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Abstract We present a family of unitary irreducible representations of SU(2)
realized in the plane, in terms of the Laguerre polynomials. These functions
are similar to the spherical harmonics defined on the sphere. Relations with
an space of square integrable functions defined on the plane, L2(R2), are
analyzed. We have also enlarged this study using rigged Hilbert spaces that
allow to work with iscrete and continuous bases like is the case here.

1 Introduction

The representations of a Lie algebra are usually considered as ancillary to
the algebra and developed starting from the algebra, i.e. from the generators
and their commutation relations. The universal enveloping algebra (UEA) is
constructed and a complete set of commuting observables selected, choosing
between the invariant operators of the algebra and of a chain of its subalge-
bras. The common eigenvectors of this complete set of operators are a basis
of a vector space where the Lie algebra generators are realized as operators.

We propose here an alternative construction that allows to add to the
representations obtained following the reported recipe, new ones not achiev-
able following the previous approach. Starting from a concrete vector space
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of functions with discrete labels and continuous variables, we consider the
recurrence relations that allow to connect functions with different values of
the labels. These recurrence relations are not operators but allow us to intro-
duce, for each label and for each continuous variable, an operator that reads
its value. In this way, recurrence relations are rewritten in terms of rising
and lowering operators built by means of the above defined operators.These
rising and lowering operators are often genuine generators of the Lie algebras
considered by Miller [1] and the procedure gives simply the representations
of the algebras in a well defined function space [2, 3]. However it can happen
that the commutators, besides the values required by the algebra, have addi-
tional contributions. The essential point of this paper is that these additional
contributions (as exhibited here) can be proportional to the null identity that
defines the starting vector space. As this identity is zero on the whole repre-
sentation, the Lie algebra is well defined and a new representation in a space
of functions has been found.

We do not discuss here the general approach, but we limit ourselves to a
simple example where all aspects are better understandable. We start thus
from the associated Laguerre functions (ALF) and, following the proposed
construction, we realize the algebra su(2) in terms of the appropriate rising
and lowering operators. The ALF support in reality a larger algebra [4] but we
prefer to consider here only the subalgebra su(2). The reasons for this choice
are twofold: first in this way the technicalities are reduced at the minimum
and second it has been very nice for us to discover that not all representations
of a so elementary group like SU(2) where known.

As discussed in [5, 6, 7] the presence of operators with spectrum of different
cardinality implies that, as considered for the first time in Lie algebras in [8],
the space of the group representation is not a Hilbert space but a rigged
Hilbert space (RHS) [9]. Thus, we introduce the above setting within the
context of RHS since the RHS is the perfect framework where discrete and
continuous bases coexist. In addition, the same RHS serves as a support for a
representation on it of a Lie algebra as continuous operators as well as for its
UEA. Therefore, the connection between discrete and continuous bases and
Lie algebras with RHS is well established.

2 Associated Laguerre polynomials

The ALP [10], L
(α)
n (x), depend from a real continuous variable x ∈ [0,∞)

and from two other real labels (n, α) : n = 0, 1, 2, . . . and α (usually assumed
as a fixed parameter) continuous and > −1 . They reduce to the Laguerre
polynomials for α = 0 and are defined by the second order differential equa-
tion [

x
d2

dx2
+ (1 + α− x)

d

dx
+ n

]
L(α)
n (x) = 0 . (1)
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From the many recurrence relations that can be found in literature [10, 11],
we consider the following ones, all first order differential recurrence relations:[

x
d

dx
+ (n+ 1 + a− x)

]
L(α)
n (x) = (n+ 1)L

(α)
n+1(x) ,[

−x d

dx
+ n

]
L(α)
n (x) = (n+ α)L

(α)
n−1(x) ,[

− d

dx
+ 1

]
L(α)
n (x) = L(α+1)

n (x) ,[
x
d

dx
+ α

]
L(α)
n (x) = (n+ α)L(α−1)

n (x) .

(2)

Starting from L
(α)
n (x), by means of repeated applications of eqs. (2), L

(α+h)
n+k (x)

–with h and k arbitrary integers– can be obtained through a differential re-
lation of higher order. But, by means of eq. (1), every differential relation of
order two or higher can be rewritten as a differential relation of order one.
In particular we can obtain[

d

dx
+

n

α+ 1

]
L(α)
n (x) = − α

α+ 1
L
(α+2)
n−1 (x),[

x(α− 1)
d

dx
− x

(
n+ 3

α

2

)
+ α(α− 1)

]
L(α)
n (x)

= (j + α)(α+ 1) L
(α−2)
n+1 (x),

(3)

that are the recurrence relations we employ in this paper.

The ALP L
(α)
n (x) are –for α > −1 and fixed– orthogonal in n with respect

the weight measure dµ(x) = xα e−x dx [10]:∫ ∞
0

dx xα e−x L(α)
n (x) L

(α)
n′ (x) =

Γ (n+ α+ 1)

n!
δnn′ ,

∞∑
n=0

xα e−x L(α)
n (x)L(α)

n (x′) = δ(x− x′) .
(4)

The parameter α can be extended to arbitrary complex values [10] and,
in particular, for α integer and such that 0 ≤ |α| ≤ n , we have the relation

L(−α)
n (x) = (−x)α

(n− α)!

n!
L
(α)
n−α(x) . (5)

Here we assume consistently that n ∈ N , α ∈ Z and n − α ∈ N , and we
also consider α as a label, like n, and not a parameter fixed at the beginning.
Following the approach of [2], we introduce now a set of alternative variables
and include the weight measure inside the functions, in such a way to obtain
the bases we are used in quantum mechanics. We define indeed j := n+α/2
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and m := −α/2 that are such that j ∈ N/2 , j −m ∈ N and |m| ≤ j . Note
that they look like the parameters j and m used in SU(2). Now we write

Lmj (x) :=

√
(j +m)!

(j −m)!
x−m e−x/2 L

(−2m)
j+m (x)

so that, from eq. (5), Lmj (x) is symmetric/antisymmetric in the exchange

m ↔ −m since Lmj (x) = (−1)2j L−mj (x). From eqs. (4), we see that the
Lmj (x) verify, for m fixed, the following orthonormality and completeness
relations∫ ∞

0

Lmj (x) Lmj′ (x) dx = δjj′ ,

∞∑
j=|m|

Lmj (x) Lmj (x′) = δ(x− x′) , (6)

and are thus, for any fixed value of m, an orthonormal basis of L2(R+).
Note that, in the algebraic description of the spherical harmonics, the

functions Tmj (x) =
√

(j−m)!
(j+m)! P

m
j (x), related to the associated Legendre func-

tions Pml (x) and introduced in [2], satisfy Tmj (x) = (−1)m T−mj (x) which
is a relation similar to those verified by the Lmj (x) . Moreover the Tmj (x),
like the Lmj (x) on the half-line, are orthogonal –for fixed m– in the interval

(−1,+1) ⊂ R and a basis for L2[−1, 1].

3 SU(2) representations in the plane

Following now Ref. [2], we define four operators X, Dx, J and M such that

X Lmj (x) = x Lmj (x), Dx Lmj (x) = Lmj (x)′ ,

J Lmj (x) = j Lmj (x), M Lmj (x) = m Lmj (x).
(7)

and we can rewrite eq. (1) in terms of the Lmj (x) and in operatorial form as

E Lmj (x) ≡
[
XD2

x +Dx −
1

X
M2 − X

4
+ J +

1

2

]
Lmj (x) = 0 . (8)

Thus, the identity E ≡ 0 defines L2(R+).
The relations (3) can now be rewritten on terms of the Lmj (x) as

K+ Lmj (x) =
√

(j −m)(j +m+ 1) Lm+1
j (x) ,

K− Lmj (x) =
√

(j +m)(j −m+ 1) Lm−1j (x) ,
(9)

where
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K+ = −2Dx

(
M +

1

2

)
+

2

X
M

(
M +

1

2

)
−
(
J +

1

2

)
,

K− = 2Dx

(
M − 1

2

)
+

2

X
M

(
M − 1

2

)
−
(
J +

1

2

)
.

(10)

Since, from eqs. (9), we have [K+,K−] Lmj (x) = 2m Lmj (x) and assuming
K3 := M (i.e. K3 Lmj (x) = m Lmj (x)) we get the relations

[K+,K−] Lmj (x) = 2K3 Lmj (x), [K3,K±] Lmj (x) = ±K± Lmj (x) , (11)

that display the fact that, for fixed j, under the action of K± and K3 , the
Lmj (x) supports the irreducible representation of dimension 2j + 1 of su(2).

However, while as exhibited by (6) the space {Lmj (x)} has an inner prod-
uct for m fixed and j ≥ |m| (thus supporting a set of UIR of SU(1, 1) [4]), the
representation (11) of SU(2) is not faithful, since Lmj (x) = (−1)2j L−mj (x),
and not unitary. The definition of a scalar product is indeed one of the prob-
lems we have in the connection of hypergeometric functions and Lie algebras.
Hence, we have two problems: the Lmj (x) are not orthonormal for j fixed and
functions with opposite m are not independent (as it happens also with the
Pmj (x)). Following the same approach of the spherical harmonics to construct
the inner product space for j fixed and |m| ≤ j we, thus, introduce a new
real variable φ (−π < φ ≤ π) and the new objects

Zmj (r, φ) := eimφ Lmj (r2),

that verify Zmj (r, φ + 2π) = (−1)2j Zmj (r, φ). Under the change of variable

x→ r2 equation (8) becomes for Zmj (r, 0)[
d2

dr2
+

1

r

d

dr
− 4m2

r
− r2 + 4(j +

1

2
)

]
Zmj (r, 0) = 0. (12)

The functions Zmj (r, φ) are the analogous on the plane of the spherical har-
monics Ylm(θ, φ) on the sphere. The orthonormality and completeness of the
Zmj (r, φ) is similar to that of Y mj (θ, φ)

1

π

∫ π

−π
dφ

∫ ∞
0

r dr Zmj (r, φ)∗ Zm
′

j′ (r, φ) = δj,j′ δm,m′ ,

∑
j,m

Zmj (r, φ)∗ Zmj (r′, φ′) =
π

r
δ(r − r′) δ(φ− φ′) .

(13)

This means that {Zmj (r, φ)} is a basis of the Hilbert space L2(R2) with mea-

sure dµ(r, φ) = r dr dφ/π like {Y mj (θ, φ)} is a basis of L2(S2) with dΩ.
Now we consider an abstract Hilbert space H supporting the 2j + 1 di-

mensional IR of su(2) spanned by the eigenvectors of J and M (see eq. (7))
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J |j,m〉 = j |j,m〉 , M |j,m〉 = m |j,m〉 , 2j ∈ N, |m| ≤ j .

These vectors |j,m〉 constitute a basis of H verifying the properties of or-
thogonality and completeness

〈j,m|j′,m′〉 = δj,j′ δm,m′ ,

∞∑
j=0

j∑
m=−j

|j,m〉〈j,m| = I

Any |f〉 ∈ H may be written as |f〉 =
∑∞
j=0

∑j
m=−j fj,m |j,m〉 if and only if

∞∑
j=0

j∑
m=−j

|fj,m|2 <∞ , fl,m = 〈l,m|f〉 . (14)

A canonical injection S : H → L2(R2) can be defined by |j,m〉 → Zmj (r, φ)
and extended by linearity and continuity to the wholeH. One can easily check
that S is unitary. For any |f〉 ∈ H we have the following expression

S|f〉 =

∞∑
j=0

j∑
m=−j

fj,m S |j,m〉 =

∞∑
j=0

j∑
m=−j

fj,mZmj (r, φ) .

We now introduce a continuous basis, {|r, φ〉}, depending on the values of
the variables r and φ with the help of the discrete basis {|j,m〉} by

〈r, φ|j,m〉 := Zmj (r, φ) . (15)

In reality, because of the different cardinality of r and j, we are dealing with
a RHS (see next Section). The Zmj (r, φ) can be seen as the transformation
matrices from the irreducible representation states {|j,m〉} to the localized
states in the plane {|r, φ〉}, like Y mj (θ, φ) = 〈j,m|θ, φ〉 are the corresponding
ones to the localized states {|θ, φ〉} in the sphere [7, 12]. Indeed

|j,m〉 =
1

π

∫
R2

|r, φ〉Zmj (r, φ)rdrdφ, |j,m〉 =

∫
S2

|θ, φ〉
√
j + 1/2Y mj (θ, φ)dΩ.

We continue with the analogy and, from K± and K3 (10), we define

J± := e±iφK±, J3 := K3, (16)

with act on the Zmj (r, φ) as

J+ Zmj (r, φ) =
√

(j −m)(j +m+ 1) Zm+1
j (r, φ),

J− Zmj (r, φ) =
√

(j +m)(j −m+ 1) Zm−1j (r, φ),

J3 Zmj (r, φ) = m Zmj (r, φ) .

(17)
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The functions Zmj (r, φ) with j fixed and |m| ≤ j, are orthonormal and de-
termine the representation of dimension 2j + 1 of su(2) as it happens for
the Y mj (θ, φ). However there is a essential difference between the operators

{J±, J3} that act on the sphere S2 that are true generators of su(2) and the
{J±, J3} of (16), defined in R2, that do not close a Lie algebra. Indeed, when
we calculate the commutator [J+, J−] in terms of the differential operators

defined in the eqs. (10) and (16), we obtain [J+, J−] = 2 J3 +
8

R2
J3E , and

only when E ≡ 0 , i.e. only in the unitary space L2(R2) , the su(2) algebra
is recovered. On the other hand, E is related to the su(2) Casimir C

E = − R2

4J2
3 + 1

[C − J(J + 1)] ≡ − R2

4J2
3 + 1

[
J2
3 +

1

2
{J+, J−} − J(J + 1)

]
,

so equation E = 0 is equivalent to the su(2) Casimir condition C−J(J+1) =
0, that entails the usual Lie algebra in each su(2) representation space.

4 Rigged Hilbert space formulation.

A RHS (or Gelf’and triplet) is a triplet of spaces Φ ⊂ H ⊂ Φ× , where H is
an infinite dimensional separable Hilbert space, Φ is a dense subspace of H
endowed with its own topology, and Φ× is the dual (or the antidual) space
of Φ [9, 13, 14]. The topology considered on Φ is finer (contains more open
sets) than the topology that Φ has as subspace of H, and Φ× is equipped
with a topology compatible with the dual pair (Φ,Φ×) [15], usually the weak
topology. The topology of Φ [16, 17] allows that all sequences which converge
on Φ, also converge on H but the converse is not true. The difference between
topologies gives rise that Φ× is bigger than H, which is self-dual.

Here, any F ∈ Φ× is a continuous linear mapping from Φ into C.
An essential property is that if A is a densely defined operator on H, such

that Φ be a subspace of its domain and that Aϕ ∈ Φ for all ϕ ∈ Φ, we say
that Φ reduces A or that Φ is invariant under the action of A, (i.e., AΦ ⊂ Φ).
Then A may be extended unambiguously to Φ× by the duality formula

〈A× F |ϕ〉 := 〈F |Aϕ〉 , ∀ϕ ∈ Φ , ∀F ∈ Φ× . (18)

Moreover if A is continuous on Φ, then A× is continuous on Φ×.
The topology on Φ is given by an infinite countable set of norms {||−||∞n=1}.

A linear operator A on Φ is continuous if and only if for each norm || − ||n
there is a Kn > 0 and a finite sequence of norms || − ||p1 , || − ||p2 , . . . , || − ||pr
such that for any ϕ ∈ Φ, one has [18]

||Aϕ||n ≤ Kn (||ϕ||p1 + ||ϕ||p2 + · · ·+ ||ϕ||pr ) . (19)
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Now let us go to define and use the RHS G ⊂ H ⊂ G× where discrete and
continuous bases coexist and the meaningful operators are well defined and
continuous. Since we have a representation in terms of the Zmj (r, φ), it would

be more convenient to start with an equivalent RHS D ⊂ L2(R2) ⊂ D× ,
such as D is a test functions space with f(r, φ) ∈ L2(R2), which therefore
admit the span

f(r, φ) =

∞∑
j=0

j∑
m=−j

fj,mZmj (r, φ) , (20)

where the series converges in the sense of the norm in L2(R2). A necessary

and sufficient condition for it is
∑∞
j=0

∑j
m=−j |fj,m|2 <∞ . Thus, from (20),

we define D as the space of functions f(r, φ) in L2(R2) such that

||f(r, φ)||2n :=

∞∑
j=0

j∑
m=−j

(j+|m|+1)2n |fj,m|2 <∞ , n = 0, 1, 2, . . . . (21)

Obviously, all the finite linear combinations of the Zmj (r, φ) are in D, hence

D is dense in L2(R2). Thus, the family of norms || − ||n on D (21) gives a
topology such that D is a Frèchet space (metrizable and complete). Since for
n = 0 we have the Hilbert space norm, the canonical injection from D into
L2(R2) is continuous.

Because j goes from 0 to ∞, the operators J±, J3 are all unbounded and,
therefore, their respective domains are densely defined on L2(R2), but not
on the whole L2(R2). We can prove that all these operators are defined on
the whole D and are continuous with the topology on D. The proof is simple
and it is essentially the same for all operators. As an example, let us give the
proof for J+. For any function f in D, we have J+f , i.e.,

J+

∞∑
j=0

j∑
m=−j

fj,mZmj (r, φ) =

∞∑
j=0

j∑
m=−j

fj,m
√

(j −m)(j +m+ 1)Zm+1
j (r, φ) .

To show that J+f ∈ D we have to prove that for any n ∈ N, it satisfies (21).
So taking into account the shift on the index m (17) we have

∞∑
j=0

j∑
m=−j

|fj,m|2 (j −m)(j +m+ 1) (j + 1 + |m|+ 1)2n . (22)

The following two inequalities are straightforward:

(j−m)(j+m+1) ≤ (j+|m|+1)2 , (j+1+|m|+1)2n ≤ 22n (j+|m|+1)2n .

Using these inequalities we see that (22) is bounded by
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22n
∞∑
j=0

j∑
m=−j

|fj,m|2 (j + 1 + |m|+ 1)2n+2 , (23)

which converges after (21). Hence, J+ f ∈ D. In order to show the continuity
of J+ on D, we use (19). Thus, applying J+ to any f(r, φ) ∈ D we get

||J+f(r, φ)||2n ≤ 22n ||f(r, φ)||2n+1 =⇒ ||J+f(r, φ)||n ≤ 2n ||f(r, φ)||n+1 ,

which satisfies (19) for all n = 0, 1, 2, . . . . Hence, the continuity of J+ on D
has been proved. By means of the duality formula, we extend J+ to a weakly
continuous operator on D×. Same properties can be proved for J− and J3.

Now we are able to define the abstract RHS G ⊂ H ⊂ G× using the
unitary mapping S : H → L2(R2) introduced in the previous section. Thus,
we define G := S−1D. Hence the topology on G is the transported topology
from D by S, so that if f ∈ G, the semi-norms are

||f ||2n =

∞∑
j=0

j∑
m=−j

(j + |m|+ 1)2n |fj,m|2 <∞ , n = 0, 1, 2, . . . .

The topology on G uniquely defines G×. Moreover there exists a one-to-one
continuous mapping from G onto D with continuous inverse. It is given by
an extension, S̃, of S defined via the duality formula 〈S̃f |S̃F 〉 = 〈f |F 〉, with
f ∈ G and F ∈ G×.

On the other hand, if an operator O satisfies OD ⊂ D with continuity, the
same property works for Ô = S−1OS on G.

5 Conclusions

Starting from the recurrence relations (3) we obtained the operators {J±, J3}
(16). Their general linear algebra is not a Lie algebra. However its represen-
tation on L2(R2), characterized by the eigenvalue zero of the operator E, is
isomorphic to the regular representation {|j,m〉} of su(2) and it has therefore
a stronger symmetry than the general linear operator structure itself.

We are used in Lie algebra theory to representations that preserve the
symmetry of the algebra and to algebras that have the same symmetry of
the space where the representation is defined. This is exactly what happens
with the spherical harmonics, that are solution of Laplace equation and, thus,
have the same intrinsic symmetry of the group SU(2) of which they are rep-
resentation bases. However, here the situation is different since we represent
SU(2) in the plane R2 which geometry preserves only the subgroup SO(2) of
SU(2). Indeed {J±, J3} (16) are defined for arbitrary E, but they generate
su(2) only under the assumption E ≡ 0, i.e. when we restrict ourselves to
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functions f verifying the Casimir condition C f = J(J+1) f,, i.e. that belong
to L2(R2).

Reversing the connection, the representations of a Lie algebra have been
related not only to the Lie algebra itself but also to a set of operators that
do not close a Lie algebra in an universal way but reduce to a Lie algebra
only when applied to well defined vector spaces.

This paper offers a method to introduce representations of Lie groups in
spaces that are not symmetric under the group action and in situations where
the general linear group of operators is not a Lie group in a universal way.

We have also constructed two RHS (G ⊂ H ⊂ G× and D ⊂ L2(R2) ⊂ D×)
supporting two UIR of SU(2), the first one is related with the discrete basis
{|j,m〉} and the other RHS with the continuous one {|r, φ}. Both are related
by the unitary map S : |j,m〉 → Zmj (r, φ) that also transports the topologies
of the first RHS and other properties to the second RHS.
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