)|2 = κ2/4 is satisfied at the points zn = (π/κ2)n, where the pulse becomes
flat. At z = z1/2, the configuration involves a hole (dark soliton) in x > 0, and a hill (bright soliton) in
x < 0, which acquires a new shape at z = z3/2 since it includes a hill in x > 0, and a hole in x < 0. (a)
The pulse propagates from z0 to z5. (b) Distribution of holes and hills along the z-axis.

On the other hand, from (16) we have λ = κ
2

and α2(x) = cosh(κx). To verify
that these results are recoverable from the Darboux expressions of Section 2 let us take
v = e−ikx and u = eikx, with w0 = −2ik, in (10). The simple choice a = c = 1/2 gives

α(x) = [cos(2kx) + b]1/2 , b2 = 1 + λ2

k2
. (39)

We have already taken k = iκ
2
, so that α(x) = [cosh(κx)+b]1/2 is reduced to the expression

we are looking for when b2 = 1 − (2λ
κ

)2 is cancelled. Thus λ = κ
2
, as expected. Indeed,

potential (33) has been already reported in the context of the Darboux transformations
[10]. There, it is shown that only the real energy ε = −κ2

4
permits a normalizable solution

of the Schrödinger equation (1). Such eigenfunction is of the form

ψε(x) =
ϑ(x)√
κπ

[
cosh

(κx
2

)
+ i sinh

(κx
2

)]
, (40)

and satisfies |ψε|2 = 1
π
ϑ. That is, the density of the ground state (40) has the bright

soliton profile, see Fig. 3.

Potential (36) may be classified in the Scarf I-hyperbolic type (in notation of [29],
Table 1, use α = ±3

2
, β = ±1

2
). This is a family member of PT-invariant potentials
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Figure 3: (Color online) Real (blue-dashed) and imaginary (red-dotted) parts of the single bound state
(40) associated with the potential shown in Fig. 1(c). Up to the factor 1/π, the corresponding pulse
(black-solid) has the bright soliton profile shown in Fig. 1(b).

studied in [30] to show that non-Hermitian Hamiltonians have both real and complex
discrete spectrum, and fully analytically. The model includes different global factors for
VR and VI and investigates whether the eigenvalues are real or complex in terms of such
parameters. It is conjectured that “when the real part of the PT-invariant potential is
stronger than its imaginary part, the eigenspectrum will be real, and they will be mixed
(real and complex) otherwise” [30]. As our model considers the same global factor for
VR and VI , namely κ2, the above conjecture is automatically verified (see Fig. 4), so that
no complex eigenvalues are expected. Interestingly, potential (36) has been implemented,
with the global factors modified as in [30], as the external field in the GPE [31]. When
VI is weighted by a factor 1/2, it is found an exact solution for ε = 0.98 which acquires
the analytic form given in Eq. (40). Besides, the existence and stability of solitons in
these potentials, with self-focusing and self-defocusing nonlinear cases, has been recently
investigated in e.g. [32–34]. The above results open the possibility of scaling our model
to the more general case where the global factors of VR and VI are different.

Figure 4: (Color online) Total intensity (black-solid) of potential (36), see also Fig. 1(c). The real part
contribution (blue-dashed) is stronger than the imaginary one (red-dotted).

3 Conclusion

In conclusion, we have demonstrated how the superpositions of nonlinear localized modes
lead to complex-valued potentials with real energy spectrum and balanced gain–loss pro-
file. In particular, we found a potential that is defined by the intensity of the fundamental
bright optical soliton in its real part, and by the convolution of this soliton with the fun-
damental dark mode in the imaginary branch. Although the analytic expression of this
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potential has been already studied in different approaches, as far as we know, previous
to the present work, there is no information about the origin of such interaction. In-
deed, we have shown that the superposition leading to the optical potential defines also a
‘breathing’ pulse with striking properties. The pulse is composited by a hill (bright soli-
ton intensity) and a hole (dark soliton intensity) that propagate while they interchange
roles: the hole becomes a hill and vice versa. The entire process starts with a flat signal
that grows up shyly, maturates up to a robust configuration, and decays slowly up to its
annihilation. In a second part of the evolution, the hole and hill interchange roles and
the signal grows up and then decays again to finish in flat configuration. The definition
of the optical potential occurs when the superposition is in flat configuration.

The model can be scaled in different directions. For instance, fundamental solitons
may be replaced by excited modes in the definition of β, so it becomes a superposition
of excited localized modes of the cubic nonlinear Schrödinger equation. Remarkably, the
difficulty of using excited physical energies in the Darboux transformation is not present in
the construction of complex-valued potentials since the conventional oscillation theorems
do not operate in such a case [12]. Then, it is expected the same situation for the excited
soliton modes. Another option trends towards the Gross–Pitaevskii equation where the
external potential is not trivially zero. Namely, to satisfy the constraint (18) that delimits
the class of external potentials V0 that are useful in our model, periodic potentials might
be investigated. The same holds for the family of transparent potentials that either vanish
or become finite asymptotically. In any case, the complex-valued potential V = V0 + 2βx
will be expressed as V = u2 + iux, with u a localized mode of either the Gross–Pitaevskii
equation or the cubic nonlinear Schrödinger equation.
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[18] C. Rogers and W.K. Schief, Bäcklund and Darboux Transformations. Geometry and
Modern Applications in Soliton Theory, Cambridge University Press, United King-
dom, 2012.

[19] F. Cooper, A. Khare and U. Sukhatme, Supersymmetry in Quantum Mechanics,
World Scientific, Singapore, 2001.

12



[20] E.P. Gross, Structure of a quantized vortex in boson systems, Il Nuovo Cimento 20
(1961) 454.

[21] L.P. Pitaevskii, Vortex lines in an imperfect Bose gas, Sov. Phys. JETP 13 (1961)
451.

[22] P.G. Kevrekidis, D.J. Frantzeskakis and R. Carretero-González, Emergent Nonlinear
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